Weak Homomorphisms for (F_1, F_2) -systems

K. Denecke and W. Supaporn

Institute of Mathematics, University of Potsdam, Germany

September 10, 2009

白 ト イヨト イヨト

In 1960, E. Marczewski proposed the concept of weak homomorphisms for non-indexed algebras and in 1980, K.Glazek proposed this concept for indexed algebras.

Let $\underline{A} = (A; (f_i^{\underline{A}})_{i \in I})$ and $\underline{B} = (B; (g_j^{\underline{B}})_{j \in J})$ be algebras of types τ_1 and τ_2 . A mapping $\varphi : A \to B$ is said to be a weak homomorphism from \underline{A} to \underline{B} if for each n_i -ary fundamental operation $f_i^{\underline{A}}$ there exists an n_i -ary term operation $s^{\underline{B}}$ of algebra \underline{B} such that

$$\varphi(f_i^{\underline{A}}(a_1,\ldots,a_{n_i}))=s^{\underline{B}}(\varphi(a_1),\ldots,\varphi(a_{n_i}))$$

for all $a_1, \ldots, a_{n_i} \in A$ and for each n_j -ary fundamental operation $g_j^{\underline{B}}$ there exists an n_j -ary term operation $t^{\underline{A}}$ of algebra \underline{A} such that

$$\varphi(t\underline{^A}(a_1,\ldots,a_{n_j}))=g_j^{\underline{B}}(\varphi(a_1),\ldots,\varphi(a_{n_j}))$$

for all $a_1, \ldots, a_{n_j} \in A$.

• • = • • = •

Let $F : Set \to Set$ be a functor. An *F*-algebra \mathcal{A} is a pair of a set A and a mapping $\alpha_A : F(A) \to A$.

Every algebra of type τ can be regarded as an *F*-algebra where this functor *F* is called an algebra functor with respect to a type τ be defined as follow:

An algebra functor with respect to a type $\tau = (n_i)_{i \in I}$ is a functor $F^{\tau} : Set \to Set$ which is defined by:

for each set X ,
$$F^{\tau}(X) = \sum_{i \in I} X^{n_i} = \bigcup_{i \in I} \{(i, \overline{x}) \mid \overline{x} \in X^{n_i}\}$$

for each mapping $\varphi : X \to Y$, $F^{\tau}(\varphi) : \sum_{i \in I} X^{n_i} \to \sum_{i \in I} Y^{n_i}$

by
$$(i, (x_1, \ldots, x_{n_i})) \longmapsto (i, (\varphi(x_1), \ldots, \varphi(x_{n_i}))).$$

通 とう ほう とう マン・

By the definition of algebra functor, we know that

For each algebra
$$\underline{A} = (A, (f_i^{\underline{A}})_{i \in I})$$
 of type τ , there is an F^{τ} -algebra $\mathcal{A} = (A; \alpha_A)$ where $\alpha_A : F^{\tau}(A) \to A$ by $\alpha_A(i, (a_1, \ldots, a_{n_i})) = f_i^{\underline{A}}(a_1, \ldots, a_{n_i})$ for all $(i, (a_1, \ldots, a_{n_i})) \in F^{\tau}(A)$.

For each
$$F^{\tau}$$
-algebra $\mathcal{A} = (A; \alpha_A)$, there is an algebra
 $\underline{A} = (A, (f_i^{\underline{A}})_{i \in I})$ of type τ where for each $i \in I$, $f_i^{\underline{A}} : A^{n_i} \to A$ by
 $f_i^{\underline{A}}(a_1, \ldots, a_{n_i}) = \alpha_A(i, (a_1, \ldots, a_{n_i}))$ for all $a_1, \ldots, a_{n_i} \in A$.

Moreover, the category $Alg\tau$ with objects as algebras and morphisms as homomorphism and the category $Set^{F\tau}$ with objects as F^{τ} -algebra and morphisms as homomorphisms are isomorphic.

A B K A B K

F.M.Schneider generalized concept of K.Glazek to weak homomorphisms for *F*-algebras.

F-algebra can be regarded as an (F_1, F_2) -system where $F_1 = F$ and F_2 is an identity functor. We will generalize Schneider's idea to weak homomorphisms for (F_1, F_2) -systems.

