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Introduction

Lattice effect algebras may be carriers of states or probabilities
when events are unsharp, fuzzy or imprecise. They are a
common generalization of orthomodular lattices and
MV -algebras.

Every compactly generated lattice effect algebra is atomic.

Every modular Archimedean lattice effect algebra with compact
top element is atomic.

Consequently, existence of states on modular Archimedean
atomic lattice effect algebras which are not orthomodular can
be proved.
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Basic definition – effect algebras

Definition (D. Foulis and M.K. Bennett, 1994)

A partial algebra (E;⊕,0,1) is called an effect algebra if 0, 1
are two distinct elements and ⊕ is a partially defined binary
operation on E which satisfy the following conditions for any
x,y,z ∈ E:

(Ei) x⊕ y = y⊕ x if x⊕ y is defined,
(Eii) (x⊕ y)⊕ z = x⊕ (y⊕ z) if one side is defined,

(Eiii) for every x ∈ E there exists a unique y ∈ E such that
x⊕ y = 1 (we put x′ = y),

(Eiv) if 1⊕ x is defined then x = 0.

Example

Let E = [0,1]⊆ R. We put x⊕ y = x+ y iff x+ y≤ 1. Hence 3
4 ⊕

4
5

does not exist in E.
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Basic definitions – effect algebras

On every effect algebra E the partial order ≤ and a partial
binary operation 	 can be introduced as follows:

x≤ y and y	 x = z iff x⊕ z is defined and x⊕ z = y .

If E with the defined partial order is a (complete) lattice then
(E;⊕,0,1) is called a (complete) lattice effect algebra.

If, moreover, E is a modular or distributive lattice then E is
called modular or distributive effect algebra.
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Basic definitions – Archimedean atomic effect algebras

An effect algebra E is Archimedean if for all x ∈ E, x 6= 0 there
exists positive integer
nx = max{n ∈ N | nx = x⊕ x⊕·· ·⊕ x︸ ︷︷ ︸

n-times

exists}.

A minimal nonzero element of an effect algebra E is called an
atom and E is called atomic if under every nonzero element of
E there is an atom. An element u ∈ E is called finite if either
u = 0 or there is a finite sequence {a1,a2, . . . ,an} of not
necessarily different atoms of E such that u = a1⊕a2⊕·· ·⊕an.

Examples
Every finite effect algebra is atomic and Archimedean.
Every complete lattice effect algebra is Archimedean (see
Z. Riečanová, Demonstratio Mathematica 33 (2000),
443–452).
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Compact elements of lattice effect algebras

Definition
(1) An element a of a lattice L is called compact iff, for any
D⊆ L, a≤

∨
D implies a≤

∨
F for some finite F ⊆ D.

(2) A lattice L is called compactly generated iff every element of
L is a join of compact elements.

Theorem

(1) Every compactly generated lattice effect algebra E is atomic.
(2) If E is an Archimedean lattice effect algebra then every
compact element is a finite join of finite elements.
(3) The condition that E is Archimedean in (2) cannot be
omitted (e.g., the Chang MV -effect algebra
E = {0,a,2a,3a, . . . ,(3a)′,(2a)′,a′,1} is not Archimedean, every
x ∈ E is compact and 1 can not be presented as a finite join of
finite elements 0,a,2a,3a, . . . ,ka, . . . .
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Atomicity of modular lattice effect algebras

Theorem

Let E be a modular lattice effect algebra and let
F = {x ∈ E | x is finite} such that

∨
F = 1. Then E is atomic.

Corollary

Let E be a modular lattice effect algebra. Let at least one block
M of E be Archimedean and atomic. Then E is atomic.
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Compact elements and atomicity of modular lattice effect
algebras

Qiang Lei, Junde Wu and Ronglu Li in 2009 have shown the
following

Lemma
Let E be a complete atomic distributive lattice effect algebra
and G be the set of all finite elements. Then G is an ideal of E.

Examples
Let B be an infinite complete atomic Boolean algebra, C a finite
chain MV-algebra. Then

1 The set G of finite elements of the horizontal sum of B and
C is not closed under order (namely, the top element is
finite but the coatoms from B are not finite).

