Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

¹Department of Mathematics, University of Latvia

²Institute of Mathematics and Computer Science, University of Latvia

Summer School on General Algebra and Ordered Sets 2009

Congress Center Academia, Stará Lesná, Slovak Republic September 5 - 11, 2009

Generalized fuzzy topology versus non-commutative topology

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
0000	0000000000		0000	000
Outline				

- 2 Generalized topological spaces
- 3 Algebral spaces
- 4 Topological spaces versus algebral spaces

5 Open problems

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of L

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
0000				
Fuzzy topology				

Motivating idea

Develop the mathematics of fuzzy or cloudy quantities which are not described in terms of probability distributions.

- 1965 L. A. Zadeh introduces fuzzy set as a map $X \xrightarrow{\alpha} [0,1]$ from a set X into the unit interval [0,1].
- 1967 J. A. Goguen replaces the unit interval with a complete lattice.
- 1968 C. L. Chang introduces fixed-basis fuzzy topology as a subset of the powerset $[0,1]^X$ closed under arbitrary \bigvee and finite \wedge .

1973 J. A. Goguen replaces the unit interval with a unital quantale.

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
• 0 00				
Fuzzy topology				

Motivating idea

Develop the mathematics of fuzzy or cloudy quantities which are not described in terms of probability distributions.

1965 L. A. Zadeh introduces fuzzy set as a map $X \xrightarrow{\alpha} [0,1]$ from a set X into the unit interval [0, 1].

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
0000				
Fuzzy topology				

Motivating idea

Develop the mathematics of fuzzy or cloudy quantities which are not described in terms of probability distributions.

1965 L. A. Zadeh introduces fuzzy set as a map $X \xrightarrow{\alpha} [0,1]$ from a set X into the unit interval [0,1].

1967 J. A. Goguen replaces the unit interval with a complete lattice.
1968 C. L. Chang introduces fixed-basis fuzzy topology as a subset of the powerset [0, 1]^X closed under arbitrary ∨ and finite ∧.
1973 J. A. Goguen replaces the unit interval with a unital quantale.

Generalized fuzzy topology versus non-commutative topology

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
000				
Fuzzy topology				

Motivating idea

Develop the mathematics of fuzzy or cloudy quantities which are not described in terms of probability distributions.

- 1965 L. A. Zadeh introduces fuzzy set as a map $X \xrightarrow{\alpha} [0,1]$ from a set X into the unit interval [0,1].
- 1967 J. A. Goguen replaces the unit interval with a complete lattice.
- 1968 C. L. Chang introduces fixed-basis fuzzy topology as a subset of the powerset $[0,1]^X$ closed under arbitrary \bigvee and finite \wedge .

1973 J. A. Goguen replaces the unit interval with a unital quantale.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

ovs Unive

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
000				
Fuzzy topology				

Motivating idea

Develop the mathematics of fuzzy or cloudy quantities which are not described in terms of probability distributions.

- 1965 L. A. Zadeh introduces fuzzy set as a map $X \xrightarrow{\alpha} [0,1]$ from a set X into the unit interval [0,1].
- 1967 J. A. Goguen replaces the unit interval with a complete lattice.
- 1968 C. L. Chang introduces fixed-basis fuzzy topology as a subset of the powerset $[0,1]^X$ closed under arbitrary \bigvee and finite \wedge .
- 1973 J. A. Goguen replaces the unit interval with a unital quantale.

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
0000				
Fuzzy topology				

Motivating idea

- 1980 B. Hutton uses fuzzy lattice (completely distributive lattice with an order reversing involution) to obtain a variable-basis category of singleton topological spaces.
- 1983 S. E. Rodabaugh introduces variable-basis lattice-valued topology allowing change of lattice *L* in the powerset *L*^X.
- 1984 P. Eklund initiates categorical fuzzy topology.
- 2008 S. Solovyov introduces variety-based topology replacing lattice L in the powerset L^X with an algebra from an arbitrary variety.

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
○●○○	0000000000		0000	000
Fuzzy topology				

Motivating idea

- 1980 B. Hutton uses fuzzy lattice (completely distributive lattice with an order reversing involution) to obtain a variable-basis category of singleton topological spaces.
- 1983 S. E. Rodabaugh introduces variable-basis lattice-valued topology allowing change of lattice *L* in the powerset *L*^X.
- 1984 P. Eklund initiates categorical fuzzy topology.
- 2008 S. Solovyov introduces variety-based topology replacing lattice L in the powerset L^X with an algebra from an arbitrary variety.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Fuzzy topology				

Motivating idea

- 1980 B. Hutton uses fuzzy lattice (completely distributive lattice with an order reversing involution) to obtain a variable-basis category of singleton topological spaces.
- 1983 S. E. Rodabaugh introduces variable-basis lattice-valued topology allowing change of lattice L in the powerset L^X .
- 1984 P. Eklund initiates categorical fuzzy topology.
- 2008 S. Solovyov introduces variety-based topology replacing lattice L in the powerset L^X with an algebra from an arbitrary variety.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Fuzzy topology				

Motivating idea

Different topological spaces may have different lattices serving as a basis for the respective powerset.

- 1980 B. Hutton uses fuzzy lattice (completely distributive lattice with an order reversing involution) to obtain a variable-basis category of singleton topological spaces.
- 1983 S. E. Rodabaugh introduces variable-basis lattice-valued topology allowing change of lattice L in the powerset L^X.
- 1984 P. Eklund initiates categorical fuzzy topology.

