$\label{eq:constraint} \begin{array}{c} \mbox{Motivation} \\ \mbox{Introduction} \\ \mbox{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i}) \\ \mbox{Green's relations } \mathcal{L} \mbox{ and } \mathcal{R} \\ \mbox{The } \cdot_{x_i} \mbox{-Iteration} \end{array}$ 

#### **Products of Tree Languages.**

#### K. Denecke and N. Sarasit

Institute of Mathematics, Am Neuen Palais 10, University of Potsdam, 14469 Potsdam, Germany

SSAOS 2009, September 10

イロト イポト イヨト イヨト

# $\label{eq:constraint} \begin{array}{c} \mbox{Motivation} \\ \mbox{Introduction} \\ \mbox{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i}) \\ \mbox{Green's relations $\mathcal{L}$ and $\mathcal{R}$} \\ \mbox{The } \cdot_{x_i} \mbox{-Iteration} \end{array}$

♦ A set of terms *L* (tree language of type  $\tau$ ) is recognizable iff there exist a finite algebra  $\mathcal{A}$ , a homomorphism  $\varphi : \mathcal{F}_{\tau}(X) \to \mathcal{A}$ , a subset  $\mathcal{A}' \subseteq \mathcal{A}$  such that  $\varphi^{-1}(\mathcal{A}') = \mathcal{L}$ .

イロト イポト イヨト イヨト

# $\label{eq:constraint} \begin{array}{c} \mbox{Motivation} \\ \mbox{Introduction} \\ \mbox{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i}) \\ \mbox{Green's relations $\mathcal{L}$ and $\mathcal{R}$} \\ \mbox{The } \cdot_{x_i} \mbox{-Iteration} \end{array}$

♦ A set of terms *L* (tree language of type  $\tau$ ) is recognizable iff there exist a finite algebra  $\mathcal{A}$ , a homomorphism  $\varphi : \mathcal{F}_{\tau}(X) \to \mathcal{A}$ , a subset  $\mathcal{A}' \subseteq \mathcal{A}$  such that  $\varphi^{-1}(\mathcal{A}') = L$ .

•  $Rec(\tau)$ -the set of all recognizable tree languages of type  $\tau$ ,

A set of terms L (tree language of type τ) is recognizable iff there exist a finite algebra A, a homomorphism φ : F<sub>τ</sub>(X) → A, a subset A' ⊆ A such that φ<sup>-1</sup>(A') = L.
Rec(τ)-the set of all recognizable tree languages of type τ,

 $Rec(\tau)$  is closed under  $\cup$ ,  $\cap$ , complement set.

イロト イポト イヨト イヨト



◆ Eilenberg's variety theorem (S. Eilenberg, Automata, languages and Machines,1976) which gives a one-to- one corespondence pseudovarieties of finite semigroups ⇔ varieties of recognizable languages

♦ Eilenberg's variety theorem (S. Eilenberg, Automata, languages and Machines, 1976) which gives a one-to- one corespondence pseudovarieties of finite semigroups ⇔ varieties of recognizable languages
 ♦ M. Steinby (Syntactic algebras and varieties of recognizable sets, 1979) extended the variety theorem to recognizable tree languages

 ♦ Eilenberg's variety theorem (S. Eilenberg, Automata, languages and Machines,1976) which gives a one-to- one corespondence pseudovarieties of finite semigroups ⇔ varieties of recognizable languages
 ♦ M. Steinby (Syntactic algebras and varieties of recognizable sets,1979) extended the variety theorem to recognizable tree languages

♦ Almeida's generalization (1990) includes also varieties of filters of congruences

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Introduction}\\ \mbox{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i})\\ \mbox{Green's relations $\mathcal{L}$ and $\mathcal{R}$}\\ \mbox{The $-x_i$-Iteration} \end{array}$ 

