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Drápal’s Construction

Generalizations of Abelian groups

Natural generalizations of Abelian groups are:

Groups

Commutative monoids

Commutative loops?
loop ≡ x · 1 = 1 · x = x, cancellative, divisible

Commutative Moufang loops?
Moufang ≡ x · (y · xz) = (xy · x) · z ≡ xy · zx = (xy · z) · x

Commutative automorphic loops?
automorphic ≡ characteristic subloops are normal
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Drápal’s Construction

0-bijections

Definition
Let R be a ring. A partial mapping f : R→ R is called a 0-bijection
if twe following conditions hold;

f i(0) is defined for every i ∈ N;

for each i ∈ N there exists a unique x ∈ R such that f i(x) = 0:
such an element is denoted by f−i(0);

f (0) ∈ R∗.
If there exists k ∈ N such that f k(0) = 0 then such k is called the
0-order of f .
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Drápal’s Construction

Drápal’s Construction

Theorem (Aleš Drápal)

Let M be a module over a commutative ring R. Let t be in R such
that

f (x) =
x + 1
tx + 1

is a 0-bijection of 0-order k. We define an operation ∗ on the
set Q =M × Zk as follows:

(a, i) ∗ (b, j) =
(

a + b
1 + tf i(0)f j(0)

, i + j
)
.

Then (Q, ∗) is a commutative automorphic loop.

Example

Putting t = −3 we obtain k = 3 for any R where 2 is invertible.
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0-bijections on fields

Translating fractional mappings

Simplification

We shall be working with finite fields only

Fact
A mapping

f (x) =
x + 1
tx + 1

is a 0-bijection of order k if and only if

the number k is the minimal one satisfying(
1 1
t 1

)k
·

(
0
1

)
=

(
0
a

)
, for some a ∈ R,(

1 1
t 1

)`
·

(
0
1

)
=

(
b
0

)
for no ` ∈ N.
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0-bijections on fields

Eigenvalues of the automorphism

Definition
Denote

F =
(
1 1
t 1

)
,

Its characteristic polynomial is

P(x) = x2 + 2x + 1 − t = (x − λ)(x − µ)

Fact
The eigenvalues are non-zero;

disc(P) = 4t hence λ = µ if and only if t = 0.
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0-bijections on fields

Necessary condition for 0-order

Lemma(
1 1
t 1

)k
·

(
0
1

)
=

(
0
a

)
if and only if

(
λ

µ

)k
= 1,(

1 1
t 1

)`
·

(
0
1

)
=

(
b
0

)
if and only if

(
λ

µ

)`
= −1,

Corollary

The order k must be odd.
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0-bijections on fields

Necessary and sufficient condition

Proposition

The number ξ =
λ

µ
has to be a primitive k-th root of unity.

if λ, µ lie in the basic field Fq then k divides q − 1;

if λ, µ do not lie in the basic field Fq then N(ξ) = 1 and
therefore k divides q + 1.

Definition
Let ν lie in a quadratic extension of a field K. Then the norm of ν is
computed as N(ν) = ν · ν̄.
The element ν̄ is called the conjugate of ν. The elements ν and ν̄
share the same minimal quadratic polynomial with coefficients
in K, i.e. the polynomial x2 − (ν + ν̄)x + νν̄.
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Drápal’s construction revised

Drápal’s Construction, New Point of View

Theorem (A. Drápal; P. J. & D. Simon)

Let K be the q-element finite field, char(K) , 2. Let k be an odd
divisor either of q − 1 or of q + 1. Take ξ, a k-th primitive root of
unity. We define an operation ∗ on the set Q = K × Zk as follows:

(a, i) ∗ (b, j) =
(

(a + b) ·
(ξi + 1) · (ξj + 1)

2 · (ξi+j + 1)
, i + j

)
.

Then (Q, ∗) is a commutative automorphic loop.

Conjecture

If k and q are primes then the construction gives the only (up to
isomorphism) non-associative commutative automorphic loop of
order kq.
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P. Jedlička, M. K. Kinyon, P. Vojtěchovský:
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