Sharply dominating lattice effect algebras and basic decomposition of elements

Zdenka Riečanová

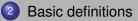
Department of Mathematics Slovak University of Technology Bratislava, Slovak Republic zdenka.riecanova@stuba.sk

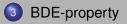
Jan Paseka

Department of Mathematics and Statistics Masaryk University Brno, Czech Republic paseka@math.muni.cz

SSAOS 2009

Outline





Lattice effect algebras (introduced by D. Foulis and M.K. Bennett 1994) are a common generalization of orthomodular lattices (hence they may include noncompatible pairs of elements) and *MV*-algebras (hence they may include unsharp elements):

in the case if every element of an effect algebra is sharp then E is an orthomodular lattice; in the case if every pair of elements of E is compatible then E is an MV-algebra.

Definition (D. Foulis and M.K. Bennett, 1994)

A partial algebra $(E; \oplus, 0, 1)$ is called an **effect algebra** if 0, 1 are two distinct elements and \oplus is a partially defined binary operation on *E* which satisfy the following conditions for any $x, y, z \in E$:

(Ei)
$$x \oplus y = y \oplus x$$
 if $x \oplus y$ is defined,

(Eii) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,

(Eiii) for every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y = 1$ (we put x' = y),

(Eiv) if $1 \oplus x$ is defined then x = 0.

On every effect algebra *E* the partial order \leq and a partial binary operation \ominus can be introduced as follows:

 $x \le y$ and $y \ominus x = z$ iff $x \oplus z$ is defined and $x \oplus z = y$.

If *E* with the defined partial order is a lattice (a complete lattice) then $(E; \oplus, 0, 1)$ is called a *lattice effect algebra* (a *complete lattice effect algebra*).

Examples

An orthomodular lattice *L* becomes a lattice effect algebra if we set $x \oplus y = x \lor y$ for all $x, y \in L$ such that $x \le y^{\perp}$.

An *MV*-algebra M = (M, +, *, 0, 1) becomes a lattice effect algebra (called *MV*-effect algebra) if we restrict the total operation + to those elements $x, y \in M$ such that $x \le y^*$, hence $x \oplus y = x + y$ iff $x \le y^*$, for $x, y \in M$.

Definition

Let E be an effect algebra.

(1) Then $Q \subseteq E$ is called a *sub-effect algebra* of *E* if

- (i) $1 \in Q$,
- (ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.
- (2) If *E* is a lattice effect algebra and *Q* is a sub-lattice and a sub-effect algebra of *E* then *Q* is called a *sub-lattice effect algebra* of *E*.
- (3) A sub-lattice effect algebra *M* of a lattice effect algebra *E* is called a *block* of *E* if

(i) $x \leftrightarrow y$ (*compatible*, i.e., $x \lor y = x \oplus (y \ominus (x \land y))$) for all $x, y \in M$, (ii) if $z \in E$ and $x \leftrightarrow z$ for all $x \in M$ then $z \in M$.

Theorem

(Z.R., 2000) Every maximal subset of pairwise compatible elements of a lattice effect algebra *E* is a block of *E* and $E = \bigcup \{M \subseteq E \mid M \text{ block of } E\}$. Moreover, every block of *E* is a sub-MV-effect algebra of *E*.

Archimedean atomic lattice effect algebras

Definition

A lattice effect algebra E is

(1) Archimedean if for all $x \in E$, $x \neq 0$ there exists positive integer $n_x = max\{n \in \mathbb{N} \mid nx = \underbrace{x \oplus x \oplus \cdots \oplus x}_{n-\text{times}} \text{ exists}\}.$

(2) *atomic* if under every nonzero element of *E* there is an atom (*minimal nonzero element*).

Remark

If an Archimedean atomic lattice effect algebra E is not an orthomodular lattice then E need not be atomistic.

Example

The finite chain *MV*-effect algebra $E = \{0, a, 2a, ..., n_a a\}$ is not atomistic, i.e., there exists $x \in E$ with $x \neq \bigvee \{a \in E \mid a \leq x, a \text{ an atom} \}$.

Theorem

Let E be an Archimedean atomic lattice effect algebra. Then

(i) (*Z.R. 2002*) For every nonzero element $x \in E$ there are mutually distinct atoms $a_{\alpha} \in E$, $\alpha \in \mathscr{E}$ and positive integers k_{α} , $\alpha \in \mathscr{E}$ such that

$$x = \bigoplus \{k_{\alpha}a_{\alpha} \mid \alpha \in \mathscr{E}\} = \bigvee \{k_{\alpha}a_{\alpha} \mid \alpha \in \mathscr{E}\}$$

under which $x \in S(E)$ iff $k_{\alpha} = n_{a_{\alpha}} = \operatorname{ord}(a_{\alpha})$ for all $\alpha \in \mathscr{E}$.