Eilenberg- type correspondence

pseudovarieties of finite ⇔ varieties of recognizable algebras tree languages



≣ >

★ Problem: Superposition of tree languages is not included in the operations which define a variety of tree languages, but  $Rec(\tau)$  is also closed under superposition, 1.

superposition  $\rightsquigarrow$  binary operation, associative  $\rightsquigarrow$  semigroup

2. What is pseudovarieties correspondence to the varieties of tree languages which closed under the superposition?

We consider an indexed set of operation symbols  $f_i$  where  $f_i$  is  $n_i$ -ary for every  $i \in I$ , and a finite alphabet  $X_n := \{x_1, ..., x_n\}$ . Let  $\tau := (n_i)_{i \in I}, n_i \ge 1$  be the sequence of all arities of operation symbols  $f_i$ . The sequence  $\tau$  is called the type of the terms. Then the set  $W_{\tau}(X_n)$  of all n-ary terms of type  $\tau$  is inductively defined in the following way:

(i) For all  $1 \le j \le n$  the variables  $x_j$  are *n* -ary terms of type  $\tau$ .

(ii) If  $t_1, \ldots, t_{n_i}$  are *n*-ary terms and if  $f_i$  is an  $n_i$ -ary operation symbol, then  $f_i(t_1, \ldots, t_{n_i})$  is an *n*-ary term of type  $\tau$ .

Every subset of 
$$W_{ au}(X):=igcup_{n\geq 1}W_{ au}(X_n)$$
 is called a tree language of

type au.

イロン イヨン イヨン イヨン

 $\label{eq:constraint} \begin{array}{c} \text{Motivation} \\ \text{Introduction} \\ \text{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X));\cdot_{x_i}) \\ \text{Green's relations } \mathcal{L} \text{ and } \mathcal{R} \\ \text{The }_{x_i}\text{-Iteration} \end{array}$ 

The power set  $\mathcal{P}(W_{\tau}(X))$  of the set of all terms of type  $\tau$ .

イロン 不同と 不同と 不同と

æ

The power set  $\mathcal{P}(W_{\tau}(X))$  of the set of all terms of type  $\tau$ .  $\hat{S}_{g}^{n}: \mathcal{P}(W_{\tau}(X))^{n+1} \to \mathcal{P}(W_{\tau}(X))$  is inductively defined by the following steps:

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

 $\label{eq:constraint} \begin{array}{c} \mbox{Motivation} \\ \mbox{Introduction} \\ \mbox{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i}) \\ \mbox{Green's relations $\mathcal{L}$ and $\mathcal{R}$} \\ \mbox{The } \cdot_{x_i} \mbox{-Iteration} \end{array}$ 

The power set  $\mathcal{P}(W_{\tau}(X))$  of the set of all terms of type  $\tau$ .  $\hat{S}^n_{\sigma}: \mathcal{P}(W_{\tau}(X))^{n+1} \to \mathcal{P}(W_{\tau}(X))$  is inductively defined by the following steps:Let  $n \in \mathbb{N}^+$  (:=  $\mathbb{N} \setminus \{0\}$ ) and let  $B, B_1, \ldots, B_n \in \mathcal{P}(W_\tau(X))$  such that  $B, B_1, \ldots, B_n \neq \emptyset$ . (i) If  $B = \{x_i\}$  for  $1 \le i \le n$ , then  $\hat{S}_{\sigma}^n(\{x_i\}, B_1, \dots, B_n) := B_i$ , and if  $B = \{x_i\}$  for n < i, then  $\hat{S}_{\sigma}^n(\{x_i\}, B_1, \dots, B_n) := \{x_i\}$ . (ii) If  $B = \{f_i(t_1, \dots, t_{n_i})\}$  and if we assume that  $\hat{S}_{\sigma}^{n}(\{t_{i}\}, B_{1}, \dots, B_{n})$  for  $1 \leq j \leq n_{i}$  are already defined, then  $\hat{S}_{\sigma}^{n}(\{f_{i}(t_{1},\ldots,t_{n_{i}})\},B_{1},\ldots,B_{n}):=\{f_{i}(r_{1},\ldots,r_{n_{i}})\mid r_{i}\in$  $\hat{S}_{\sigma}^{n}(\{t_{i}\}, B_{1}, \ldots, B_{n}), 1 \leq i \leq n_{i}\}.$ (iii) If B is an arbitrary non-empty subset of  $W_{\tau}(X)$ , then we define  $\hat{S}_{\sigma}^n(B, B_1, \ldots, B_n) := \bigcup \hat{S}_{\sigma}^n(\{b\}, B_1, \ldots, B_n).$ b∈B If one of the sets  $B, B_1, \ldots, B_n$  is empty, we define  $\hat{S}^n_{\sigma}(B, B_1, \ldots, B_n) = \emptyset.$ ・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Using the operation  $\hat{S}_g^n$  for every  $n \ge 1$  and  $i \le n$  we define a binary operation  $\cdot_{\mathbf{x}_i}$  in the following way:

$$B_{1,x_i}B_2 := \hat{S}_g^n(B_1, \{x_1\}, \dots, \{x_{i-1}\}, B_2, \{x_{i+1}\}, \dots, \{x_n\})$$

for all  $B_1, B_2 \subseteq W_{\tau}(X)$ .

 $\cdot_{x_i}$  is associative  $\rightsquigarrow (\mathcal{P}(W_{\tau}(X); \cdot_{x_i}))$  is a semigroup.

イロト イヨト イヨト イヨト

Let  $\tau = (2)$ , f a binary operation and  $X_2 = \{x_1, x_2\}$ . Then  $W_{\tau}(X_2) = \{x_1, x_2, f(x_1, x_1), f(x_1, x_2), f(x_2, x_1), f(x_2, x_2), f(x_1, f(x_1, x_1)), f(x_1, f(x_1, x_2)), ...\}$ 

イロン イヨン イヨン イヨン

Let  $\tau = (2)$ , f a binary operation and  $X_2 = \{x_1, x_2\}$ . Then  $W_{\tau}(X_2) = \{x_1, x_2, f(x_1, x_1), f(x_1, x_2), f(x_2, x_1), f(x_2, x_2), f(x_1, f(x_1, x_1)), f(x_1, f(x_1, x_2)), ...\}$ Let  $A = \{f(f(x_1, f(x_2, x_1)))\}$  and  $B = \{f(x_1, x_2), f(x_2, f(x_2, x_1))\}$ .

・ロト ・ 同ト ・ ヨト ・ ヨト -

Let  $\tau = (2)$ , f a binary operation and  $X_2 = \{x_1, x_2\}$ . Then  $W_{\tau}(X_2) = \{x_1, x_2, f(x_1, x_1), f(x_1, x_2), f(x_2, x_1), f(x_2, x_2), f(x_1, f(x_1, x_1)), f(x_1, f(x_1, x_2)), ...\}$ Let  $A = \{f(f(x_1, f(x_2, x_1)))\}$  and  $B = \{f(x_1, x_2), f(x_2, f(x_2, x_1))\}$ .



(日本) (日本) (日本)

Let  $\tau = (2)$ , f a binary operation and  $X_2 = \{x_1, x_2\}$ . Then  $W_{\tau}(X_2) = \{x_1, x_2, f(x_1, x_1), f(x_1, x_2), f(x_2, x_1), f(x_2, x_2), f(x_1, f(x_1, x_1)), f(x_1, f(x_1, x_2)), ...\}$ Let  $A = \{f(f(x_1, f(x_2, x_1)))\}$  and  $B = \{f(x_1, x_2), f(x_2, f(x_2, x_1))\}$ .



$$A \cdot_{x_1} B?$$

(日本) (日本) (日本)

