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Introduction

Lattice effect algebras (introduced by D. Foulis and M.K. Bennett
1994) are a common generalization of orthomodular lattices (hence
they may include noncompatible pairs of elements) and MV -algebras
(hence they may include unsharp elements):

in the case if every element of an effect algebra is sharp then E is an
orthomodular lattice; in the case if every pair of elements of E is
compatible then E is an MV-algebra.



Basic definition — effect algebras

Definition (D. Foulis and M.K. Bennett, 1994)
A partial algebra (E;%,0,1) is called an effect algebra if 0, 1 are two
distinct elements and @ is a partially defined binary operation on E
which satisfy the following conditions for any x,y,z € E:
(Ei) xdy=yPxif xdyis defined,
(Eil)) (x@y)®z=x® (y®z) if one side is defined,
(Eiii) for every x € E there exists a unique y € E such that
x®dy=1 (we putx =y),
(Eiv) if 1 ®x is defined then x = 0.

On every effect algebra E the partial order < and a partial binary
operation & can be introduced as follows:

x<y and yox=z iffx&z isdefinedand xdz=y.




Basic definitions — effect algebras

If E with the defined partial order is a lattice (a complete lattice) then
(E;®,0,1) is called a lattice effect algebra (a complete lattice effect
algebra).

Examples

An orthomodular lattice L becomes a lattice effect algebra if we set
x@y=xVyforall x,y € L such that x < y*.

An MV-algebra M = (M,+,*,0,1) becomes a lattice effect algebra
(called MV -effect algebra) if we restrict the total operation + to those
elements x,y € M such that x < y*, hence x@y=x+y iff x <y*, for
x,yeM.



Basic definitions — effect algebras
Definition

Let E be an effect algebra.
(1) Then Q C E is called a sub-effect algebra of E if
(i) 1€,
(i) if out of elements x,y,z € E with x&y =z two are in Q, then x,y,z € Q.
(2) If E is a lattice effect algebra and Q is a sub-lattice and a sub-effect
algebra of E then Q is called a sub-lattice effect algebra of E.

(3) A sub-lattice effect algebra M of a lattice effect algebra E is called
a block of E if
(i) x <y (compatible,i.e.,xVy=x®(yS (xAy))) forallx,y e M,
(i) ifze Eand x <« zfor all x e M then z € M.

Theorem

(Z.R., 2000) Every maximal subset of pairwise compatible elements of
a lattice effect algebra E is a block of E and

E ={M C E | M block of E}. Moreover, every block of E is a

sub-MYV -effect algebra of E .




Archimedean atomic lattice effect algebras

Definition
A lattice effect algebra E is
(1) Archimedean if for all x € E, x # 0 there exists positive integer
ny=max{n e N | nx=x@x®--- Dx exists}.
————
n-times

(2) atomic if under every nonzero element of E there is an atom
(minimal nonzero element).

Remark

If an Archimedean atomic lattice effect algebra E is not an
orthomodular lattice then E need not be atomistic.

Example

The finite chain MV -effect algebra E = {0,a,2a,...,n,a} is not
atomistic, i.e., there exists x € E with x # \/{a € E | a < x,a an atom}.




Archimedean atomic lattice effect algebras

Theorem

Let E be an Archimedean atomic lattice effect algebra. Then

(i) (Z.R. 2002) For every nonzero element x € E there are mutually
distinct atoms ay € E, o€ & and positive integers kq, o€ & such
that
under which x € S(E) iff kq = nq, = ord(aq) forall o € &.

(ii) IfE is an MV -effect algebra (equivalently E has a unique block)
then the decomposition in (i) is unique, i.e., the set
{aq € E | € &} and positive integers kq, ac & are unique.

(iii) IfE is not an MV -effect algebra (equivalently E has more than one
block) then the decomposition in (i) need not be unique
(1=a®b=2c, a,b,c are atoms).



Sharp elements of lattice effect algebras

Definition
(S. Gudder, 1998) Let E be an effect algebra. An element x € E is
sharpiff xAxX' =0. Set S(E) = {x € E | xAx =0}.

Theorem
(i) (G. Jenca and Z. R. 1999) For every lattice effect algebra E the
set S(E) is a sub-effect algebra and a full sub-lattice of E (i.e.,
(D C S(E) and /D exists) implies (\/ gy D exists and
VeD = Vg D)) and (S(E),V,A,,0,1) is an orthomodular lattice.
(ii) (J. Paseka and Z. R. 2009) If E is an Archimedean atomic lattice
effect algebra then S(E) is a bifull sub-lattice of E (i.e., for any
D CS(E), VgD exists iff \/ sz D, in which case \/p D = \/gg) D).
(iii) IfE is a complete lattice effect algebra then S(E) is a complete
sub-lattice (hence a bifull sub-lattice) of E.



Sharply dominating lattice effect algebras

Definition

(S. Gudder 1998) An effect algebra (E,®,0, 1) is called sharply
dominating if for every x € E there exists a smallest sharp element w*
such that x <w* € S(E) (i.e., w € S(E) satisfies x < w then w* <w).

Example

Clearly, every complete lattice effect algebra E is sharply dominating.