2008 S. Solovyov introduces variety-based topology replacing lattice L in the powerset L^X with an algebra from an arbitrary variety.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Fuzzy topology				

Motivating idea

- 1980 B. Hutton uses fuzzy lattice (completely distributive lattice with an order reversing involution) to obtain a variable-basis category of singleton topological spaces.
- 1983 S. E. Rodabaugh introduces variable-basis lattice-valued topology allowing change of lattice L in the powerset L^X.
- 1984 P. Eklund initiates categorical fuzzy topology.
- 2008 S. Solovyov introduces variety-based topology replacing lattice L in the powerset L^X with an algebra from an arbitrary variety.

Introduction ○○●○	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Non-commutative to	opology			

Non-commutative topology

Motivating idea

Remove the requirement of commutativity in the Gelfand-Neumark duality between the categories of Hausdorff locally compact topological spaces and commutative C^* -algebras.

- 1971 R. Giles and H. Kummer introduce non-commutative topology developed in the framework of *C**-algebras. Similar ideas were cultivated by C. Akemann already in 1969.
- 1989 F. Borceux and G. van den Bossche introduce quantum space making the usual frame of open sets into a right-sided idempotent quantale.

2002 C. J. Mulvey and J. W. Pelletier introduce quantal space as a pair (X, τ_X) , where $X \xrightarrow{\tau_X} Q_X$ is a particular quantale homomorphism between particular quantales.

Generalized fuzzy topology versus non-commutative topology

Introduction	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Non-commutative	topology			
Non-com	nmutative topo	ology		

Motivating idea

Remove the requirement of commutativity in the Gelfand-Neumark duality between the categories of Hausdorff locally compact topological spaces and commutative C^* -algebras.

1971 R. Giles and H. Kummer introduce non-commutative topology developed in the framework of C^* -algebras. Similar ideas were cultivated by C. Akemann already in 1969.

1989 F. Borceux and G. van den Bossche introduce quantum space making the usual frame of open sets into a right-sided idempotent quantale.

2002 C. J. Mulvey and J. W. Pelletier introduce quantal space as a pair (X, τ_X) , where $X \xrightarrow{\tau_X} Q_X$ is a particular quantale homomorphism between particular quantales.

Generalized fuzzy topology versus non-commutative topology

Introduction	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Non-commutative	topology			
Non-com	nmutative topo	ology		

Motivating idea

Remove the requirement of commutativity in the Gelfand-Neumark duality between the categories of Hausdorff locally compact topological spaces and commutative C^* -algebras.

- 1971 R. Giles and H. Kummer introduce non-commutative topology developed in the framework of C^* -algebras. Similar ideas were cultivated by C. Akemann already in 1969.
- 1989 F. Borceux and G. van den Bossche introduce quantum space making the usual frame of open sets into a right-sided idempotent quantale.

2002 C. J. Mulvey and J. W. Pelletier introduce quantal space as a pair (X, τ_X) , where $X \xrightarrow{\tau_X} Q_X$ is a particular quantale homomorphism between particular quantales.

Generalized fuzzy topology versus non-commutative topology

Introduction	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Non-commutative	topology			
Non-com	nmutative topo	ology		

Motivating idea

Remove the requirement of commutativity in the Gelfand-Neumark duality between the categories of Hausdorff locally compact topological spaces and commutative C^* -algebras.

- 1971 R. Giles and H. Kummer introduce non-commutative topology developed in the framework of C^* -algebras. Similar ideas were cultivated by C. Akemann already in 1969.
- 1989 F. Borceux and G. van den Bossche introduce quantum space making the usual frame of open sets into a right-sided idempotent quantale.
- 2002 C. J. Mulvey and J. W. Pelletier introduce quantal space as a pair (X, τ_X) , where $X \xrightarrow{\tau_X} Q_X$ is a particular quantale homomorphism between particular quantales.

Introduction ○○○●	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Non-commutative	topology			
Fuzzy ve	ersus non-comr	mutative		

2008 M. Demirci shows a link between fuzzy and non-commutative topology using

• variable-basis approach to fuzzy topology of S. E. Rodabaugh;

• quantal spaces of C. J. Mulvey and J. W. Pelletier.

II The link between two concepts is given by generalized fuzzy sets of N. Nakajima defined as points of a product $\prod_{x \in X} L_x$ of complete lattices, every $x \in X$ having its own lattice of membership degrees.

The purpose of this talk

This talk shows a variety-based approach to the topic based on the methods of categorical fuzzy topology. The main result: the non-commutative approach incorporates the fuzzy one.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of Latvia

Introduction ○○○●	Topological spaces	Algebral spaces	Topology versus algebra	Problems 000
Non-commutative to	opology			
	rsus non-comr	mutative		

2008 M. Demirci shows a link between fuzzy and non-commutative topology using

• variable-basis approach to fuzzy topology of S. E. Rodabaugh;

• quantal spaces of C. J. Mulvey and J. W. Pelletier.

III The link between two concepts is given by generalized fuzzy sets of N. Nakajima defined as points of a product $\prod_{x \in X} L_x$ of complete lattices, every $x \in X$ having its own lattice of membership degrees.

