ON RESIDUATION SUBREDUCTS OF POCRIGS

Jānis Cīrulis University of Latvia email: jc@lanet.lv

SSAOS 2009 Stará Lesná, Sept. 5–11, 2009

OVERWIEV

- 1 Left residuated groupoids
- 2 Some implicative algebras
- 3 Main result
- 4 Betweenness frames
- 5 Sketch of proof

Let (P, \leq) be a poset.

Let (P, \leq) be a poset.

An *adjunction* on P is a pair (\cdot, \rightarrow) of binary operations such that

• $xy \leq z$ iff $x \leq y \rightarrow z$.

Let (P, \leq) be a poset.

An *adjunction* on P is a pair (\cdot, \rightarrow) of binary operations such that

• $xy \leq z$ iff $x \leq y \rightarrow z$.

This condition is equivalent to the following four:

$$x \leq y \rightarrow xy$$
,
 $(x \rightarrow y)x \leq y$,
if $x \leq y$, then $xz \leq yz$,
if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$.

Let (P, \leq) be a poset.

An *adjunction* on P is a pair (\cdot, \rightarrow) of binary operations such that

• $xy \leq z$ iff $x \leq y \rightarrow z$.

This condition is equivalent to the following four:

$$x \leq y \rightarrow xy$$
,
 $(x \rightarrow y)x \leq y$,
if $x \leq y$, then $xz \leq yz$,
if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$.

If \cdot satisfies also the condition

if $x \leq y$, then $zx \leq zy$,

then the system (P, \cdot, \rightarrow) is called a *partially ordered left residuated groupoid*.

Abbreviations:

- polrig for "partially ordered left residuated integral groupoid",
- *i polrig* for "idempotent polrig",
- c polrig for "commutative polrig",
- a polrig for "associative polrig".

Abbreviations:

- *polrig* for "partially ordered left residuated integral groupoid",
- *i polrig* for "idempotent polrig",
- c polrig for "commutative polrig",
- a polrig for "associative polrig".

```
ca polrig = pocrim ('m' for 'monoid') (W.J.Block, J.G.Raftery, 1997])
a polrig = polrim (J.G.Raftery, C.J. van Alten, 1997)
c polrig = pocrig (J.Cīrulis, 2008)
```

Abbreviations:

- polrig for "partially ordered left residuated integral groupoid",
- *i polrig* for "idempotent polrig",
- c polrig for "commutative polrig",
- a polrig for "associative polrig".

```
ca polrig = pocrim ('m' for 'monoid') (W.J.Block, J.G.Raftery, 1997])
a polrig = polrim (J.G.Raftery, C.J. van Alten, 1997)
c polrig = pocrig (J.Cīrulis, 2008)
```

A polrig is idempotent iff its multiplication is the meet operation.

```
So, ipolrigs are just implicative (or Brouwerian, or relatively pseudocomlemented) semilattices.
```

A residuation subreduct (or r-subreduct, for short) of a polrig $(A, \cdot, \rightarrow, 1)$ is any subalgebra of the reduct $(A, \rightarrow, 1)$.

A residuation subreduct (or *r*-subreduct, for short) of a polrig $(A, \cdot, \rightarrow, 1)$ is any subalgebra of the reduct $(A, \rightarrow, 1)$.

r-subreducts of	polrims	are	BCC-algebras
			(or (left) residuation algebras)
			(H.Ono, Y.Komori, 1985)
_ '' _	pocrims	,,	BCK-algebras
			(M.Palasinski, 1982; I.Fleisher, 1988;
			H.Ono, Y.Komori, 1985)
_ '' _	ipolrims	,,	positive implicative BCK-algebras
			(or Hilbert algebras)
			(A.Horn, 1962; A.Diego, 1965)

A residuation subreduct (or *r*-subreduct, for short) of a polrig $(A, \cdot, \rightarrow, 1)$ is any subalgebra of the reduct $(A, \rightarrow, 1)$.

r-subreducts of	polrims	are	BCC-algebras
			(or (left) residuation algebras)
			(H.Ono, Y.Komori, 1985)
- '' -	pocrims	,,	BCK-algebras
			(M.Palasinski, 1982; I.Fleisher, 1988;
			H.Ono, Y.Komori, 1985)
_ '' _	ipolrims	,,	positive implicative BCK-algebras
			(or Hilbert algebras)
			(A.Horn, 1962; A.Diego, 1965)

What are the residuation subreducts of polrigs, pocrigs and ipolrigs?