• • = • • = •

1. (F_1, F_2) -Systems

2. Weak Homomorphisms for (F_1, F_2) -Systems

白 と く ヨ と く ヨ と …

æ

Definition 1.1

Let $F_1, F_2 : Set \to Set$ be functors. An (F_1, F_2) -system \mathcal{A} is a pair of a set \mathcal{A} and a mapping $\alpha_{\mathcal{A}} : F_1(\mathcal{A}) \to F_2(\mathcal{A})$.

In case F_1 is the identity functor, (F_1, F_2) -system \mathcal{A} is said to be an F_2 -coalgebra.

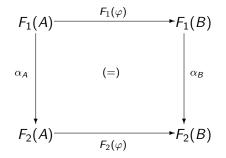
In case F_2 is the identity functor, (F_1, F_2) -system \mathcal{A} is said to be an F_1 -algebra.

・日・ ・ ヨ・ ・ ヨ・

Definition 1.2

Let $\mathcal{A} = (A; \alpha_A)$ and $\mathcal{B} = (B; \alpha_B)$ be (F_1, F_2) -systems. A mapping $\varphi : A \to B$ is called a **homomorphism** from \mathcal{A} to \mathcal{B} , written as $\varphi : \mathcal{A} \to \mathcal{B}$, if

$$F_2(\varphi) \circ \alpha_A = \alpha_B \circ F_1(\varphi).$$



・回・ ・ヨ・ ・ヨ・

Theorem 1.3[2], [3]

Let $\mathcal{A} = (A; \alpha_A), \mathcal{B} = (B; \alpha_B)$ and $\mathcal{C} = (C; \alpha_C)$ be (F_1, F_2) systems and let $\psi : \mathcal{A} \to \mathcal{B}$ and $\varphi : \mathcal{B} \to \mathcal{C}$ be homomorphisms.
Then

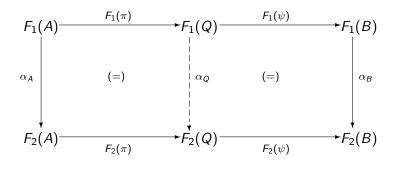
- 1) The identity mapping $id_A : A \to A$ is a homomorphism from \mathcal{A} to \mathcal{A} .
- 2) The composition function $\varphi \circ \psi : A \to C$ is a homomorphism from \mathcal{A} to \mathcal{C} .

The class of all (F_1, F_2) -systems together with homomorphisms forms a category, written as $Set_{(F_1,F_2)}$.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

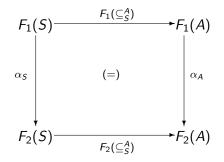
Theorem 1.4[3](The Factorization Theorem)

Let $\mathcal{A} = (A; \alpha_A)$ and $\mathcal{B} = (B; \alpha_B)$ be (F_1, F_2) -systems and let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism. If $\varphi = \psi \circ \pi$ is a factorization where $\pi : \mathcal{A} \twoheadrightarrow \mathcal{Q}$ and $\psi : \mathcal{Q} \rightarrowtail \mathcal{B}$, then there is a unique mapping $\alpha_Q : F_1(\mathcal{Q}) \to F_2(\mathcal{Q})$ such that π and ψ are homomorphisms.



Definition 1.5

Let $\mathcal{A} = (A; \alpha_A)$ be an (F_1, F_2) -system. A subset S of A is said to be **open** in \mathcal{A} if there is a mapping $\alpha_S : F_1(S) \to F_2(S)$ such that the embedding $\subseteq_S^A: S \hookrightarrow A$ is a homomorphism, and $\mathcal{S} = (S; \alpha_S)$ is called an (F_1, F_2) -subsystem of \mathcal{A} , written as $\mathcal{S} \preceq \mathcal{A}$.

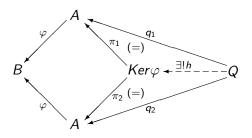


Proposition 1.6[3]

Let $\mathcal{A} = (A; \alpha_A)$ and $\mathcal{B} = (B; \alpha_B)$ be (F_1, F_2) -systems and let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism. (1) If $S \subseteq A$ is open in \mathcal{A} , then $\varphi[S]$ is open in \mathcal{B} . (2) If $R \subseteq B$ is open in \mathcal{B} and F_2 preserves pullbacks, then $\varphi^{-1}[R]$ is open in \mathcal{A} .

白 ト イヨ ト イヨ ト

On the category Set, we know that for each mapping $\varphi : A \to B$, *Ker* φ together with canonical projections $\pi_1, \pi_2 : Ker\varphi \to A$ forms a pullback of φ and φ .