The purpose of this talk

This talk shows a variety-based approach to the topic based on the methods of categorical fuzzy topology. The main result: the non-commutative approach incorporates the fuzzy one.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of Latvia

Introduction ○○○●	Topological spaces	Algebral spaces	Topology versus algebra	Problems 000
Non-commutative t	opology			
FUZZV VA	rsus non-comr	mutative		

2008 M. Demirci shows a link between fuzzy and non-commutative topology using

• variable-basis approach to fuzzy topology of S. E. Rodabaugh;

• quantal spaces of C. J. Mulvey and J. W. Pelletier.

III The link between two concepts is given by generalized fuzzy sets of N. Nakajima defined as points of a product $\prod_{x \in X} L_x$ of complete lattices, every $x \in X$ having its own lattice of membership degrees.

The purpose of this talk

This talk shows a variety-based approach to the topic based on the methods of categorical fuzzy topology. The main result: the non-commutative approach incorporates the fuzzy one.

Introduction 0000	Topological spaces ●000000000	Algebral spaces	Topology versus algebra	Problems 000
Varieties of algebras				
Ω -algebras	and Ω -home	morphisms		

- An Ω -algebra is a pair $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda})$ consisting of a set A and a family of maps $A^{n_{\lambda}} \xrightarrow{\omega_{\lambda}^{A}} A$, called n_{λ} -ary operations on A.
- An Ω -homomorphism $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda}) \xrightarrow{t} (B, (\omega_{\lambda}^{B})_{\lambda \in \Lambda})$ is a map $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f_{\lambda}^{n}$ for every $\lambda \in \Lambda$.
- Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms, the underlying functor to the ground category Set of sets and maps denoted by | - |.

Introduction 0000	Topological spaces ●000000000	Algebral spaces	Topology versus algebra 0000	Problems 000
Varieties of algebras				
Ω -algebras	s and Ω -hom	omorphisms		

- An Ω -algebra is a pair $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda})$ consisting of a set A and a family of maps $A^{n_{\lambda}} \xrightarrow{\omega_{\lambda}^{A}} A$, called n_{λ} -ary operations on A.
- An Ω -homomorphism $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda}) \xrightarrow{f} (B, (\omega_{\lambda}^{B})_{\lambda \in \Lambda})$ is a map $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f_{\lambda}^{n}$ for every $\lambda \in \Lambda$.
- Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms, the underlying functor to the ground category Set of sets and maps denoted by | - |.

Introduction 0000	Topological spaces ●000000000	Algebral spaces	Topology versus algebra 0000	Problems 000
Varieties of algebras				
Ω -algebras	and Ω -hom	omorphisms		

- An Ω -algebra is a pair $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda})$ consisting of a set A and a family of maps $A^{n_{\lambda}} \xrightarrow{\omega_{\lambda}^{A}} A$, called n_{λ} -ary operations on A.
- An <u>Ω-homomorphism</u> $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda}) \xrightarrow{f} (B, (\omega_{\lambda}^{B})_{\lambda \in \Lambda})$ is a map $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f_{\lambda}^{n}$ for every $\lambda \in \Lambda$.
- Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms, the underlying functor to the ground category Set of sets and maps denoted by | - |.

Introduction 0000	Topological spaces ●000000000	Algebral spaces	Topology versus algebra 0000	Problems 000
Varieties of algebras				
Ω -algebras	and Ω -hom	omorphisms		

- An Ω -algebra is a pair $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda})$ consisting of a set A and a family of maps $A^{n_{\lambda}} \xrightarrow{\omega_{\lambda}^{A}} A$, called n_{λ} -ary operations on A.
- An Ω -homomorphism $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda}) \xrightarrow{f} (B, (\omega_{\lambda}^{B})_{\lambda \in \Lambda})$ is a map $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f_{\lambda}^{n}$ for every $\lambda \in \Lambda$.
- Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms, the underlying functor to the ground category Set of sets and maps denoted by | - |.

Introduction 0000	Topological spaces ○●○○○○○○○	Algebral spaces	Topology versus algebra 0000	Problems 000
Varieties of algebras				
Algebras a	nd homomorpl	nisms		

Definition 2

- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).
- The objects (resp. morphisms) of a variety will be referred to as algebras (resp. homomorphisms).

The constructs Frm, SFrm, SQuant of frames, semiframes, semi-quantales are varieties.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

/jovs Univ

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra	Problems 000
Varieties of algebras				
Algebras a	nd homomor	phisms		

Definition 2

- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).
- The objects (resp. morphisms) of a variety will be referred to as algebras (resp. homomorphisms).

! The constructs Frm, SFrm, SQuant of frames, semiframes, semi-quantales are varieties.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

rjovs Unive

Introduction 0000	Topological spaces ○●○○○○○○○	Algebral spaces	Topology versus algebra	Problems 000
Varieties of algebras				
Algebras a	nd homomorp	ohisms		

Definition 2

- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).
- The objects (resp. morphisms) of a variety will be referred to as algebras (resp. homomorphisms).

The constructs **Frm**, **SFrm**, **SQuant** of frames, semiframes, semi-quantales are varieties.

Introduction 0000	Topological spaces ○●○○○○○○○	Algebral spaces	Topology versus algebra	Problems 000
Varieties of algebras				
Algebras a	nd homomorp	ohisms		

Definition 2

- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).
- The objects (resp. morphisms) of a variety will be referred to as algebras (resp. homomorphisms).