!! ipolrig = ipolrim

2. SOME IMPLICATIVE ALGEBRAS

An *implicative algebra* is an algebra $(A, \rightarrow, 1)$, where

- A is a poset with the greatest element 1,
- \rightarrow is a binary operation such that $x \leq y$ if and only if $x \rightarrow y = 1$.

(H.Rasiowa, 1974)

An implicative algebra is said to be *normal* (*NI-algebra*) if the identity $1 \rightarrow x = x$ holds in it.

quasi-BCC-algebra: NI if $x \leq y$, then $z \to x \leq z \to y$ if $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$ quasi-BCK-algebra: qBCC $x \le (x \to y) \to y$ positive implicative quasi-BCK-algebra or quasi-Hilbert algebra: qBCK if $x \leq x \rightarrow y$, then $x \leq y$

quasi-BCC-algebra:	BCC-algebra:
NI	NI
if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$	$\mid x ightarrow y \leq (z ightarrow x) ightarrow (z ightarrow y) \mid y$
if $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$	
quasi-BCK-algebra:	BCK-algebra:
qBCC	BCC
$x \leq (x \rightarrow y) \rightarrow y$	$x \le (x \to y) \to y$
positive implicative	positive implicative
quasi-BCK-algebra	BCK-algebra
or quasi-Hilbert algebra:	or Hilbert algebra:
qBCK	BCK
if $x \leq x \rightarrow y$, then $x \leq y$	if $x \leq x ightarrow y$, then $x \leq y$

quasi-BCC-algebra:	BCC-algebra:
NI	NI
if $x \leq y$, then $z \to x \leq z \to y$	$x ightarrow y \leq (z ightarrow x) ightarrow (z ightarrow y)$
if $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$	
quasi-BCK-algebra:	BCK-algebra:
qBCC	BCC
$x \le (x \to y) \to y$	$x \leq (x \to y) \to y$
positive implicative	positive implicative
quasi-BCK-algebra	BCK-algebra
or quasi-Hilbert algebra:	or Hilbert algebra:
qBCK	BCK
if $x \leq x \rightarrow y$, then $x \leq y$	if $x \leq x ightarrow y$, then $x \leq y$

$$\begin{array}{ll} \mathsf{BCK} &= \mathsf{qBCK} &+ [x \to (y \to z) = y \to (x \to z)], \\ \mathsf{H} &= \mathsf{qH} &+ [x \to (y \to z) = y \to (x \to z)]. \\ \mathsf{BCC} &= \mathsf{qBCC} &+ ? \end{array}$$

```
Example. Let (A, \cdot, \rightarrow, 1) be a polrig. Then the reduct (A, \rightarrow, 1) is
a qBCC algebra – always
a qBCK algebra iff the polrig is commutative,
a qH algebra iff the polrig is idempotent,
a BCC algebra iff the polrig is left semi-associative:
xy \cdot z \leq x \cdot yz.
```

It follows that a polrig is an implicative semilattice if and only if its $(\rightarrow, 1)$ -reduct is a qH-algebra.

3. MAIN RESULT

Theorem.

r-subreducts of polrigs are the qBCC-algebras,- " - pocrigs " the qBCK-algebras.

3. MAIN RESULT

Theorem.

r-subreducts of polrigs are the qBCC-algebras,- " - pocrigs " the qBCK-algebras.

Unanswered question:

Are r-subreducts of ipolrigs the qH-algebras?

(If yes, then qH = H.)