Definition 1.7

A functor $F : Set \to Set$ weakly preserves kernels if for each mapping $\varphi : A \to B$, $F(Ker\varphi)$ together with $F(\pi_1), F(\pi_2)$ where $\pi_1, \pi_2 : Ker\varphi \to A$ are canonical projections, forms a pullback of $F(\varphi)$ and $F(\varphi)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Let $\mathcal{A} = (A; \alpha_A)$ and $\mathcal{B} = (B; \alpha_B)$ be (F_1, F_2) -systems. If φ is a homomorphism from \mathcal{A} to \mathcal{B} and F_2 weakly preserves kernels and preserves products, then $Ker\varphi$ is open in $\mathcal{A} \times \mathcal{A}$.

白 と く ヨ と く ヨ と

Let $\mathcal{A} = (A; \alpha_A)$ be an (F_1, F_2) -system and let $\varphi : A \to B$ be a mapping.

If (1) φ is surjective and

(2) $\mathcal{A} \times \mathcal{A}$ exists and $Ker\varphi$ is open in $\mathcal{A} \times \mathcal{A}$ and

(3) F_1 weakly preserves kernels,

then there is a unique mapping $\alpha_B : F_1(B) \to F_2(B)$ such that φ is a homomorphism from \mathcal{A} to $\mathcal{B} = (B; \alpha_B)$.

Proposition 1.10

Let $\mathcal{B} = (B; \alpha_B)$ be an (F_1, F_2) -system and let $\varphi : A \to B$ be a mapping. If (1) φ is injective and (2) $\varphi[A]$ is open in \mathcal{B} , then there is a unique mapping $\alpha_A : F_1(A) \to F_2(A)$ such that φ is a homomorphism from $\mathcal{A} = (A; \alpha_A)$ to \mathcal{B} . Let $\mathcal{A} = (A; \alpha_A)$ be an (F_1, F_2) -system and let I be an arbitrary set. If F_2 preserves products, then the direct power \mathcal{A}^I exists and its universe is the direct power \mathcal{A}^I of the universe of \mathcal{A} in the category *Set*.

Let $Sub(\mathcal{A})$ denote the set of all open sets in \mathcal{A} .

Definition 1.11

Let $\mathcal{A}_{12} = (A; \alpha_{12})$ and $\mathcal{A}_{34} = (A; \alpha_{34})$ be an (F_1, F_2) -system and an (F_3, F_4) -system, respectively. We say that the structural mappings α_{12} and α_{34} are **algebraically equivalent**, written as $\alpha_{12} \equiv \alpha_{34}$, if $Sub(\mathcal{A}'_{12}) = Sub(\mathcal{A}'_{34})$ for all set *I*.

Let $\mathcal{A}_{12} = (A; \alpha_{12})$ and $\mathcal{B}_{12} = (B; \beta_{12})$ be (F_1, F_2) -systems, let $\mathcal{A}_{34} = (A; \alpha_{34})$ and $\mathcal{B}_{34} = (B; \beta_{34})$ be (F_3, F_4) -systems, let φ be a homomorphism from \mathcal{A}_{12} to \mathcal{B}_{12} and a homomorphism from \mathcal{A}_{34} to \mathcal{B}_{34} , and let F_2 and F_4 preserve products and pullbacks. (1) If $\beta_{12} \equiv \beta_{34}$ and φ is injective, then $\alpha_{12} \equiv \alpha_{34}$. (2) If $\alpha_{12} \equiv \alpha_{34}$ and φ is surjective, then $\beta_{12} \equiv \beta_{34}$.

$$\mathcal{A}_{12} = (A; \alpha_{12}) \qquad \qquad \mathcal{B}_{12} = (B; \beta_{12})$$
$$\mathcal{A}_{34} = (A; \alpha_{34}) \qquad \qquad \mathcal{B}_{34} = (B; \beta_{34})$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Definition 2.1

Let $\mathcal{A}_{12} = (A; \alpha_{12})$ be an (F_1, F_2) -system and let $\mathcal{B}_{34} = (B; \beta_{34})$ be an (F_3, F_4) -system. A mapping $\varphi : A \to B$ is called a **weak homomorphism** from \mathcal{A}_{12} to \mathcal{B}_{34} if for each factorization $\varphi = \psi \circ \pi$ where $\pi : A \to Q$ and $\psi : Q \to B$, there are mappings $\gamma_{12} : F_1(Q) \to F_2(Q)$ and $\gamma_{34} : F_3(Q) \to F_4(Q)$ such that (i) $\gamma_{12} \equiv \gamma_{34}$, and (ii) π is a homomorphism from \mathcal{A}_{12} to $\mathcal{Q}_{12} = (Q; \gamma_{12})$, and (iii) ψ is a homomorphism from $\mathcal{Q}_{34} = (Q; \gamma_{34})$ to \mathcal{B}_{34} .