The constructs **Frm**, **SFrm**, **SQuant** of frames, semiframes, semi-quantales are varieties.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Varieties of algebras				
Localic alg	ebras			

• From now on assume that **A** is a fixed variety.

Definition 3

The dual of the category **A** is denoted by **LoA** (the "**Lo**" comes from "localic"). Its objects (resp. morphisms) are called localic algebras (resp. homomorphisms).

Given a morphism f of a category **C**, the respective morphism of **C**^{op} is denoted by f^{op} and vice versa.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Varieties of algebras				
Localic alg	ebras			

• From now on assume that **A** is a fixed variety.

Definition 3

The dual of the category **A** is denoted by **LoA** (the "**Lo**" comes from "localic"). Its objects (resp. morphisms) are called localic algebras (resp. homomorphisms).

Given a morphism f of a category **C**, the respective morphism of **C**^{op} is denoted by f^{op} and vice versa.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Varieties of algebras				
Localic alg	ebras			

• From now on assume that **A** is a fixed variety.

Definition 3

The dual of the category **A** is denoted by **LoA** (the "**Lo**" comes from "localic"). Its objects (resp. morphisms) are called localic algebras (resp. homomorphisms).

Given a morphism f of a category **C**, the respective morphism of **C**^{op} is denoted by f^{op} and vice versa.

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
	00000000			
Generalized topological spaces				

Definition 4

- Set ⊙ LoA is the category, the objects of which are pairs (X, A), where X is a set and A = (A_x)_{x∈X} is a family of localic algebras.
- Morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ consist of a map $X \xrightarrow{f} Y$ and a family $\Phi = (\varphi_x)_{x \in X}$ of localic homomorphisms $A_x \xrightarrow{\varphi_x} B_{f(x)}$.
- The composition of two morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ and $(Y, \mathcal{B}) \xrightarrow{(g, \Psi)} (Z, \mathcal{C})$ is given by $(g, \Psi) \circ (f, \Phi) = (g \circ f, \Psi \circ \Phi)$, where $\Psi \circ \Phi = (\psi_{f(x)} \circ \varphi_x)_{x \in X}$.

• The identity on (X, \mathcal{A}) is given by $(X, \mathcal{A}) \xrightarrow{(1_X, 1_\mathcal{A})} (X, \mathcal{A})$, where $1_{\mathcal{A}} = (1_{\mathcal{A}_x})_{x \in X}$.

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems	
	00000000				
Generalized topological spaces					

Definition 4

- Set LoA is the category, the objects of which are pairs (X, \mathcal{A}) , where X is a set and $\mathcal{A} = (A_x)_{x \in X}$ is a family of localic algebras.
- Morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ consist of a map $X \xrightarrow{f} Y$ and a family $\Phi = (\varphi_x)_{x \in X}$ of localic homomorphisms $A_x \xrightarrow{\varphi_x} B_{f(x)}$.
- The composition of two morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ and

• The identity on (X, \mathcal{A}) is given by $(X, \mathcal{A}) \xrightarrow{(1_X, 1_\mathcal{A})} (X, \mathcal{A})$.

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems	
	000000000				
Generalized topological spaces					

Definition 4

- Set LoA is the category, the objects of which are pairs (X, \mathcal{A}) , where X is a set and $\mathcal{A} = (A_x)_{x \in X}$ is a family of localic algebras.
- Morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ consist of a map $X \xrightarrow{f} Y$ and a family $\Phi = (\varphi_x)_{x \in X}$ of localic homomorphisms $A_x \xrightarrow{\varphi_x} B_{f(x)}$.
- The composition of two morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ and $(Y, \mathcal{B}) \xrightarrow{(g, \Psi)} (Z, \mathcal{C})$ is given by $(g, \Psi) \circ (f, \Phi) = (g \circ f, \Psi \circ \Phi)$, where $\Psi \circ \Phi = (\psi_{f(x)} \circ \varphi_x)_{x \in X}$.

• The identity on (X, \mathcal{A}) is given by $(X, \mathcal{A}) \xrightarrow{(1_X, 1_\mathcal{A})} (X, \mathcal{A})$,

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems	
	000000000				
Generalized topological spaces					

Definition 4

- Set ⊙ LoA is the category, the objects of which are pairs (X, A), where X is a set and A = (A_x)_{x∈X} is a family of localic algebras.
- Morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ consist of a map $X \xrightarrow{f} Y$ and a family $\Phi = (\varphi_x)_{x \in X}$ of localic homomorphisms $A_x \xrightarrow{\varphi_x} B_{f(x)}$.
- The composition of two morphisms $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ and $(Y, \mathcal{B}) \xrightarrow{(g, \Psi)} (Z, \mathcal{C})$ is given by $(g, \Psi) \circ (f, \Phi) = (g \circ f, \Psi \circ \Phi)$, where $\Psi \circ \Phi = (\psi_{f(x)} \circ \varphi_x)_{x \in X}$.

• The identity on (X, \mathcal{A}) is given by $(X, \mathcal{A}) \xrightarrow{(1_X, 1_\mathcal{A})} (X, \mathcal{A})$, where $1_\mathcal{A} = (1_{\mathcal{A}_X})_{X \in X}$.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolo	gical spaces			
The nat	ure of the grou	ind category		

Theorem 5

Set \odot **LoA** *is a free coproduct completion of* **LoA***, namely:*

- there exists a full embedding $LoA \xrightarrow{E} Set \odot LoA$;
- Set

 LoA has coproducts;
- every functor LoA → C to a category with coproducts has a unique (up to natural isomorphism) extension to a coproduct-preserving functor Set ⊙ LoA → C.

