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♦ A set of terms L (tree language of type �) is recognizable iff
there exist a finite algebra A, a homomorphism ' : ℱ� (X )→ A, a
subset A′ ⊆ A such that '−1(A′) = L.

♦ Rec(�)-the set of all recognizable tree languages of type � ,

Rec(�) is closed under ∪, ∩, complement set.
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♦ Eilenberg’s variety theorem (S. Eilenberg, Automata, languages
and Machines,1976) which gives a one-to- one corespondence
pseudovarieties of finite semigroups ⇔ varieties of recognizable languages

♦ M. Steinby (Syntactic algebras and varieties of recognizable
sets,1979) extended the variety theorem to recognizable tree
languages
♦ Almeida’s generalization (1990) includes also varieties of filters
of congruences
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★ Problem: Superposition of tree languages is not included in the
operations which define a variety of tree languages, but Rec(�) is
also closed under superposition,
1.

superposition ⇝ binary operation, associative ⇝ semigroup

2. What is pseudovarieties correspondence to the varieties of tree
languages which closed under the superposition?
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We consider an indexed set of operation symbols fi where fi is
ni -ary for every i ∈ I , and a finite alphabet Xn := {x1, ..., xn}.
Let � := (ni )i∈I , ni ≥ 1 be the sequence of all arities of operation
symbols fi . The sequence � is called the type of the terms. Then
the set W� (Xn) of all n-ary terms of type � is inductively defined in
the following way:

(i) For all 1 ≤ j ≤ n the variables xj are n -ary terms of type � .

(ii) If t1, . . . , tni are n-ary terms and if fi is an ni -ary operation
symbol, then fi (t1, . . . , tni ) is an n-ary term of type � .

Every subset of W� (X ) :=
∪
n≥1

W� (Xn) is called a tree language of

type � .

K. Denecke and N. Sarasit Products of Tree Languages.
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The power set P(W� (X )) of the set of all terms of type � .

Ŝn
g : P(W� (X ))n+1 → P(W� (X )) is inductively defined by the

following steps:Let n ∈ ℕ+ (:= ℕ ∖ {0}) and let
B,B1, . . . ,Bn ∈ P(W� (X )) such that B,B1, . . . ,Bn ∕= ∅.

(i) If B = {xi} for 1 ≤ i ≤ n, then Ŝn
g ({xi},B1, . . . ,Bn) := Bi ,

and if B = {xi} for n < i , then Ŝn
g ({xi},B1, . . . ,Bn) := {xi}.

(ii) If B = {fi (t1, . . . , tni )} and if we assume that
Ŝn
g ({tj},B1, . . . ,Bn) for 1 ≤ j ≤ ni are already defined, then

Ŝn
g ({fi (t1, . . . , tni )},B1, . . . ,Bn) := {fi (r1, . . . , rni ) ∣ rj ∈

Ŝn
g ({tj},B1, . . . ,Bn), 1 ≤ j ≤ ni}.

(iii) If B is an arbitrary non-empty subset of W� (X ), then we
define Ŝn

g (B,B1, . . . ,Bn) :=
∪
b∈B

Ŝn
g ({b},B1, . . . ,Bn).

If one of the sets B,B1, . . . ,Bn is empty, we define
Ŝn
g (B,B1, . . . ,Bn) = ∅.

K. Denecke and N. Sarasit Products of Tree Languages.
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Ŝn
g : P(W� (X ))n+1 → P(W� (X )) is inductively defined by the

following steps:Let n ∈ ℕ+ (:= ℕ ∖ {0}) and let
B,B1, . . . ,Bn ∈ P(W� (X )) such that B,B1, . . . ,Bn ∕= ∅.

(i) If B = {xi} for 1 ≤ i ≤ n, then Ŝn
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Using the operation Ŝn
g for every n ≥ 1 and i ≤ n we define a

binary operation ⋅xi in the following way:

B1⋅xiB2 := Ŝn
g (B1, {x1}, . . . , {xi−1},B2, {xi+1}, . . . , {xn})

for all B1,B2 ⊆W� (X ).

⋅xi is associative ⇝ (P(W� (X ); ⋅xi ) is a semigroup.