2 The set G of finite elements of the horizontal sum of two
copies of B is not closed under join (namely, the join of two
atoms in different copies of B is the top element which is
not finite).
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Compact elements and atomicity of modular lattice effect
algebras

Theorem

Let E be a modular lattice effect algebra and let x,y ∈ E be finite.
Then [0,x] is a complete lattice of finite height and x∨ y is finite.
Moreover, the set G of all finite elements of E is an ideal of E.

Proposition
Let E be a modular Archimedean lattice effect algebra, u ∈ E a
compact element. Then u is finite.

Theorem

Let E be a modular Archimedean lattice effect algebra and let
C = {x ∈ E | x is compact} such that

∨
C = 1. Then E is atomic.
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States on effect algebras

Definition

Let E be an effect algebra. A map ω : E→ [0,1] is called a state on E
if ω(0) = 0, ω(1) = 1 and ω(x⊕ y) = ω(x)+ω(y) whenever x⊕ y
exists in E.

It is easy to check that the notion of a state ω on an
orthomodular lattice L coincides with the notion of a state on its
derived effect algebra L.

It is because x≤ y′ iff x⊕ y exists in L, hence
ω(x∨ y) = ω(x⊕ y) = ω(x)+ω(y) whenever x≤ y′.

A state ω is called (o)-continuous (order-continuous) if, for
every net (xα)α∈E of elements of E,

x =
∨
{xα | α ∈ E }⇒ ω(x) = sup{ω(xα) | α ∈ E }.



States on effect algebras

Definition

Let E be an effect algebra. A map ω : E→ [0,1] is called a state on E
if ω(0) = 0, ω(1) = 1 and ω(x⊕ y) = ω(x)+ω(y) whenever x⊕ y
exists in E.

It is easy to check that the notion of a state ω on an
orthomodular lattice L coincides with the notion of a state on its
derived effect algebra L.

It is because x≤ y′ iff x⊕ y exists in L, hence
ω(x∨ y) = ω(x⊕ y) = ω(x)+ω(y) whenever x≤ y′.

A state ω is called (o)-continuous (order-continuous) if, for
every net (xα)α∈E of elements of E,

x =
∨
{xα | α ∈ E }⇒ ω(x) = sup{ω(xα) | α ∈ E }.



States on effect algebras

Definition

Let E be an effect algebra. A map ω : E→ [0,1] is called a state on E
if ω(0) = 0, ω(1) = 1 and ω(x⊕ y) = ω(x)+ω(y) whenever x⊕ y
exists in E.

It is easy to check that the notion of a state ω on an
orthomodular lattice L coincides with the notion of a state on its
derived effect algebra L.

It is because x≤ y′ iff x⊕ y exists in L, hence
ω(x∨ y) = ω(x⊕ y) = ω(x)+ω(y) whenever x≤ y′.

A state ω is called (o)-continuous (order-continuous) if, for
every net (xα)α∈E of elements of E,

x =
∨
{xα | α ∈ E }⇒ ω(x) = sup{ω(xα) | α ∈ E }.



Applications: Existence of states on non-orthomodular
Archimedean atomic modular effect algebras

Theorem

Let E be a modular Archimedean atomic lattice effect algebra
that is not orthomodular. Then there exists an (o)-continuous
state ω on E, which is subadditive (i.e., ω(a∨b)≤ ω(a)+ω(b)).

Sketch of the proof:
1 Since E is non-orthomodular there is an atom a of E, a≤ a′

such that E ∼= [0,naa]× [0,(naa)′].
2 Since naa is finite we have that the interval [0,naa] is a

complete modular atomic lattice effect algebra. From Z.
Riečanová, 2004 we get a subadditive (o)-continuous state
ωa on [0,naa].

3 We define ω : E→ [0,1]⊆ R by setting ω(x) = ωa(y), for
every x = y⊕ z, y ∈ [0,(naa)], z ∈ [0,(naa)′].
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