4. BETWEENNESS FRAMES [after M. Dunn, 1994]

A *frame* is a triple (K, R, β) , where

K is a set,

R is a binary relation on K,

 β is a ternary relation on K

 $x R y \ {\rm reads} \ {\rm as} \ \ " y \ {\rm is} \ {\rm accessible} \ {\rm from} \ x "$,

 βxyz reads as "z is between x and y ",

and

 ${\boldsymbol R}$ is reflexive,

 $\forall xyz \ x'y'z' \ (\beta xyz \ \& xR \ x' \ \& yR \ y' \ \& \ z'R \ z \supset \beta x'y'z').$

The relation β in a frame is said to be *reflexive* if $\forall x \beta x x x$, *balanced* if $\forall xy (\beta x xy \supset y R x)$,

symmetric if

orall xyz ($eta xyz \supset eta yxz$),

a *left Pasch relation* if:

 $\forall xyz \forall u \ [\exists v \ (\beta xyv \& \beta vzu) \supset \exists w \ (\beta yzw \& \beta xwu)],$

a right Pasch relation if:

 $\forall xyz \forall u \ [\exists v \ (\beta yxv \& \beta zvu) \supset \exists w (\beta zyw \& \beta wxu)].$

A frame is *assertional*, if $\forall uv (uRv \equiv \exists x \beta xvu),$ $\forall uv (uRv \equiv \exists y \beta vyu).$ A frame is *assertional*, if $\forall uv (uRv \equiv \exists x \beta xvu),$ $\forall uv (uRv \equiv \exists y \beta vyu).$

An element *a* of a frame is said to be *initial* if the following holds:

 $\begin{array}{l} \forall y \ aR \, y, \\ \forall uv \, (uR \, v \equiv \beta avu), \\ \forall uv \, (uR \, v \equiv \beta vau) \end{array}$

An *initialized frame* is a frame together with a selected initial element.

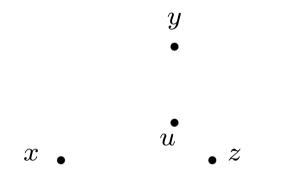
Example 1: Betweenness spaces I.

- K the set of points of a plane,
- R equality =,
- β the ordinary betweenness relation for points.

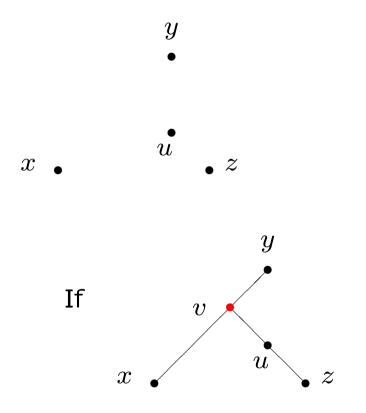
The system $(K, =, \beta)$ is a frame with a reflexive, balanced and symmetric Pasch relation β .

 $\forall xyz \forall u \ [\exists v \ (\beta xyv \& \beta vzu) \supset \exists w \ (\beta yzw \& \beta xwu)].$

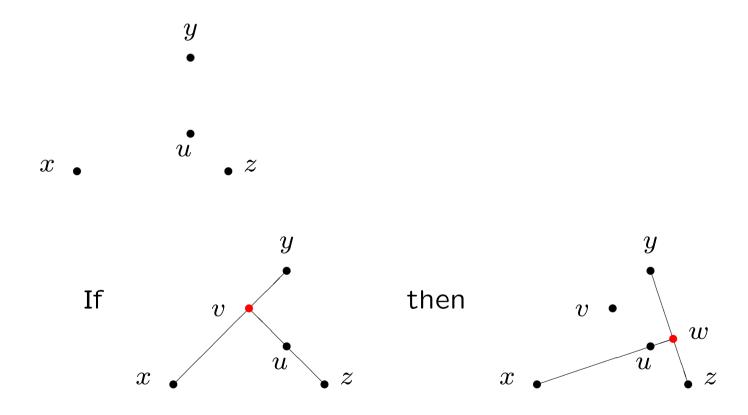
 $\forall xyz \forall u \ [\exists v \ (\beta xyv \& \beta vzu) \supset \exists w \ (\beta yzw \& \beta xwu)].$



 $\forall xyz \forall u \ [\exists v \ (\beta xyv \& \beta vzu) \supset \exists w (\beta yzw \& \beta xwu)].$



 $\forall xyz \forall u \ [\exists v \ (\beta xyv \& \beta vzu) \supset \exists w \ (\beta yzw \& \beta xwu)].$



Example 2: Betweenness spaces II.