- (ii) If *E* is an *MV*-effect algebra (equivalently *E* has a unique block) then the decomposition in (i) is unique, i.e., the set $\{a_{\alpha} \in E \mid \alpha \in \mathscr{E}\}$ and positive integers $k_{\alpha}, \alpha \in \mathscr{E}$ are unique.
- (iii) If *E* is not an *MV*-effect algebra (equivalently *E* has more than one block) then the decomposition in (i) need not be unique $(1 = a \oplus b = 2c, a, b, c \text{ are atoms}).$

Definition

(S. Gudder, 1998) Let *E* be an effect algebra. An element $x \in E$ is *sharp* iff $x \wedge x' = 0$. Set $S(E) = \{x \in E \mid x \wedge x' = 0\}$.

Theorem

- (i) (G. Jenča and Z. R. 1999) For every lattice effect algebra E the set S(E) is a sub-effect algebra and a full sub-lattice of E (i.e., (D ⊆ S(E) and ∨_E D exists) implies (∨_{S(E)} D exists and ∨_E D = ∨_{S(E)}D)) and (S(E), ∨, ∧, ', 0, 1) is an orthomodular lattice.
- (ii) (J. Paseka and Z. R. 2009) If *E* is an Archimedean atomic lattice effect algebra then *S*(*E*) is a bifull sub-lattice of *E* (i.e., for any $D \subseteq S(E)$, $\bigvee_E D$ exists iff $\bigvee_{S(E)} D$, in which case $\bigvee_E D = \bigvee_{S(E)} D$).
- (iii) If E is a complete lattice effect algebra then S(E) is a complete sub-lattice (hence a bifull sub-lattice) of E.

Sharply dominating lattice effect algebras

Definition

(S. Gudder 1998) An effect algebra $(E, \oplus, 0, 1)$ is called *sharply dominating* if for every $x \in E$ there exists a smallest sharp element w^x such that $x \le w^x \in S(E)$ (i.e., $w \in S(E)$ satisfies $x \le w$ then $w^x \le w$).

Example

Clearly, every complete lattice effect algebra *E* is sharply dominating.

Proposition

If S(E) of an Archimedean atomic lattice effect algebra E is a complete orthomodular lattice then E is sharply dominating (since S(E) is a bifull sub-lattice of E).

Remark (Archimedean atomic lattice effect algebra *E* is sharply dominating) $\Rightarrow S(E)$ is a complete orthomodular lattice; e.g. if *E* is a Boolean algebra which is not a complete lattice.

Basic decomposition of elements (BDE-property) of Archimedean atomic lattice effect algebras

Definition

Let *E* be an Archimedean lattice effect algebra.

• $x \in E$ has a BDE-property if there are the unique $w_x \in S(E)$, unique set of atoms $\{a_{\alpha} | \alpha \in \Lambda\}$ of *E* and unique positive integers $k_{\alpha} < n_{a_{\alpha}}$ such that

$$x = w_x \oplus (\bigoplus \{k_{\alpha}a_{\alpha} | \alpha \in \Lambda\}).$$

2 *E* has a BDE-property if every element $x \in E$ has a BDE-property.

Theorem

(Z. R. and Wu Junde 2008) An Archimedean atomic lattice effect algebra E has the BDE-property iff E is sharply dominating.

Basic decomposition of elements (BDE-property) of Archimedean atomic lattice effect algebras

Remark

- In the BDE of x ∈ E, the unique w_x ∈ S(E) is in fact the greatest sharp element under x, hence e = x ⊕ w_x is a meager element (i.e., (w ∈ S(E), w ≤ e) ⇒ w = 0) and the decomposition x = w_x ⊕ e is unique.
- 2 M. Kalina, V. Olejček (preprint 2009) showed that there are even Archimedean atomic MV-effect algebras which are not sharply dominating, i.e., in the decomposition $x = \bigoplus \{k_{\alpha}a_{\alpha} | \alpha \in \Lambda\}$ the elements $\bigoplus \{k_{\alpha}a_{\alpha} | \alpha \in \Lambda, k_{\alpha} = n_{a_{\alpha}}\}$ and $\bigoplus \{k_{\alpha}a_{\alpha} | \alpha \in \Lambda, k_{\alpha} < n_{a_{\alpha}}\}$ need not exist.

