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1. LEFT RESIDUATED GROUPOIDS

Let (P,≤) be a poset.

An adjunction on P is a pair (·,→) of binary operations such

that
¦ xy ≤ z iff x ≤ y → z.

This condition is equivalent to the following four:

x ≤ y → xy,

(x → y)x ≤ y,

if x ≤ y, then xz ≤ yz,

if x ≤ y, then z → x ≤ z → y.

If · satisfies also the condition

if x ≤ y, then zx ≤ zy,

then the system (P, ·,→) is called a partially ordered left residu-

ated groupoid.
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A partially ordered groupoid is said to be integral if it has the

greatest element which is simulataneously its multiplicative unit.
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A partially ordered groupoid is said to be integral if it has the

greatest element which is simulataneously its multiplicative unit.

Abbreviations:
polrig – for “partially ordered left residuated integral groupoid”,

i polrig – for “idempotent polrig”,
c polrig – for “commutative polrig”,
a polrig – for “associative polrig”.

ca polrig = pocrim (‘m’ for ‘monoid’) (W.J.Block, J.G.Raftery, 1997])
a polrig = polrim (J.G.Raftery, C.J. van Alten, 1997)

c polrig = pocrig (J.C̄ırulis, 2008)

A polrig is idempotent iff its multiplication is the meet opera-

tion.

So, ipolrigs are just implicative (or Brouwerian, or relatively

pseudocomlemented) semilattices.
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A residuation subreduct (or r-subreduct, for short) of a polrig

(A, ·,→,1) is any subalgebra of the reduct (A,→,1).
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A residuation subreduct (or r-subreduct, for short) of a polrig

(A, ·,→,1) is any subalgebra of the reduct (A,→,1).

r-subreducts of polrims are BCC-algebras

(or (left) residuation algebras)

(H.Ono, Y.Komori, 1985)

- ” - pocrims ” BCK-algebras

(M.Palasinski, 1982; I.Fleisher, 1988;

H.Ono, Y.Komori, 1985)

- ” - ipolrims ” positive implicative BCK-algebras

(or Hilbert algebras)

(A.Horn, 1962; A.Diego, 1965)
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A residuation subreduct (or r-subreduct, for short) of a polrig

(A, ·,→,1) is any subalgebra of the reduct (A,→,1).

r-subreducts of polrims are BCC-algebras

(or (left) residuation algebras)

(H.Ono, Y.Komori, 1985)

- ” - pocrims ” BCK-algebras

(M.Palasinski, 1982; I.Fleisher, 1988;

H.Ono, Y.Komori, 1985)

- ” - ipolrims ” positive implicative BCK-algebras

(or Hilbert algebras)

(A.Horn, 1962; A.Diego, 1965)

What are the residuation subreducts of polrigs, pocrigs and ipolrigs?

!! ipolrig = ipolrim
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2. SOME IMPLICATIVE ALGEBRAS

An implicative algebra is an algebra (A,→,1), where
¦ A is a poset with the greatest element 1,
¦ → is a binary operation such that

x ≤ y if and only if x → y = 1.

(H.Rasiowa, 1974)

An implicative algebra is said to be normal (NI-algebra) if the

identity 1 → x = x holds in it.
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quasi-BCC-algebra:

NI
if x ≤ y, then z → x ≤ z → y
if x ≤ y, then y → z ≤ x → z
quasi-BCK-algebra:

qBCC
x ≤ (x → y) → y
positive implicative

quasi-BCK-algebra
or quasi-Hilbert algebra:

qBCK
if x ≤ x → y, then x ≤ y
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quasi-BCC-algebra: BCC-algebra:

NI NI
if x ≤ y, then z → x ≤ z → y x → y ≤ (z → x) → (z → y)
if x ≤ y, then y → z ≤ x → z
quasi-BCK-algebra: BCK-algebra:

qBCC BCC
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or quasi-Hilbert algebra: or Hilbert algebra:

qBCK BCK
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quasi-BCC-algebra: BCC-algebra:

NI NI
if x ≤ y, then z → x ≤ z → y x → y ≤ (z → x) → (z → y)
if x ≤ y, then y → z ≤ x → z
quasi-BCK-algebra: BCK-algebra:

qBCC BCC
x ≤ (x → y) → y x ≤ (x → y) → y
positive implicative positive implicative

quasi-BCK-algebra BCK-algebra
or quasi-Hilbert algebra: or Hilbert algebra:

qBCK BCK
if x ≤ x → y, then x ≤ y if x ≤ x → y, then x ≤ y

BCK = qBCK + [x → (y → z) = y → (x → z)],

H = qH + [x → (y → z) = y → (x → z)].