- K the set of closed regions on a plane,
- R inclusion \subseteq ,
- B betweenness relation for regions,
- ϕ the empty region.

A region z is said to be *between* x and y if z is included in the convex hull of $x \cup y$.

The system (K, \subseteq, B, ϕ) is an initialized frame with a reflexive and symmetric Pasch relation B.

Example 3: qBCC-algebras

$$(K, \leq)$$
 - a poset,
 β - a ternary relation on K ,
 \rightarrow - a binary operation on K ,
1 - an element of K .

Example 3: qBCC-algebras

$$(K, \leq)$$
 - a poset,
 β - a ternary relation on K ,
 \rightarrow - a binary operation on K ,
1 - an element of K .

Then the following assertions are equivalent:

(a)
$$(K, \rightarrow, 1)$$
 is a qBCC algebra and, for all x, y, z ,
 $\beta xyz :\equiv x \leq y \rightarrow z$,

(b) $(K, \geq, \beta, 1)$ is an initialized frame and, for all y, z,

 $y \rightarrow z = \max(x; \beta x y z).$

The frame in (b) is called the *characteristic frame* of the qBCCalgebra.

Example 3: qBCC-algebras

 (K, \leq) – a poset, β – a ternary relation on K, \rightarrow – a binary operation on K, 1 – an element of K.

Then the following assertions are equivalent:

(a)
$$(K, \rightarrow, 1)$$
 is a qBCC algebra and, for all x, y, z ,
 $\beta xyz :\equiv x \leq y \rightarrow z$,

(b) $(K, \ge, \beta, 1)$ is an initialized frame and, for all y, z, $y \rightarrow z = \max(x; \beta x y z).$

The frame in (b) is called the *characteristic frame* of the qBCCalgebra.

If (a) and (b) hold, then K is a qBCK-algebra iff β is symmetric, - " - qH-algebra iff -" - balanced.

Example 3: continuation

 $K, \leq, \rightarrow, 1, \beta$ as above, \cdot – a binary operation on K.

Example 3: continuation

 $K, \leq, \rightarrow, 1, \beta$ as above, \cdot – a binary operation on K.

Then the following assertions are equivalent:

(a) $(K, \cdot, \rightarrow, 1)$ is a polrig and, for all x, y, z, $\beta xyz :\equiv x \leq y \rightarrow z \ (\equiv xy \leq z)$, (b) $(K, \geq, \beta, 1)$ is an initialized frame and, for all y, z, $y \rightarrow z = \max(x; \beta xyz), \quad x \cdot y = \min(x; \beta xyz).$

Example 3: continuation

 $K, \leq, \rightarrow, 1, \beta$ as above, \cdot – a binary operation on K.

Then the following assertions are equivalent:

(a)
$$(K, \cdot, \rightarrow, 1)$$
 is a polrig and, for all x, y, z ,
 $\beta xyz :\equiv x \leq y \rightarrow z \ (\equiv xy \leq z)$,
(b) $(K, \geq, \beta, 1)$ is an initialized frame and, for all y, z ,
 $y \rightarrow z = \max(x; \beta xyz), \quad x \cdot y = \min(x; \beta xyz).$

If (a) and (b) hold, then

K is a polrim iff β is a left and right Pasch relation, K is a pocrim iff β is a symmetric Pasch relation.

Suppose that (K, R, β, a) is an initialized frame.

Suppose that (K, R, β, a) is an initialized frame.