K. Denecke and N. Sarasit Products of Tree Languages.



Motivation
Introduction

Idempotent and Regular Elements in (P(W� (X )); ⋅xi )
Green’s relations ℒ and ℛ

The ⋅xi -Iteration

Let � = (2), f a binary operation and X2 = {x1, x2}.
Then W� (X2) = {x1, x2, f (x1, x1), f (x1, x2), f (x2, x1),
f (x2, x2), f (x1, f (x1, x1)), f (x1, f (x1, x2)), ...}

Let A = {f (f (x1, f (x2, x1)))} and B = {f (x1, x2), f (x2, f (x2, x1))}.

A ⋅x1 B?
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if n = 3 then we get A ⋅x1 B = Ŝ3
g (A,B, {x2}, {x3}) =>

K. Denecke and N. Sarasit Products of Tree Languages.
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Var(A)- set of all variables occurring in all terms of A.

Proposition 1: Let A,B ∈ P(W� (X )) and let i ∕= j ∈ {1, . . . , n}.
Then

(i) If xj ∕∈ Var(A), then there is a set A′ ∈ P(W� (X )) such that
A ⋅xi B = A′ ⋅xj B for all B ∈ P(W� (X )).

(ii) If xi ∕∈ Var(A), then A ⋅xi B = A.

(iii) xi ∕∈ Var(A ⋅xi B) if and only if xi ∕∈ Var(A) or xi ∕∈ Var(B).

(iv) xi ∕∈ A ⋅xi B if and only if xi ∕∈ A or xi ∕∈ B.

(v) If xi ∈ A ⋅xi B, then B ⊆ A ⋅xi B.

(vi) If xj ∈ A ⋅xi B and xj ∕∈ A, then B ⊆ A ⋅xi B and xj ∈ B.

(vii) If xj ∈ A ⋅xi B, then A ∩ Xn ∕= ∅.

K. Denecke and N. Sarasit Products of Tree Languages.
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Lemma 2: Let A,B ∈ P(W� (X ) and xi ∈ Var(A).

If A = B ⋅xi A or A = A ⋅xi B then xi ∈ B.

Idempotent and regular elements.

Theorem 3: Let A ∈ P(W� (X )).
A is an idempotent element of (P(W� (X )); ⋅xi ) if and only if it is
regular if and only if it has finite order.

K. Denecke and N. Sarasit Products of Tree Languages.
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As a consequence, every element which has finite order has order
1. This means that (P(W� (X )); ⋅xi ) has only idempotent elements
or elements with infinite order and we can find examples which
show that the collection of all idempotent elements does not form
a subsemigroup.
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We consider the cases AℒB and AℛB for xi ∈ Var(A) and
xi ∕∈ Var(A).

Theorem 4: Let A,B ∈ P(W� (X )). Then

(i) Let xi ∕∈ Var(A). Then AℒB if and only if xi ∕∈ Var(B).

(ii) Let xi ∈ Var(A). Then AℒB if and only if A = B, i.e. ℒ is the
diagonal ΔP(W� (X )).

K. Denecke and N. Sarasit Products of Tree Languages.
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For Green’s relation ℛ we have:

Theorem 5: Let A,B ∈ P(W� (X )). Then

(i) Let xi ∕∈ Var(A). Then AℛB if and only if A = B.

(ii) Let xi ∈ Var(A). If AℛB, then xi ∈ Var(B) and

{a ∣ a ∈ A and xi ∕∈ Var({a})} = {b ∣ b ∈ B and xi ∕∈ Var({b})}.

K. Denecke and N. Sarasit Products of Tree Languages.
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For any xi ∈ X the xi -iteration A∗xi of a tree language
A ∈ P(W� (X )) is defined as the union

∪
k≥0

Ak,xi where

A0,xi := {xi} and
Aj ,xi := (Aj−1,xi ⋅xi A) ∪ Aj−1,xi .

Proposition 6: Let A ∈ P(W� (X )).

Then A∗xi =
∪
k≥0

Ak .

K. Denecke and N. Sarasit Products of Tree Languages.
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Theorem 7: Let A ∈ P(W� (X )) and xi ∈ Var(A). Then the
following conditions are equivalent:

(i) xi ∈ A.

(ii) (A)∗xi = (A)∗xi ⋅xi A ⋅xi (A)∗xi .

(iii) (A)∗xi is an idempotent in (P(W� (X )); ⋅xi ).

K. Denecke and N. Sarasit Products of Tree Languages.
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THANK YOU FOR YOUR ATTENTION
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