BCC = qBCC + ?
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Example. Let (A, ·,→,1) be a polrig. Then the reduct (A,→,1)

is
a qBCC algebra – always
a qBCK algebra iff the polrig is commutative,
a qH algebra iff the polrig is idempotent,
a BCC algebra iff the polrig is left semi-associative:

xy · z ≤ x · yz.

It follows that a polrig is an implicative semilattice if and only if

its (→,1)-reduct is a qH-algebra.
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3. MAIN RESULT

Theorem.

r-subreducts of polrigs are the qBCC-algebras,

- ” - pocrigs ” the qBCK-algebras.
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3. MAIN RESULT

Theorem.

r-subreducts of polrigs are the qBCC-algebras,

- ” - pocrigs ” the qBCK-algebras.

Unanswered question:

Are r-subreducts of ipolrigs the qH-algebras?

(If yes, then qH = H.)
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4. BETWEENNESS FRAMES [after M. Dunn, 1994]

A frame is a triple (K, R, β), where

K is a set,

R is a binary relation on K,

β is a ternary relation on K

xRy reads as “y is accessible from x”,

βxyz reads as “z is between x and y”,

and

R is reflexive,

∀xyz x′y′z′ (βxyz &xR x′& yR y′& z′R z ⊃ βx′y′z′).

20



The relation β in a frame is said to be

reflexive if

∀x βxxx,

balanced if

∀xy (βxxy ⊃ yR x),

symmetric if

∀xyz (βxyz ⊃ βyxz),

a left Pasch relation if:

∀xyz∀u [ ∃v (βxyv &βvzu) ⊃ ∃w(βyzw &βxwu) ],

a right Pasch relation if:

∀xyz∀u [ ∃v (βyxv &βzvu) ⊃ ∃w(βzyw &βwxu) ].
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A frame is assertional, if

∀uv (uR v ≡ ∃x βxvu),

∀uv (uR v ≡ ∃y βvyu).
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A frame is assertional, if

∀uv (uR v ≡ ∃x βxvu),

∀uv (uR v ≡ ∃y βvyu).

An element a of a frame is said to be initial if the following

holds:

∀y aR y,

∀uv (uR v ≡ βavu),

∀uv (uR v ≡ βvau)

An initialized frame is a frame together with a selected initial

element.
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Example 1: Betweenness spaces I.

K – the set of points of a plane,
R – equality =,
β – the ordinary betweenness relation for points.

The system (K,=, β) is a frame with a reflexive, balanced and

symmetric Pasch relation β.
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Pasch axiom in plane:

∀xyz∀u [ ∃v (βxyv &βvzu) ⊃ ∃w(βyzw &βxwu) ].
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Pasch axiom in plane:
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Example 2: Betweenness spaces II.

K – the set of closed regions on a plane,
R – inclusion ⊆,
B – betweenness relation for regions,
φ – the empty region.

A region z is said to be between x and y if z is included in the

convex hull of x ∪ y.

The system (K,⊆, B, φ) is an initialized frame with a reflexive

and symmetric Pasch relation B.
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Example 3: qBCC-algebras

(K,≤) – a poset,
β – a ternary relation on K,
→ – a binary operation on K,
1 – an element of K.
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Example 3: qBCC-algebras

(K,≤) – a poset,
β – a ternary relation on K,
→ – a binary operation on K,
1 – an element of K.

Then the following assertions are equivalent:

(a) (K,→,1) is a qBCC algebra and, for all x, y, z,

βxyz :≡ x ≤ y → z,

(b) (K,≥, β,1) is an initialized frame and, for all y, z,

y → z = max(x: βxyz).

The frame in (b) is called the characteristic frame of the qBCC-

algebra.
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Example 3: qBCC-algebras

(K,≤) – a poset,
β – a ternary relation on K,
→ – a binary operation on K,
1 – an element of K.

Then the following assertions are equivalent:

(a) (K,→,1) is a qBCC algebra and, for all x, y, z,
βxyz :≡ x ≤ y → z,

(b) (K,≥, β,1) is an initialized frame and, for all y, z,
y → z = max(x: βxyz).

The frame in (b) is called the characteristic frame of the qBCC-
algebra.

If (a) and (b) hold, then
K is a qBCK-algebra iff β is symmetric,
- ” - qH-algebra iff -”- balanced.
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Example 3: continuation

K,≤,→,1, β as above,

· – a binary operation on K.
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Example 3: continuation

K,≤,→,1, β as above,

· – a binary operation on K.

Then the following assertions are equivalent:

(a) (K, ·,→,1) is a polrig and, for all x, y, z,

βxyz :≡ x ≤ y → z (≡ xy ≤ z),

(b) (K,≥, β,1) is an initialized frame and, for all y, z,

y → z = max(x: βxyz), x · y = min(x: βxyz).
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Example 3: continuation

K,≤,→,1, β as above,

· – a binary operation on K.