Lemma 6

There exists a non-full embedding $\mathbf{Set} \times \mathbf{LoA} \xrightarrow{\mathsf{E}} \mathbf{Set} \odot \mathbf{LoA}$, $\mathsf{E}((X, A) \xrightarrow{(f, \varphi)} (Y, B)) = (X, (A)_{x \in X}) \xrightarrow{(f, (\varphi)_{x \in X})} (Y, (B)_{y \in Y}).$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of Latvi

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000			
Generalized topological spaces							
The nat	ure of the grou	ind category					

Theorem 5

Set \odot **LoA** *is a free coproduct completion of* **LoA***, namely:*

- there exists a full embedding $LoA \xrightarrow{E} Set \odot LoA$;
- Set LoA has coproducts;
- every functor LoA → C to a category with coproducts has a unique (up to natural isomorphism) extension to a coproduct-preserving functor Set ⊙ LoA → C.

Lemma 6

There exists a non-full embedding $\mathbf{Set} \times \mathbf{LoA} \xrightarrow{\mathsf{E}} \mathbf{Set} \odot \mathbf{LoA}$, $\mathsf{E}((X, A) \xrightarrow{(f, \varphi)} (Y, B)) = (X, (A)_{x \in X}) \xrightarrow{(f, (\varphi)_{x \in X})} (Y, (B)_{y \in Y}).$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of Latvi
Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000				
Generalized topological spaces								
The nat	ure of the grou	ind category						

Theorem 5

Set \odot **LoA** *is a free coproduct completion of* **LoA***, namely:*

- there exists a full embedding $LoA \xrightarrow{E} Set \odot LoA$;
- Set LoA has coproducts;
- every functor LoA → C to a category with coproducts has a unique (up to natural isomorphism) extension to a coproduct-preserving functor Set ⊙ LoA → C.

Lemma 6

There exists a non-full embedding $\mathbf{Set} \times \mathbf{LoA} \xrightarrow{\mathsf{E}} \mathbf{Set} \odot \mathbf{LoA}$, $\mathsf{E}((X, A) \xrightarrow{(f, \varphi)} (Y, B)) = (X, (A)_{x \in X}) \xrightarrow{(f, (\varphi)_{x \in X})} (Y, (B)_{y \in Y}).$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000				
Generalized topological spaces								
The nat	ure of the grou	ind category						

Theorem 5

Set \odot **LoA** *is a free coproduct completion of* **LoA***, namely:*

- there exists a full embedding $LoA \xrightarrow{E} Set \odot LoA$;
- Set LoA has coproducts;
- every functor LoA → C to a category with coproducts has a unique (up to natural isomorphism) extension to a coproduct-preserving functor Set ⊙ LoA → C.

Lemma 6

There exists a non-full embedding $\mathbf{Set} \times \mathbf{LoA} \xrightarrow{\mathsf{E}} \mathbf{Set} \odot \mathbf{LoA}$, $\mathsf{E}((X, A) \xrightarrow{(f, \varphi)} (Y, B)) = (X, (A)_{x \in X}) \xrightarrow{(f, (\varphi)_{x \in X})} (Y, (B)_{y \in Y}).$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

lovjovs Univ

Introduction 0000	Topological spaces ○○○○○●○○○○	Algebral spaces	Topology versus algebra	Problems 000			
Generalized topological spaces							
Generalized powerset operator							

Given a family of localic algebras $(A_x)_{x \in X}$, denote their product $\prod_{x \in X} A_x$ by \mathcal{A}^X and consider it as the set of choice functions on X, i.e., maps $X \xrightarrow{p} \bigcup_{x \in X} A_x$ such that $p(x) \in A_x$.

_emma 7

There exists a functor Set \odot LoA $\xrightarrow{(-)^{\leftarrow}}$ LoA, defined by

$$((X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B}))^{\leftarrow} = \mathcal{A}^X \xrightarrow{((f, \Phi)^{\leftarrow})^{op}} \mathcal{B}^Y,$$

where

$$((f,\Phi)^{\leftarrow}(p))(x) = (\Phi^{op} \circ p \circ f)(x) = (\varphi^{op}_{(-)} \circ p \circ f)(x) = \varphi^{op}_{x} \circ p \circ f(x).$$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces ○○○○○●○○○○	Algebral spaces	Topology versus algebra	Problems 000			
Generalized topological spaces							
Generalized powerset operator							

Given a family of localic algebras $(A_x)_{x \in X}$, denote their product $\prod_{x \in X} A_x$ by \mathcal{A}^X and consider it as the set of choice functions on X, i.e., maps $X \xrightarrow{p} \bigcup_{x \in X} A_x$ such that $p(x) \in A_x$.