By The Factorization Theorem, every homomorphism is a weak homomorphism. Then identity mapping is a weak homomorphism.

・回 ・ ・ ヨ ・ ・ ヨ ・

Let $A_{12} = (A; \alpha_{12})$ and $B_{34} = (B; \beta_{34})$ be (F_1, F_2) -system and (F_3, F_4) -system, respectively and let $\varphi : A \to B$ be a mapping. If F_2 and F_4 preserve products and pullbacks, and there is a factorization $\varphi = \psi \circ \pi$ where $\pi : A \twoheadrightarrow Q$ and $\psi : Q \rightarrowtail B$ such that there are mappings $\gamma_{12} : F_1(Q) \to F_2(Q)$ and $\gamma_{34} : F_3(Q) \to F_4(Q)$ such that satisfy conditions (i), (ii) and (iii) in definition 2.1,

then φ is a weak homomorphism from \mathcal{A}_{12} to \mathcal{B}_{34} .

(本部)) (本語)) (本語)) (語)

Theorem 2.3

Let $\mathcal{A}_{12} = (A; \alpha_{12})$, $\mathcal{B}_{34} = (B; \alpha_{34})$ and $\mathcal{C}_{56} = (C; \alpha_{56})$ be (F_1, F_2) -system, (F_3, F_4) -system and (F_5, F_6) -system, respectively. If (1) F_1 weakly preserves kernels and (2) F_2 , F_4 and F_6 preserve products and pullbacks and (3) φ_1 is a weak homomorphisms from \mathcal{A}_{12} to \mathcal{B}_{34} and (4) φ_2 is a weak homomorphisms from \mathcal{B}_{34} to \mathcal{C}_{56} , then the composition $\varphi_2 \circ \varphi_1 : A \to C$ is a weak homomorphism from \mathcal{A}_{12} to \mathcal{C}_{56} .

回 と く ヨ と く ヨ と

Let \mathcal{K}_1 be the class of all $\mathcal{S}\textit{et}\text{-endofunctors}$ which weakly perserve kernels.

Let \mathcal{K}_2 be the class of all $\mathcal{S}et$ -endofunctors which perserve products and pullbacks.

Then the class of all (F_1, F_2) -systems where $F_1 \in \mathcal{K}_1$ and $F_2 \in \mathcal{K}_2$, together with weak homomorphisms forms a category, written as $Set_{(\mathcal{K}_1,\mathcal{K}_2)}$.

Let $\mathcal{A}_{12} = (A; \alpha_{12})$ be an (F_1, F_2) -system and let $\mathcal{B}_{34} = (B; \alpha_{34})$ be an (F_3, F_4) -system and let $\varphi : \mathcal{A}_{12} \to \mathcal{B}_{34}$ be a weak homomorphism. (1) If $S \subseteq A$ is open in \mathcal{A}_{12} , then $\varphi[S]$ is open in \mathcal{B}_{34} . (2) If $R \subseteq B$ is open in \mathcal{B}_{34} and F_2, F_4 preserves pullbacks, then $\varphi^{-1}[R]$ is open in \mathcal{A}_{12} .

回 と く ヨ と く ヨ と

Let $\mathcal{A}_{12} = (A; \alpha_{12})$, $\mathcal{B}_{34} = (B; \alpha_{34})$ and $\mathcal{C}_{56} = (C; \alpha_{56})$ be an (F_1, F_2) -system, an (F_3, F_4) -system and an (F_5, F_6) -system, respectively and let $\varphi : A \to B, \psi : B \to C$ be mappings. If (1) F_3 weakly preserves kernels, (2) F_2, F_4 preserve products and pullbacks, (3) $\psi \circ \varphi : \mathcal{A}_{12} \to \mathcal{C}_{56}$ is a weak homomorphism, (4) $\varphi : \mathcal{A}_{12} \to \mathcal{B}_{34}$ is a surjective weak homomorphism, then $\psi : \mathcal{B}_{34} \to \mathcal{C}_{56}$ is a weak homomorphism.