Theorem

(K. Mosná, 2007) Every Archimedean atomic lattice effect algebra E is a union of its atomic blocks. Every atomic block M uniquely corresponds to a maximal pairwise compatible set A_M of atoms of E.

Theorem

Let E be a lattice effect algebra and M be an Archimedean atomic block of E. Then

- M is a bifull sub-lattice of E.
- 2 If $A_M = \{a_{\kappa} \mid \kappa \in H, a_{\kappa} \text{ atom of } M\}$ is a maximal pairwise compatible set of atoms then

$$\bigoplus_{E} \{ n_{a_{\kappa}} a_{\kappa} | \kappa \in H \} = \bigoplus_{M} \{ n_{a_{\kappa}} a_{\kappa} | \kappa \in H \} = 1.$$

Blocks of sharply dominating Archimedean atomic lattice effect algebras

Theorem

Let *E* be a sharply dominating Archimedean atomic lattice effect algebra. Then

- Every atomic block *M* of *E* is sharply dominating.
- ② Every atomic block *M* of *E* is a bifull sub-lattice of *E* (i.e., for any $D \subseteq M$, $\bigvee_E D$ exists iff $\bigvee_M D$ exists, in which case $\bigvee_E D = \bigvee_M D$).
- So For every $x \in E$, the BDE of x in E coincides with BDE of x in every atomic block M of E including x.

Blocks of of sharply dominating Archimedean atomic lattice effect algebras

Theorem

Let *E* be an Archimedean atomic lattice effect algebra. The following conditions are equivalent:

- (i) Every atomic block *M* of *E* is sharply dominating.
- (ii) For every atomic block M of E and every $x \in M$, x has the BDE-property both in M and E, i.e., the BDE of x in E coincides with the BDE of x in M.
- (iii) *E* is sharply dominating.

The center C(E) and the center of compatibility B(E) of sharply dominating Archimedean atomic lattice effect algebra

Definition

Let *E* be a lattice effect algebra. $B(E) = \bigcap \{M \subseteq E \mid M \text{ is a block}$ of $E\} = \{x \in E \mid x \leftrightarrow y \text{ for every } y \in E\}$ is called a *center of compatibility* of *E*. $C(E) = B(E) \cap S(E) = \{x \in E \mid y = (y \land x) \lor (y \land x') \text{ for all } y \in E\}$ is called a *center* of *E*.

Theorem

Let *E* be a sharply dominating Archimedean atomic lattice effect algebra. Then

(i) B(E) is a sharply dominating MV-effect algebra.

(ii) For every $x \in B(E), x \neq 0$ there exist unique $w_x \in C(E)$, unique set $\{a_{\alpha} | \alpha \in \Lambda\} \subseteq B(E)$ of atoms of *E* and unique positive integers $k_{\alpha} < n_{a_{\alpha}}$ such that $x = w_x \oplus (\bigoplus \{k_{\alpha}a_{\alpha} | \alpha \in \Lambda\})$.

(iii) If $C(E) = \{0, 1\}$ then either B(E) = C(E) or $E = B(E) = \{0, a, 2a, \dots, 1 = n_a a\}.$

The center C(E) and the center of compatibility B(E) of sharply dominating Archimedean atomic lattice effect algebra

Theorem

Let E be a lattice effect algebra. Let at least one block M of E be complete and atomic. Then

- (i) C(E) and B(E) are complete and atomic.
- (ii) C(E) and B(E) are bifull sub-lattices of both E and M.

Applications

(A) In questions on the existence of states (or probability measures) on a lattice effect algebra E ≠ S(E):
For every sharply dominating Archimedean atomic lattice effect algebra E (equivalently with BDE-property) the existence of an (o)-continuous state on E implies the existence of a state on S(E) (Z.R., Wu Junde, 2008). Consequently, if E is a finite lattice effect algebra then a state on E exists iff a state on S(E) exists. Moreover, if B(E) ≠ C(E) then there exists an extremal (o)-continuous state ω on E, which is subadditive.

(B) In questions for a lattice effect algebras to be a sub-direct product of irreducible ones:
 If the center C(E) of a lattice effect algebra E is atomic and bifull

sub-lattice of *E* then *E* is isomorphic to a subdirect product of $\prod\{[0,p] \mid p \in E \text{ is an atom of } C(E)\}$, where intervals [0,p] with inherited \oplus -operation are *irreducible* lattice effect algebras, meaning that $C([0,p) = \{0,p\} | \mathbb{Z}. \mathbb{R}., 2003)$.

Thank you for your attention.