Lemma 7

There exists a functor Set \odot LoA $\xrightarrow{(-)^{\leftarrow}}$ LoA, defined by

$$((X,\mathcal{A})\xrightarrow{(f,\Phi)}(Y,\mathcal{B}))^{\leftarrow}=\mathcal{A}^X\xrightarrow{((f,\Phi)^{\leftarrow})^{op}}\mathcal{B}^Y,$$

where

$$((f,\Phi)^{\leftarrow}(p))(x) = (\Phi^{op} \circ p \circ f)(x) = (\varphi^{op}_{(-)} \circ p \circ f)(x) = \varphi^{op}_x \circ p \circ f(x).$$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
	0000000000			
Generalized topological	spaces			

From generalized to standard

Lemma 8

The composition Set × LoA $\xrightarrow{\mathsf{E}}$ Set \odot LoA $\xrightarrow{(-)^{\leftarrow}}$ LoA gives the powerset operator Set × LoA $\xrightarrow{(-)^{\leftarrow}}$ LoA used for the usual variety-based topology and defined by

$$((X,A) \xrightarrow{(f,\varphi)} (Y,B))^{\leftarrow} = A^X \xrightarrow{((f,\varphi)^{\leftarrow})^{op}} B^Y,$$

where

$$(f,\varphi)^{\leftarrow}(p) = \varphi^{op} \circ p \circ f.$$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolog	gical spaces			
Generaliz	zed tonology			

ວງ

Definition 9

Given a subcategory **C** of **LoA** and a **Set** \odot **C**-object (X, A), a subset τ of \mathcal{A}^X is called a generalized **C**-topology on (X, A) provided that τ is a subalgebra of \mathcal{A}^X .

Example 10

Suppose X is a set, Q is a s(emi)-quantale and A is an algebra.

- The usual topology on X is a subframe of the powerset $\mathcal{P}(X)$
- A Q-topology on X is a sub(s-quantale) of the powerset Q
- An A-topology on X is a subalgebra of the powerset A^X

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of

Introduction 0000	Topological spaces ○○○○○○○●○○	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolog	ical spaces			
Generaliz	ed topology			

'5.

Definition 9

Given a subcategory **C** of **LoA** and a **Set** \odot **C**-object (X, A), a subset τ of \mathcal{A}^X is called a generalized **C**-topology on (X, \mathcal{A}) provided that τ is a subalgebra of \mathcal{A}^X .

Example 10

Suppose X is a set, Q is a s(emi)-quantale and A is an algebra.

- The usual topology on X is a subframe of the powerset $\mathcal{P}(X)$.
- A Q-topology on X is a sub(s-quantale) of the powerset Q^X .

Introduction 0000	Topological spaces ○○○○○○●○○	Algebral spaces	Topology versus algebra 0000	Problems 000			
Generalized topological spaces							
Generaliz	ed topology						

'5.

Definition 9

Given a subcategory **C** of **LoA** and a **Set** \odot **C**-object (X, A), a subset τ of \mathcal{A}^X is called a generalized **C**-topology on (X, \mathcal{A}) provided that τ is a subalgebra of \mathcal{A}^X .

Example 10

Suppose X is a set, Q is a s(emi)-quantale and A is an algebra.

- The usual topology on X is a subframe of the powerset $\mathcal{P}(X)$.
- A Q-topology on X is a sub(s-quantale) of the powerset Q^X .

• An A-topology on X is a subalgebra of the powerset A^X .

Introduction 0000	Topological spaces ○○○○○○●○○	Algebral spaces	Topology versus algebra 0000	Problems 000			
Generalized topological spaces							
Generaliz	ed topology						

'5.

Definition 9

Given a subcategory **C** of **LoA** and a **Set** \odot **C**-object (X, A), a subset τ of \mathcal{A}^X is called a generalized **C**-topology on (X, \mathcal{A}) provided that τ is a subalgebra of \mathcal{A}^X .

Example 10

Suppose X is a set, Q is a s(emi)-quantale and A is an algebra.

- The usual topology on X is a subframe of the powerset $\mathcal{P}(X)$.
- A Q-topology on X is a sub(s-quantale) of the powerset Q^X .
- An A-topology on X is a subalgebra of the powerset A^X .

Introduction 0000	Topological spaces ○○○○○○○○	Algebral spaces	Topology versus algebra	Problems 000				
Generalized topological spaces								
Generali	zed topologica	l space						

$$\underbrace{III}_{} \text{Every map } X \xrightarrow{f} Y \text{ gives the image operator } \mathcal{P}(X) \xrightarrow{f^{\rightarrow}} \mathcal{P}(Y).$$

• Suppose **C** is a subcategory of **LoA**.

Definition 11

- A generalized C-topological space is a triple (X, A, τ), where
 τ is a generalized C-topology on (X, A).
- A generalized C-continuous map (X, A, τ) → (Y, B, σ) is a Set ⊙ C-morphism (X, A) → (Y, B) with ((f, Φ)⁺)→(σ) ⊆ τ.
- C-GTop is the category of generalized C-topological spaces and C-continuous maps, the underlying functor to the ground category Set ⊙ C denoted by | − |.

Introduction 0000	Topological spaces ○○○○○○○●○	Algebral spaces	Topology versus algebra 0000	Problems 000			
Generalized topological spaces							
Generaliz	zed topologica	l space					

$$\underbrace{III}_{} \text{Every map } X \xrightarrow{f} Y \text{ gives the image operator } \mathcal{P}(X) \xrightarrow{f^{\rightarrow}} \mathcal{P}(Y).$$

• Suppose C is a subcategory of LoA.

Definition 11

- A generalized C-topological space is a triple (X, A, τ), where
 τ is a generalized C-topology on (X, A).
- A generalized C-continuous map (X, A, τ) → (Y, B, σ) is a
 Set ⊙ C-morphism (X, A) → (Y, B) with ((f, Φ)⁺) → (σ) ⊆ τ.
- C-GTop is the category of generalized C-topological spaces and C-continuous maps, the underlying functor to the ground category Set ⊙ C denoted by | - |.

Sergejs Solovjovs

Introduction 0000	Topological spaces ○○○○○○○●○	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolog	gical spaces			
Generaliz	red topologica	Ispace		

 $\underbrace{III}_{} \text{Every map } X \xrightarrow{f} Y \text{ gives the image operator } \mathcal{P}(X) \xrightarrow{f^{\rightarrow}} \mathcal{P}(Y).$

• Suppose **C** is a subcategory of **LoA**.

Definition 11

- A generalized C-topological space is a triple (X, A, τ) , where τ is a generalized C-topology on (X, A).
- A generalized **C**-continuous map $(X, \mathcal{A}, \tau) \xrightarrow{(f, \Phi)} (Y, \mathcal{B}, \sigma)$ is a **Set** \odot **C**-morphism $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ with $((f, \Phi)^{\leftarrow})^{\rightarrow} (\sigma) \subseteq \tau$.
- C-GTop is the category of generalized C-topological spaces and C-continuous maps, the underlying functor to the ground category Set ⊙ C denoted by | − |.

Introduction 0000	Topological spaces ○○○○○○○●○	Algebral spaces	Topology versus algebra 0000	Problems 000			
Generalized topological spaces							
Generaliz	red topologica	Ispace					

 $\underbrace{III}_{} \text{Every map } X \xrightarrow{f} Y \text{ gives the image operator } \mathcal{P}(X) \xrightarrow{f^{\rightarrow}} \mathcal{P}(Y).$

• Suppose **C** is a subcategory of **LoA**.

Definition 11

- A generalized C-topological space is a triple (X, A, τ) , where τ is a generalized C-topology on (X, A).
- A generalized **C**-continuous map $(X, \mathcal{A}, \tau) \xrightarrow{(f, \Phi)} (Y, \mathcal{B}, \sigma)$ is a Set \odot **C**-morphism $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ with $((f, \Phi)^{\leftarrow})^{\rightarrow} (\sigma) \subseteq \tau$.

 C-GTop is the category of generalized C-topological spaces and C-continuous maps, the underlying functor to the ground category Set ⊙ C denoted by | − |.

Introduction 0000	Topological spaces ○○○○○○○●○	Algebral spaces	Topology versus algebra 0000	Problems 000			
Generalized topological spaces							
Generaliz	Generalized topological space						

 $\underbrace{III}_{} \text{Every map } X \xrightarrow{f} Y \text{ gives the image operator } \mathcal{P}(X) \xrightarrow{f^{\rightarrow}} \mathcal{P}(Y).$

• Suppose **C** is a subcategory of **LoA**.

Definition 11

- A generalized C-topological space is a triple (X, A, τ) , where τ is a generalized C-topology on (X, A).
- A generalized **C**-continuous map $(X, \mathcal{A}, \tau) \xrightarrow{(f, \Phi)} (Y, \mathcal{B}, \sigma)$ is a Set \odot **C**-morphism $(X, \mathcal{A}) \xrightarrow{(f, \Phi)} (Y, \mathcal{B})$ with $((f, \Phi)^{\leftarrow})^{\rightarrow} (\sigma) \subseteq \tau$.
- C-GTop is the category of generalized C-topological spaces and C-continuous maps, the underlying functor to the ground category Set ⊙ C denoted by | − |.

Introduction 0000	Topological spaces ○○○○○○○○●	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolog	ical spaces			
Evample				

- Given a generalized C-topological space (X, A, τ), A is called the basis of (X, A, τ).
- Given $x \in X$, A_x is called the x-basis of (X, A, τ) .
- C-Top is the non-full subcategory of C-GTop comprising all spaces (X, (A)_{x∈X}, τ) and all continuous maps (f, (φ)_{x∈X}).

Example 13

For a subcategory **C** of **LoSQuant**, **C**-**Top** gives the category of variable-basis topological spaces of S. E. Rodabaugh and **C**-**GTop** is the category of generalized topological spaces of M. Demirci.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University o

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolog	gical spaces			
Example				

- Given a generalized C-topological space (X, A, τ), A is called the basis of (X, A, τ).
- Given $x \in X$, A_x is called the x-basis of (X, \mathcal{A}, τ) .
- C-Top is the non-full subcategory of C-GTop comprising all spaces (X, (A)_{x∈X}, τ) and all continuous maps (f, (φ)_{x∈X}).

Example 13

For a subcategory **C** of **LoSQuant**, **C**-**Top** gives the category of variable-basis topological spaces of S. E. Rodabaugh and **C**-**GTop** is the category of generalized topological spaces of M. Demirci.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolog	gical spaces			
Example				

- Given a generalized C-topological space (X, A, τ), A is called the basis of (X, A, τ).
- Given $x \in X$, A_x is called the x-basis of (X, \mathcal{A}, τ) .
- C-Top is the non-full subcategory of C-GTop comprising all spaces (X, (A)_{x∈X}, τ) and all continuous maps (f, (φ)_{x∈X}).