 $\label{eq:constraint} \begin{array}{c} \mbox{Motivation} \\ \mbox{Introduction} \\ \mbox{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i}) \\ \mbox{Green's relations } \mathcal{L} \mbox{ and } \mathcal{R} \\ \mbox{The } \cdot_{x_i} \mbox{-Iteration} \end{array}$ 

if 
$$n = 3$$
 then we get  $A \cdot_{x_1} B = \hat{S}^3_g(A, B, \{x_2\}, \{x_3\}) =>$ 



æ

 $\label{eq:constraint} \begin{array}{c} \mbox{Motivation} \\ \mbox{Introduction} \\ \mbox{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i}) \\ \mbox{Green's relations } \mathcal{L} \mbox{ and } \mathcal{R} \\ \mbox{The } \cdot_{x_i} \mbox{-Iteration} \end{array}$ 

#### Var(A)- set of all variables occurring in all terms of A.

イロン イヨン イヨン イヨン

Э

Var(A)- set of all variables occurring in all terms of A.

**Proposition 1**: Let  $A, B \in \mathcal{P}(W_{\tau}(X))$  and let  $i \neq j \in \{1, ..., n\}$ . Then

(i) If x<sub>j</sub> ∉ Var(A), then there is a set A' ∈ P(W<sub>τ</sub>(X)) such that A ⋅<sub>x<sub>i</sub></sub> B = A' ⋅<sub>x<sub>j</sub></sub> B for all B ∈ P(W<sub>τ</sub>(X)).
(ii) If x<sub>i</sub> ∉ Var(A), then A ⋅<sub>x<sub>i</sub></sub> B = A.
(iii) x<sub>i</sub> ∉ Var(A ⋅<sub>x<sub>i</sub></sub> B) if and only if x<sub>i</sub> ∉ Var(A) or x<sub>i</sub> ∉ Var(B).
(iv) x<sub>i</sub> ∉ A ⋅<sub>x<sub>i</sub></sub> B if and only if x<sub>i</sub> ∉ A or x<sub>i</sub> ∉ B.
(v) If x<sub>i</sub> ∈ A ⋅<sub>x<sub>i</sub></sub> B, then B ⊆ A ⋅<sub>x<sub>i</sub></sub> B.
(vi) If x<sub>j</sub> ∈ A ⋅<sub>x<sub>i</sub></sub> B and x<sub>j</sub> ∉ A, then B ⊆ A ⋅<sub>x<sub>i</sub></sub> B and x<sub>j</sub> ∈ B.
(vii) If x<sub>j</sub> ∈ A ⋅<sub>x<sub>i</sub></sub> B, then A ∩ X<sub>n</sub> ≠ Ø.

イロン イ部ン イヨン イヨン 三日

 $\label{eq:constraint} \begin{array}{c} & \text{Motivation} \\ & \text{Introduction} \\ \text{Idempotent and Regular Elements in } (\mathcal{P}(\mathcal{W}_{\tau}(X)); \cdot_{x_i}) \\ & \text{Green's relations } \mathcal{L} \text{ and } \mathcal{R} \\ & \text{The } \cdot_{x_i} \text{-Iteration} \end{array}$ 

#### Lemma 2: Let $A, B \in \mathcal{P}(W_{\tau}(X) \text{ and } x_i \in Var(A))$ .

#### If $A = B \cdot_{x_i} A$ or $A = A \cdot_{x_i} B$ then $x_i \in B$ .

K. Denecke and N. Sarasit Products of Tree Languages.

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

 $\begin{array}{c} & \text{Motivation} \\ & \text{Introduction} \\ \text{Idempotent and Regular Elements in } (\mathcal{P}(W_{\tau}(X)); \cdot_{x_i}) \\ & \text{Green's relations $\mathcal{L}$ and $\mathcal{R}$} \\ & \text{The $\cdot_{x_i}$-Iteration} \end{array}$ 

#### Lemma 2: Let $A, B \in \mathcal{P}(W_{\tau}(X) \text{ and } x_i \in Var(A))$ .

If  $A = B \cdot_{x_i} A$  or  $A = A \cdot_{x_i} B$  then  $x_i \in B$ .