A subset X of K is *hereditary* if it is not empty and $\forall x' (\forall x \in X)(x'Rx \supset x' \in X).$ $H(K) := \{X: X \text{ is hereditary}\}.$

Suppose that (K, R, β, a) is an initialized frame.

A subset X of K is *hereditary* if it is not empty and $\forall x' (\forall x \in X)(x'Rx \supset x' \in X).$ $H(K) := \{X: X \text{ is hereditary}\}.$

The system $(H(K), \supseteq, B)$, where $B \subseteq H(K)^3$ is defined by $B(X, Y, Z) :\equiv (\forall x \in X) (\forall y \in Y) \forall z (\beta x y z \supset z \in Z)$ $\equiv \forall z [(\exists x \in X) (\exists y \in Y) \beta x y z \supset z \in Z],$

is an assertional frame.

Suppose that (K, R, β, a) is an initialized frame.

A subset X of K is *hereditary* if it is not empty and $\forall x' (\forall x \in X)(x'Rx \supset x' \in X).$ $H(K) := \{X: X \text{ is hereditary}\}.$

The system $(H(K), \supseteq, B)$, where $B \subseteq H(K)^3$ is defined by $B(X, Y, Z) :\equiv (\forall x \in X) (\forall y \in Y) \forall z (\beta x y z \supset z \in Z)$ $\equiv \forall z [(\exists x \in X) (\exists y \in Y) \beta x y z \supset z \in Z],$

is an assertional frame.

If K is the characteristic frame of a qBCC-algebra, then H(K) is called the *canonic* frame for the latter.

5. PROOF

Proposition 2. Let (K, R, β) be a frame. For $X, Y, Z \subseteq K$, put $X \circ Y := \{z: (\exists x \in X)(\exists y \in Y) \beta x y z\},$ $Y \Rightarrow Z := \{x: \forall z (\forall y \in Y) (\beta x y z \supset z \in Z)\},$ $\mathbb{1} := K.$

5. PROOF

Proposition 2. Let (K, R, β) be a frame. For $X, Y, Z \subseteq K$, put

$$X \circ Y := \{z: (\exists x \in X) (\exists y \in Y) \beta xyz\}, Y \Rightarrow Z := \{x: \forall z (\forall y \in Y) (\beta xyz \supset z \in Z)\}, \mathbb{1} := K.$$

Then

(a) $(\mathcal{P}(K), \circ, \Rightarrow, \mathbb{I})$ is a partially ordered residuated groupoid with \mathbb{I} the largest element,

(b) the operation \circ is

idempotent if β is reflexive,

commutative if β is symmetric,

associative if β is a left and right Pasch relation.

5. PROOF

Proposition 2. Let (K, R, β) be a frame. For $X, Y, Z \subseteq K$, put $X \circ Y := \{z: (\exists x \in X)(\exists y \in Y) \beta x y z\},$ $Y \Rightarrow Z := \{x: \forall z (\forall y \in Y) (\beta x y z \supset z \in Z)\},$ $\mathbb{1} := K.$

Then

(a) $(\mathcal{P}(K), \circ, \Rightarrow, \mathbb{I})$ is a partially ordered residuated groupoid with \mathbb{I} the largest element,

(b) the operation \circ is

Proposition 3. H(K) contains \mathbb{I} and is closed under \circ and \Rightarrow . Hence, $(H(K), \circ, \Rightarrow, \mathbb{I})$ also is a residuated groupoid with the greatest element. It is integral if and only if K is assertional. Now, let $(A, \rightarrow, 1)$ be a qBCC-algebra. Move to its characteristic (initialized) frame $(A, \ge, \beta, 1)$. Move further to its canonic (assertional) frame (K, \supseteq, B) with K = H(A).

Construct the associated polrig $(H(K), \circ, \Rightarrow, \mathbb{1})$. (If A is a qBCK-algebra, then H(K) is a pocrig.)

Proposition 4. The mapping $h: A \to H(K)$ defined by $h(a) := \{F \in H(K): a \in F\}$ is an embedding of A into the reduct $(H(K), \Rightarrow, \mathbb{1})$.