Then the following assertions are equivalent:

(a) (K, ·,→,1) is a polrig and, for all x, y, z,

βxyz :≡ x ≤ y → z (≡ xy ≤ z),

(b) (K,≥, β,1) is an initialized frame and, for all y, z,

y → z = max(x: βxyz), x · y = min(x: βxyz).

If (a) and (b) hold, then

K is a polrim iff β is a left and right Pasch relation,
K is a pocrim iff β is a symmetric Pasch relation.
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Example 4: Canonic frames

Suppose that (K, R, β, a) is an initialized frame.
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Example 4: Canonic frames

Suppose that (K, R, β, a) is an initialized frame.

A subset X of K is hereditary if it is not empty and

∀x′ (∀x ∈ X)(x′R x ⊃ x′ ∈ X).

H(K) := {X: X is hereditary}.
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Example 4: Canonic frames

Suppose that (K, R, β, a) is an initialized frame.

A subset X of K is hereditary if it is not empty and

∀x′ (∀x ∈ X)(x′R x ⊃ x′ ∈ X).

H(K) := {X: X is hereditary}.

The system (H(K),⊇, B), where B ⊆ H(K)3 is defined by

B(X, Y, Z) :≡ (∀x ∈ X) (∀y ∈ Y )∀z (βxyz ⊃ z ∈ Z)

≡ ∀z [ (∃x ∈ X) (∃y ∈ Y )βxyz ⊃ z ∈ Z ],

is an assertional frame.
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Example 4: Canonic frames

Suppose that (K, R, β, a) is an initialized frame.

A subset X of K is hereditary if it is not empty and

∀x′ (∀x ∈ X)(x′R x ⊃ x′ ∈ X).

H(K) := {X: X is hereditary}.

The system (H(K),⊇, B), where B ⊆ H(K)3 is defined by

B(X, Y, Z) :≡ (∀x ∈ X) (∀y ∈ Y )∀z (βxyz ⊃ z ∈ Z)

≡ ∀z [ (∃x ∈ X) (∃y ∈ Y )βxyz ⊃ z ∈ Z ],

is an assertional frame.

If K is the characteristic frame of a qBCC-algebra, then H(K)

is called the canonic frame for the latter.
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5. PROOF

Proposition 2. Let (K, R, β) be a frame. For X, Y, Z ⊆ K, put

X ◦ Y := {z: (∃x ∈ X)(∃y ∈ Y )βxyz},
Y ⇒ Z := {x: ∀z(∀y ∈ Y ) (βxyz ⊃ z ∈ Z)},

1I := K.
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5. PROOF

Proposition 2. Let (K, R, β) be a frame. For X, Y, Z ⊆ K, put

X ◦ Y := {z: (∃x ∈ X)(∃y ∈ Y )βxyz},
Y ⇒ Z := {x: ∀z(∀y ∈ Y ) (βxyz ⊃ z ∈ Z)},

1I := K.
Then

(a) (P(K), ◦,⇒,1I) is a partially ordered residuated groupoid

with 1I the largest element,

(b) the operation ◦ is

idempotent if β is reflexive,
commutative if β is symmetric,
associative if β is a left and right Pasch relation.
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5. PROOF

Proposition 2. Let (K, R, β) be a frame. For X, Y, Z ⊆ K, put

X ◦ Y := {z: (∃x ∈ X)(∃y ∈ Y )βxyz},
Y ⇒ Z := {x: ∀z(∀y ∈ Y ) (βxyz ⊃ z ∈ Z)},

1I := K.
Then
(a) (P(K), ◦,⇒,1I) is a partially ordered residuated groupoid

with 1I the largest element,
(b) the operation ◦ is

idempotent if β is reflexive,
commutative if β is symmetric,
associative if β is a left and right Pasch relation.

Proposition 3. H(K) contains 1I and is closed under ◦ and ⇒.
Hence, (H(K), ◦,⇒,1I) also is a residuated groupoid with the
greatest element. It is integral if and only if K is assertional.
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Now, let (A,→,1) be a qBCC-algebra.

Move to its characteristic (initialized) frame (A,≥, β,1).

Move further to its canonic (assertional) frame (K,⊇, B) with

K = H(A).

Construct the associated polrig (H(K), ◦,⇒,1I).

(If A is a qBCK-algebra, then H(K) is a pocrig.)

Proposition 4. The mapping h: A → H(K) defined by

h(a) := {F ∈ H(K): a ∈ F}
is an embedding of A into the reduct (H(K),⇒,1I).
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