#### Idempotent and regular elements.

**Theorem 3:** Let  $A \in \mathcal{P}(W_{\tau}(X))$ . *A* is an idempotent element of  $(\mathcal{P}(W_{\tau}(X)); \cdot_{x_i})$  if and only if it is regular if and only if it has finite order.

イロト イヨト イヨト イヨト

As a consequence, every element which has finite order has order 1. This means that  $(\mathcal{P}(W_{\tau}(X)); \cdot_{x_i})$  has only idempotent elements or elements with infinite order and we can find examples which show that the collection of all idempotent elements does not form a subsemigroup.

A B K A B K



### We consider the cases ALB and ARB for $x_i \in Var(A)$ and $x_i \notin Var(A)$ .

#### **Theorem 4:** Let $A, B \in \mathcal{P}(W_{\tau}(X))$ . Then

(i) Let x<sub>i</sub> ∉ Var(A). Then ALB if and only if x<sub>i</sub> ∉ Var(B).
(ii) Let x<sub>i</sub> ∈ Var(A). Then ALB if and only if A = B, i.e. L is the diagonal Δ<sub>P(W<sub>τ</sub>(X))</sub>.

イロン イヨン イヨン イヨン



For Green's relation  $\mathcal{R}$  we have:

#### **Theorem 5:** Let $A, B \in \mathcal{P}(W_{\tau}(X))$ . Then

(i) Let  $x_i \notin Var(A)$ . Then  $A\mathcal{R}B$  if and only if A = B.

(ii) Let  $x_i \in Var(A)$ . If ARB, then  $x_i \in Var(B)$  and

 $\{a \mid a \in A \text{ and } x_i \notin Var(\{a\})\} = \{b \mid b \in B \text{ and } x_i \notin Var(\{b\})\}.$ 

イロト イヨト イヨト イヨト



For any  $x_i \in X$  the  $x_i$ -iteration  $A^{*x_i}$  of a tree language  $A \in \mathcal{P}(W_{\tau}(X))$  is defined as the union  $\bigcup_{k \ge 0} A^{k,x_i}$  where  $A^{0,x_i} := \{x_i\}$  and  $A^{j,x_i} := (A^{j-1,x_i} \cdot_{x_i} A) \cup A^{j-1,x_i}$ .

イロト イヨト イヨト イヨト

For any  $x_i \in X$  the  $x_i$ -iteration  $A^{*x_i}$  of a tree language  $A \in \mathcal{P}(W_{\tau}(X))$  is defined as the union  $\bigcup_{k\geq 0} A^{k,x_i}$  where  $A^{0,x_i} := \{x_i\}$  and  $A^{j,x_i} := (A^{j-1,x_i} \cdot_{x_i} A) \cup A^{j-1,x_i}.$ Proposition 6: Let  $A \in \mathcal{P}(W_{\tau}(X)).$ Then  $A^{*x_i} = \bigcup_{k\geq 0} A^k.$ 



### **Theorem 7:** Let $A \in \mathcal{P}(W_{\tau}(X))$ and $x_i \in Var(A)$ . Then the following conditions are equivalent:

(i)  $x_i \in A$ . (ii)  $(A)^{*x_i} = (A)^{*x_i} \cdot_{x_i} A \cdot_{x_i} (A)^{*x_i}$ . (iii)  $(A)^{*x_i}$  is an idempotent in  $(\mathcal{P}(W_{\tau}(X)); \cdot_{x_i})$ .

イロン イ部ン イヨン イヨン 三日



#### THANK YOU FOR YOUR ATTENTION

K. Denecke and N. Sarasit Products of Tree Languages.

・ロン ・回 と ・ヨン ・ヨン