Proposition

If S(E) of an Archimedean atomic lattice effect algebra E is a complete
orthomodular lattice then E is sharply dominating (since S(E) is a bifull
sub-lattice of E ).

Remark (Archimedean atomic lattice effect algebra E is sharply
dominating) # S(E) is a complete orthomodular lattice; e.g. if E is a
Boolean algebra which is not a complete lattice.




Basic decomposition of elements (BDE-property) of Archimedean
atomic lattice effect algebras

Definition

Let E be an Archimedean lattice effect algebra.

@ x <€ E has a BDE-property if there are the unique w, € S(E), unique
set of atoms {aq|a € A} of E and unique positive integers ky < ng,
such that

x=wy @ (Plkaaqa|o € A}).

@ E has a BDE-property if every element x € E has a BDE-property.

Theorem

(Z. R. and Wu Junde 2008) An Archimedean atomic lattice effect
algebra E has the BDE-property iff E is sharply dominating.



Basic decomposition of elements (BDE-property) of Archimedean
atomic lattice effect algebras

Remark

@ /nthe BDE of x € E, the unique w, € S(E) is in fact the greatest
sharp element under x, hence e = xS w, is a meager element (i.e.,
(we S(E),w<e) = w=0) and the decomposition x =w, e is
unique.

Q M. Kalina, V. Olejcek (preprint 2009) showed that there are even
Archimedean atomic MV -effect algebras which are not sharply
dominating, i.e., in the decomposition x = @{kqaq|t € A} the
elements @{kqaq|0 € A kg =ny, } and @{kqan|a € Akg < ng,}
need not exist.



Blocks of lattice effect algebras

Theorem

(K. Mosna, 2007) Every Archimedean atomic lattice effect algebra E is
a union of jts atomic blocks. Every atomic block M uniquely
corresponds to a maximal pairwise compatible set Ay, of atoms of E.

Theorem

Let E be a lattice effect algebra and M be an Archimedean atomic
block of E. Then

@ M is a bifull sub-lattice of E.

Q IfAy ={ax | x € H,ax atom of M} is a maximal pairwise
compatible set of atoms then

@{nakak'“( € H} - @{nuKaK‘K € H} =1
E M




Blocks of sharply dominating Archimedean atomic lattice effect
algebras

Theorem

Let E be a sharply dominating Archimedean atomic lattice effect
algebra. Then

@ Every atomic block M of E is sharply dominating.

@ Every atomic block M of E is a bifull sub-lattice of E (i.e., for any
D C M, \/; D exists iff \/ ;D exists, in which case \/; D =\/y;D).

© Forevery x € E, the BDE of x in E coincides with BDE of x in every
atomic block M of E including x.



Blocks of of sharply dominating Archimedean atomic lattice effect
algebras

Theorem
Let E be an Archimedean atomic lattice effect algebra. The following
conditions are equivalent:
(i) Every atomic block M of E is sharply dominating.
(ii) For every atomic block M of E and every x € M, x has the
BDE-property both in M and E, i.e., the BDE of x in E coincides
with the BDE of x in M.

(iii) E is sharply dominating.



The center C(E) and the center of compatibility B(E) of sharply
dominating Archimedean atomic lattice effect algebra

Definition

Let E be a lattice effect algebra. B(E) =N{M C E | M is a block

of E} ={xe E |x«— yforevery yc E} is called a center of compatibility
of E.C(E)=B(E)NS(E)={x€E|y=(Ax)V(yAX)forallycE}is
called a center of E.

Theorem

Let E be a sharply dominating Archimedean atomic lattice effect

algebra. Then

(i) B(E) is a sharply dominating MV -effect algebra.

(ii) Forevery x € B(E),x # 0 there exist unique wy € C(E), unique set
{aa|a € A} C B(E) of atoms of E and unique positive integers
ko < ng, such that x =w, ® (Plkaaa|o € A}).

(iii) IfC(E)=1{0,1} then either B(E) = C(E) or
E =B(E)=1{0,a,2a,...,1 =nua}.




The center C(E) and the center of compatibility B(E) of sharply
dominating Archimedean atomic lattice effect algebra

Theorem

Let E be a lattice effect algebra. Let at least one block M of E be
complete and atomic. Then

(i) C(E) and B(E) are complete and atomic.
(i) C(E) and B(E) are bifull sub-lattices of both E and M.




Applications

(A)

In questions on the existence of states (or probability measures)
on a lattice effect algebra E # S(E):

For every sharply dominating Archimedean atomic lattice effect
algebra E (equivalently with BDE-property) the existence of an
(0)-continuous state on E implies the existence of a state on S(E)
(Z.R., Wu Junde, 2008). Consequently, if E is a finite lattice effect
algebra then a state on E exists iff a state on S(E) exists.
Moreover, if B(E) # C(E) then there exists an extremal
(o)-continuous state w on E, which is subadditive.

In questions for a lattice effect algebras to be a sub-direct product
of irreducible ones:

If the center C(E) of a lattice effect algebra E is atomic and bifull
sub-lattice of E then E is isomorphic to a subdirect product of
[I{[0,p] | p € E is an atom of C(E)}, where intervals [0, p] with
inherited @-operation are irreducible lattice effect algebras,
meaning that C([0, p) = {0, p} (Z. R., 2003).



Thank you for your attention.
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