Proposition 2.6

Let $\mathcal{A}_{12} = (A; \alpha_{12})$, $\mathcal{B}_{34} = (B; \alpha_{34})$ and $\mathcal{C}_{56} = (C; \alpha_{56})$ be an (F_1, F_2) -system, an (F_3, F_4) -system and an (F_5, F_6) -system, respectively and let $\varphi : A \to B, \psi : B \to C$ be mappings. If (1) F_4, F_6 preserve products and pullbacks, (2) $\psi \circ \varphi : \mathcal{A}_{12} \to \mathcal{C}_{56}$ is a weak homomorphism, (3) $\psi : \mathcal{B}_{34} \to \mathcal{C}_{56}$ is an injective weak homomorphism, then $\varphi : \mathcal{A}_{12} \to \mathcal{B}_{34}$ is a weak homomorphism.

Let $A_{12} = (A; \alpha_{12})$, $B_{34} = (B; \alpha_{34})$ and $C_{56} = (C; \alpha_{56})$ be an (F_1, F_2) -system, an (F_3, F_4) -system and an (F_5, F_6) -system, respectively.

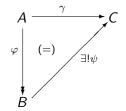
If (1) F_3 weakly preserves kernels, and

(2) F_2 , F_4 preserve products and pullbacks, and

(3) $\varphi:\mathcal{A}_{12}\twoheadrightarrow\mathcal{B}_{34}$ is a surjective weak homomorphism, and

(4) $\gamma : \mathcal{A}_{12} \rightarrow \mathcal{C}_{56}$ is a weak homomorphism,

then there exists a unique weak homomorphism $\psi : \mathcal{B}_{34} \to \mathcal{C}_{56}$ such that $\psi \circ \varphi = \gamma$ iff $Ker \varphi \subseteq Ker \gamma$.



白 ト イヨト イヨト

Definition 2.8

Let \mathcal{A} be an (F_1, F_2) -system. A binary relation $\theta \subseteq A \times A$ is said to be a congruence on \mathcal{A} if there exist an (F_1, F_2) -system \mathcal{B} and a homomorphism $\varphi : \mathcal{A} \to \mathcal{B}$ such that $\theta = Ker\varphi$.

白 と く ヨ と く ヨ と …

Let $\mathcal{A}_{12} = (A; \alpha_{12})$ be an (F_1, F_2) -system and let $\mathcal{B}_{34} = (B; \alpha_{34})$ be an (F_3, F_4) -system. If $\varphi : \mathcal{A}_{12} \to \mathcal{B}_{34}$ is a weak homomorphism, then $Ker\varphi$ is a congruence on \mathcal{A}_{12} .

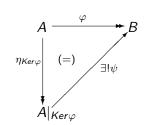
Proposition 2.10

If $\mathcal{A} = (A; \alpha_A)$ is an (F_1, F_2) -system and θ is a congruence on \mathcal{A} , then there is a unique mapping $\alpha_{\theta} : F_1(A|_{\theta}) \to F_2(A|_{\theta})$ such that the natural mapping $\eta_{\theta} : A \to A|_{\theta}$ is a weak homomorphism.

・回・ ・ヨ・ ・ヨ・

Theorem 2.11

Let $\mathcal{A}_{12} = (A; \alpha_{12})$ be an (F_1, F_2) -system and let $\mathcal{B}_{34} = (B; \alpha_{34})$ be an (F_3, F_4) -system. If $\varphi : \mathcal{A}_{12} \to \mathcal{B}_{34}$ is a surjective weak homomorphism, then $\mathcal{A}_{12}|_{Ker\varphi}$ weak isomorphic to \mathcal{B}_{34} .



御 と くき とくき とうき

- [1] F.M.Schneider, *Weak Homomorphism between F-Algebras*, Preprint, 2009.
- [2] K.Denecke, S.L.Wismath, *Universal Algebra and Coalgebra*, World Scientific, Singapore, 2009.
- [3] K.Saengsura, (*F*₁, *F*₂)-*systems*, Menuscript, 2009.

白 と く ヨ と く ヨ と

THANK YOU FOR YOUR ATTENTION.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで