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Fuzzy topology

Fixed-basis fuzzy topology

Motivating idea

Develop the mathematics of fuzzy or cloudy quantities which are
not described in terms of probability distributions.

1965 L. A. Zadeh introduces fuzzy set as a map X
�−→ [0, 1] from a

set X into the unit interval [0, 1].

1967 J. A. Goguen replaces the unit interval with a complete lattice.

1968 C. L. Chang introduces fixed-basis fuzzy topology as a subset
of the powerset [0, 1]X closed under arbitrary

⋁
and finite ∧.

1973 J. A. Goguen replaces the unit interval with a unital quantale.
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Fuzzy topology

Variable-basis fuzzy topology

Motivating idea

Different topological spaces may have different lattices serving as a
basis for the respective powerset.

1980 B. Hutton uses fuzzy lattice (completely distributive lattice
with an order reversing involution) to obtain a variable-basis
category of singleton topological spaces.

1983 S. E. Rodabaugh introduces variable-basis lattice-valued
topology allowing change of lattice L in the powerset LX .

1984 P. Eklund initiates categorical fuzzy topology.

2008 S. Solovyov introduces variety-based topology replacing lattice
L in the powerset LX with an algebra from an arbitrary variety.
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Non-commutative topology

Non-commutative topology

Motivating idea

Remove the requirement of commutativity in the Gelfand-Neumark
duality between the categories of Hausdorff locally compact topolo-
gical spaces and commutative C ∗-algebras.

1971 R. Giles and H. Kummer introduce non-commutative topology
developed in the framework of C ∗-algebras. Similar ideas were
cultivated by C. Akemann already in 1969.

1989 F. Borceux and G. van den Bossche introduce quantum space
making the usual frame of open sets into a right-sided idempo-
tent quantale.

2002 C. J. Mulvey and J. W. Pelletier introduce quantal space as a
pair (X , �X ), where X

�X−→ QX is a particular quantale homo-
morphism between particular quantales.
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Non-commutative topology

Fuzzy versus non-commutative

2008 M. Demirci shows a link between fuzzy and non-commutative
topology using

variable-basis approach to fuzzy topology of S. E. Rodabaugh;
quantal spaces of C. J. Mulvey and J. W. Pelletier.

!!! The link between two concepts is given by generalized fuzzy
sets of N. Nakajima defined as points of a product

∏
x∈X

Lx of

complete lattices, every x ∈ X having its own lattice of mem-
bership degrees.

The purpose of this talk

This talk shows a variety-based approach to the topic based on the
methods of categorical fuzzy topology. The main result: the non-
commutative approach incorporates the fuzzy one.
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Varieties of algebras

Ω-algebras and Ω-homomorphisms

Suppose Ω = (n�)�∈Λ is a class of cardinal numbers.

Definition 1

An Ω-algebra is a pair (A, (!A
� )�∈Λ) consisting of a set A and

a family of maps An�
!A
�−→ A, called n�-ary operations on A.

An Ω-homomorphism (A, (!A
� )�∈Λ)

f−→ (B, (!B
� )�∈Λ) is a map

A
f−→ B such that f ∘ !A

� = !B
� ∘ f n

� for every � ∈ Λ.

Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms,
the underlying functor to the ground category Set of sets and
maps denoted by ∣ − ∣.
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Varieties of algebras

Algebras and homomorphisms

Suppose ℳ (resp. ℰ) is the class of Ω-homomorphisms with
injective (resp. surjective) underlying maps.

Definition 2

A variety of Ω-algebras is a full subcategory of Alg(Ω) closed
under the formation of products, ℳ-subobjects (subalgebras)
and ℰ-quotients (homomorphic images).

The objects (resp. morphisms) of a variety will be referred to
as algebras (resp. homomorphisms).

!!! The constructs Frm, SFrm, SQuant of frames, semiframes,
semi-quantales are varieties.
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Varieties of algebras

Localic algebras

From now on assume that A is a fixed variety.

Definition 3

The dual of the category A is denoted by LoA (the “Lo” comes
from “localic”). Its objects (resp. morphisms) are called localic
algebras (resp. homomorphisms).

!!! Given a morphism f of a category C, the respective morphism
of Cop is denoted by f op and vice versa.
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Generalized topological spaces

Ground category for generalized topology

Definition 4

Set⊙ LoA is the category, the objects of which are pairs
(X ,A), where X is a set and A = (Ax)x∈X is a family of
localic algebras.

Morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) consist of a map X

f−→ Y and

a family Φ=('x)x∈X of localic homomorphisms Ax
'x−→Bf (x).

The composition of two morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) and

(Y ,ℬ)
(g ,Ψ)−−−→ (Z , C) is given by (g ,Ψ)∘(f ,Φ)=(g ∘f ,Ψ∘Φ),

where Ψ ∘ Φ = ( f (x) ∘ 'x)x∈X .

The identity on (X ,A) is given by (X ,A)
(1X ,1A)−−−−−→ (X ,A),

where 1A = (1Ax )x∈X .

Generalized fuzzy topology versus non-commutative topology Sergejs Solovjovs University of Latvia 10/28



Introduction Topological spaces Algebral spaces Topology versus algebra Problems

Generalized topological spaces

Ground category for generalized topology

Definition 4

Set⊙ LoA is the category, the objects of which are pairs
(X ,A), where X is a set and A = (Ax)x∈X is a family of
localic algebras.

Morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) consist of a map X

f−→ Y and

a family Φ=('x)x∈X of localic homomorphisms Ax
'x−→Bf (x).

The composition of two morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) and

(Y ,ℬ)
(g ,Ψ)−−−→ (Z , C) is given by (g ,Ψ)∘(f ,Φ)=(g ∘f ,Ψ∘Φ),

where Ψ ∘ Φ = ( f (x) ∘ 'x)x∈X .

The identity on (X ,A) is given by (X ,A)
(1X ,1A)−−−−−→ (X ,A),

where 1A = (1Ax )x∈X .

Generalized fuzzy topology versus non-commutative topology Sergejs Solovjovs University of Latvia 10/28



Introduction Topological spaces Algebral spaces Topology versus algebra Problems

Generalized topological spaces

Ground category for generalized topology

Definition 4

Set⊙ LoA is the category, the objects of which are pairs
(X ,A), where X is a set and A = (Ax)x∈X is a family of
localic algebras.

Morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) consist of a map X

f−→ Y and

a family Φ=('x)x∈X of localic homomorphisms Ax
'x−→Bf (x).

The composition of two morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) and

(Y ,ℬ)
(g ,Ψ)−−−→ (Z , C) is given by (g ,Ψ)∘(f ,Φ)=(g ∘f ,Ψ∘Φ),

where Ψ ∘ Φ = ( f (x) ∘ 'x)x∈X .

The identity on (X ,A) is given by (X ,A)
(1X ,1A)−−−−−→ (X ,A),

where 1A = (1Ax )x∈X .

Generalized fuzzy topology versus non-commutative topology Sergejs Solovjovs University of Latvia 10/28



Introduction Topological spaces Algebral spaces Topology versus algebra Problems

Generalized topological spaces

Ground category for generalized topology

Definition 4

Set⊙ LoA is the category, the objects of which are pairs
(X ,A), where X is a set and A = (Ax)x∈X is a family of
localic algebras.

Morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) consist of a map X

f−→ Y and

a family Φ=('x)x∈X of localic homomorphisms Ax
'x−→Bf (x).

The composition of two morphisms (X ,A)
(f ,Φ)−−−→ (Y ,ℬ) and

(Y ,ℬ)
(g ,Ψ)−−−→ (Z , C) is given by (g ,Ψ)∘(f ,Φ)=(g ∘f ,Ψ∘Φ),

where Ψ ∘ Φ = ( f (x) ∘ 'x)x∈X .

The identity on (X ,A) is given by (X ,A)
(1X ,1A)−−−−−→ (X ,A),

where 1A = (1Ax )x∈X .

Generalized fuzzy topology versus non-commutative topology Sergejs Solovjovs University of Latvia 10/28



Introduction Topological spaces Algebral spaces Topology versus algebra Problems

Generalized topological spaces

The nature of the ground category

Theorem 5

Set⊙ LoA is a free coproduct completion of LoA, namely:

there exists a full embedding LoA
� � E // Set⊙ LoA ;

Set⊙ LoA has coproducts;

every functor LoA
F−→ C to a category with coproducts has a

unique (up to natural isomorphism) extension to a coproduct-

preserving functor Set⊙ LoA
F−→ C.

Lemma 6

There exists a non-full embedding Set× LoA
� � E // Set⊙ LoA,

E((X ,A)
(f ,')−−−→ (Y ,B)) = (X , (A)x∈X )

(f ,(')x∈X )−−−−−−→ (Y , (B)y∈Y ).
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unique (up to natural isomorphism) extension to a coproduct-

preserving functor Set⊙ LoA
F−→ C.

Lemma 6

There exists a non-full embedding Set× LoA
� � E // Set⊙ LoA,

E((X ,A)
(f ,')−−−→ (Y ,B)) = (X , (A)x∈X )

(f ,(')x∈X )−−−−−−→ (Y , (B)y∈Y ).

Generalized fuzzy topology versus non-commutative topology Sergejs Solovjovs University of Latvia 11/28



Introduction Topological spaces Algebral spaces Topology versus algebra Problems

Generalized topological spaces

The nature of the ground category

Theorem 5

Set⊙ LoA is a free coproduct completion of LoA, namely:

there exists a full embedding LoA
� � E // Set⊙ LoA ;

Set⊙ LoA has coproducts;

every functor LoA
F−→ C to a category with coproducts has a

unique (up to natural isomorphism) extension to a coproduct-

preserving functor Set⊙ LoA
F−→ C.

Lemma 6

There exists a non-full embedding Set× LoA
� � E // Set⊙ LoA,

E((X ,A)
(f ,')−−−→ (Y ,B)) = (X , (A)x∈X )

(f ,(')x∈X )−−−−−−→ (Y , (B)y∈Y ).

Generalized fuzzy topology versus non-commutative topology Sergejs Solovjovs University of Latvia 11/28



Introduction Topological spaces Algebral spaces Topology versus algebra Problems

Generalized topological spaces

Generalized powerset operator

Given a family of localic algebras (Ax)x∈X , denote their product∏
x∈X Ax by AX and consider it as the set of choice functions on

X , i.e., maps X
p−→

∪
x∈X Ax such that p(x) ∈ Ax .

Lemma 7

There exists a functor Set⊙ LoA
(−)←−−−→ LoA, defined by

((X ,A)
(f ,Φ)−−−→ (Y ,ℬ))← = AX ((f ,Φ)←)op−−−−−−−→ ℬY ,

where

((f ,Φ)←(p))(x) = (Φop∘p∘f )(x) = ('op
(−)∘p∘f )(x) = 'op

x ∘p∘f (x).
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Generalized topological spaces

From generalized to standard

Lemma 8

The composition Set× LoA
� � E // Set⊙ LoA

(−)←−−−→ LoA gives

the powerset operator Set× LoA
(−)←−−−→ LoA used for the usual

variety-based topology and defined by

((X ,A)
(f ,')−−−→ (Y ,B))← = AX ((f ,')←)op−−−−−−→ BY ,

where
(f , ')←(p) = 'op ∘ p ∘ f .
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Generalized topological spaces

Generalized topology

Definition 9

Given a subcategory C of LoA and a Set⊙ C-object (X ,A), a
subset � of AX is called a generalized C-topology on (X ,A)
provided that � is a subalgebra of AX .

Example 10

Suppose X is a set, Q is a s(emi)-quantale and A is an algebra.

The usual topology on X is a subframe of the powerset P(X ).

A Q-topology on X is a sub(s-quantale) of the powerset QX .

An A-topology on X is a subalgebra of the powerset AX .
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Generalized topological spaces

Generalized topological space

!!! Every map X
f−→Y gives the image operator P(X )

f→−−→P(Y ).

Suppose C is a subcategory of LoA.

Definition 11

A generalized C-topological space is a triple (X ,A, �), where
� is a generalized C-topology on (X ,A).

A generalized C-continuous map (X ,A, �)
(f ,Φ)−−−→(Y ,ℬ, �) is a

Set⊙C-morphism (X ,A)
(f ,Φ)−−−→(Y ,ℬ) with ((f ,Φ)←)→(�)⊆� .

C-GTop is the category of generalized C-topological spaces
and C-continuous maps, the underlying functor to the ground
category Set⊙ C denoted by ∣ − ∣.
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Generalized topological spaces

Example

Definition 12

Given a generalized C-topological space (X ,A, �), A is called
the basis of (X ,A, �).

Given x ∈ X , Ax is called the x-basis of (X ,A, �).

C-Top is the non-full subcategory of C-GTop comprising all
spaces (X , (A)x∈X , �) and all continuous maps (f , (')x∈X ).

Example 13

For a subcategory C of LoSQuant, C-Top gives the category of
variable-basis topological spaces of S. E. Rodabaugh and C-GTop
is the category of generalized topological spaces of M. Demirci.
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Non-commutative topology

Motivating example

Definition 14 (C. J. Mulvey and J. W. Pelletier)

A quantal space (Q,TQ) is a Gelfand quantale Q together

with an algebraically strong right embedding Q
TQ−→

∏
i∈I Qi

into a product
∏

i∈I Qi of discrete Hilbert quantales, called
the quantal topology.

A homomorphism (Q, TQ)
(',�')−−−−→ (P, TP) of quantal spaces is

a Gelfand quantale homomorphism Q
'−→P and a discrete von

Neumann quantale homomorphism
∏

i∈IQi
�'−→

∏
j∈JPj such

that the following diagram commutes

Q
' //

TQ ��

P

TP��∏
i∈I

Qi
�'

//
∏
j∈J

Pj .
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Non-commutative topology

Algebral spaces

Definition 15

Given a Set⊙ LoA-object (X ,A) and an algebra A, an

algebral topology on (A, (X ,A)) is a homomorphism A
T−→AX .

An algebral space is a tuple (A, (X ,A), T ), where T is an
algebral topology on (A, (X ,A)).
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Non-commutative topology

Category of algebral spaces

Suppose C (resp. D) is a subcategory of A (resp. LoA).

Definition 16

(C,D)-AlgSp is the category, the objects of which are (C,D)-
algebral spaces, i.e., algebral spaces (A, (X ,A), T ) with A in
C and A in D.

Morphisms (A, (X ,A), T )
(',(f ,Φ)op)−−−−−−−→ (B, (Y ,ℬ),S) are

C× (Set⊙D)op-morphisms (A, (X ,A))
(',(f ,Φ)op)−−−−−−−→(B, (Y ,ℬ))

making the following diagram commute

A

T ��

' // B
S��

AX

(f ,Φ)←
// ℬY .

The underlying functor to the category C×(Set⊙D)op is ∣− ∣.
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Topological spaces versus algebral spaces

From fuzzy to non-commutative

Lemma 17

There is a full embedding LoA-GTop � � E // ((A,LoA)-AlgSp)op

defined by

E((X ,A, �)
(f ,Φ)−−−→ (Y ,ℬ, �)) =

(�, (X ,A), �� )
((f ,Φ)←,(f ,Φ)op)op−−−−−−−−−−−→ (�, (Y ,ℬ), ��),

where �� (resp. ��) are the inclusion maps.
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Topological spaces versus algebral spaces

From non-commutative to fuzzy

Lemma 18

There is a functor ((A,LoA)-AlgSp)op
Spat−−→ LoA-GTop defined by

Spat((A, (X ,A), T )
(',(f ,Φ)op)op−−−−−−−−→ (B, (Y ,ℬ),S)) =

(X ,A, T →(A))
(f ,Φ)−−−→ (Y ,ℬ,S→(B)).
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Topological spaces versus algebral spaces

The main result

Theorem 19

Spat is a right-adjoint-left-inverse to E.

Corollary 20

LoA-GTop is isomorphic to a full coreflective subcategory of
((A,LoA)-AlgSp)op.
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Consequences

Fuzzy versus non-commutative

Consequences

1 Corollary 20 shows that the non-commutative approach gives
a more general framework for developing topology than the
respective fuzzy one does.

2 Quantal spaces of C. J. Mulvey and J. W. Pelletier provide a
generalization of fuzzy topology developed in the framework
of quantales.
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Problem 1

Topological systems

Definition 21

Let C be a subcategory of LoA. A C-topological system is a
tuple D = (pt D,Σ D,Ω D, �), where (pt D,Σ D,Ω D) is a
Set×C×C-object and Ω D

�−→ (Σ D)ptD is a homomorphism.

A C-continuous map D1
f−→ D2 is a Set× C× C-morphism

(pt D1,Σ D1,Ω D1)
f =(pt f ,(Σf )op ,(Ωf )op)−−−−−−−−−−−−−−→ (pt D2,Σ D2,Ω D2)

making the following diagram commute

ΩD2

�2 ��

Ω f // ΩD1

�1��
(ΣD2)pt D2

(pt f ,(Σ f )op)←
// (ΣD1)pt D1

The category C-TopSys comprises C-topological systems and
C-continuous maps, with the underlying functor to the ground
category Set× C× C denoted by ∣ − ∣.
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C-continuous maps, with the underlying functor to the ground
category Set× C× C denoted by ∣ − ∣.
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Problem 1

Topological systems versus algebral spaces

!!! The category (C,D)-AlgSp of algebral spaces generalizes the
category C-TopSys of topological systems.

Problem 22

Investigate algebral spaces from the point of view of topological
systems, trying to provide analogues of the already existing results
for the latter structures.
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Problem 2

On extension of functors

By Lemma 8 the composition

Set× LoA
� � E // Set⊙ LoA

(−)←−−−→ LoA

gives the standard powerset operator Set× LoA
(−)←−−−→ LoA.

Problem 23

Which functors Set× LoA
F−→C are extendable to Set⊙ LoA

F−→C?
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Thank you for your attention!
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