Example 13

For a subcategory **C** of **LoSQuant**, **C**-**Top** gives the category of variable-basis topological spaces of S. E. Rodabaugh and **C**-**GTop** is the category of generalized topological spaces of M. Demirci.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
Generalized topolog	gical spaces			
Example				

- Given a generalized C-topological space (X, A, τ), A is called the basis of (X, A, τ).
- Given $x \in X$, A_x is called the x-basis of (X, \mathcal{A}, τ) .
- C-Top is the non-full subcategory of C-GTop comprising all spaces (X, (A)_{x∈X}, τ) and all continuous maps (f, (φ)_{x∈X}).

Example 13

For a subcategory **C** of **LoSQuant**, **C-Top** gives the category of variable-basis topological spaces of S. E. Rodabaugh and **C-GTop** is the category of generalized topological spaces of M. Demirci.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000		
Non-commutative topology						
Motivati	ng example					

Definition 14 (C. J. Mulvey and J. W. Pelletier)

- A quantal space (Q,T_Q) is a Gelfand quantale Q together with an algebraically strong right embedding Q → ∏_{i∈I} Q_i into a product ∏_{i∈I} Q_i of discrete Hilbert quantales, called the quantal topology.
- A homomorphism (Q, T_Q) (φ,τ_φ)/(P, T_P) of quantal spaces is a Gelfand quantale homomorphism Q → P and a discrete von Neumann quantale homomorphism ∏_{i∈I}Q_i → ∏_{j∈J}P_j such that the following diagram commutes

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000		
Non-commutative topology						
Motivati	ng example					

Definition 14 (C. J. Mulvey and J. W. Pelletier)

- A quantal space (Q,T_Q) is a Gelfand quantale Q together with an algebraically strong right embedding Q → ∏_{i∈I} Q_i into a product ∏_{i∈I} Q_i of discrete Hilbert quantales, called the quantal topology.
- A homomorphism $(Q, \mathcal{T}_Q) \xrightarrow{(\varphi, \tau_{\varphi})} (P, \mathcal{T}_P)$ of quantal spaces is a Gelfand quantale homomorphism $Q \xrightarrow{\varphi} P$ and a discrete von Neumann quantale homomorphism $\prod_{i \in I} Q_i \xrightarrow{\tau_{\varphi}} \prod_{j \in J} P_j$ such that the following diagram commutes

Introduction 0000	Topological spaces	Algebral spaces ○●○	Topology versus algebra 0000	Problems 000
Non-commutative	topology			
Algebral	spaces			

Given a Set ⊙ LoA-object (X, A) and an algebra A, an algebral topology on (A, (X, A)) is a homomorphism A^T→A^X.

• An algebral space is a tuple (A, (X, A), T), where T is an algebral topology on (A, (X, A)).

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces 0●0	Topology versus algebra 0000	Problems 000
Non-commutative	topology			
Algebral	spaces			

- Given a Set ⊙ LoA-object (X, A) and an algebra A, an algebral topology on (A, (X, A)) is a homomorphism A → A^X.
- An algebral space is a tuple (A, (X, A), T), where T is an algebral topology on (A, (X, A)).

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces 00●	Topology versus algebra 0000	Problems 000
Non-commutative	topology			
Category	v of algebral sp	aces		
• Si	uppose C (resp. D) is a subcatego	ry of A (resp. LoA).	

- (C, D)-AlgSp is the category, the objects of which are (C, D)-algebral spaces, i.e., algebral spaces (A, (X, A), T) with A in C and A in D.
- Morphisms (A, (X, A), T) (φ,(f,Φ)^{φρ})/(B, (Y, B), S) are
 C × (Set ⊙ D)^{φρ}-morphisms (A, (X, A)) (φ,(f,Φ)^{φρ})/(B, (Y, B))/(B, (Y, B)

• The underlying functor to the category $C imes (\operatorname{\mathsf{Set}} \odot D)^{op}$ is |-|

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces 00●	Topology versus algebra	Problems 000
Non-commutative t	opology			
Category	of algebral sp	aces		
• Sı	ippose C (resp. D) is a subcatego	ry of A (resp. LoA).	

- (C, D)-AlgSp is the category, the objects of which are (C, D)-algebral spaces, i.e., algebral spaces (A, (X, A), T) with A in C and A in D.
- Morphisms (A, (X, A), T) (φ,(f,Φ)^{op})/→ (B, (Y, B), S) are
 C × (Set ⊙ D)^{op}-morphisms (A, (X, A)) (φ,(f,Φ)^{op})/→ (B, (Y, B)) making the following diagram commute

• The underlying functor to the category $C \times (Set \odot D)^{op}$ is |-|.

Introduction 0000	Topological spaces	Algebral spaces 00●	Topology versus algebra 0000	Problems 000		
Non-commutative topology						
Category of algebral spaces						

• Suppose C (resp. D) is a subcategory of A (resp. LoA).

Definition 16

- (C, D)-AlgSp is the category, the objects of which are (C, D)-algebral spaces, i.e., algebral spaces (A, (X, A), T) with A in C and A in D.
- Morphisms (A, (X, A), T) ((φ,(f,Φ)^{op}))/(B, (Y, B), S) are
 C × (Set ⊙ D)^{op}-morphisms (A, (X, A)) ((φ,(f,Φ)^{op}))/(B, (Y, B)))
 making the following diagram commute

• The underlying functor to the category $C \times (Set \odot D)^{op}$ is |-|.

Introduction 0000	Topological spaces	Algebral spaces 00●	Topology versus algebra 0000	Problems 000		
Non-commutative topology						
Category of algebral spaces						

• Suppose C (resp. D) is a subcategory of A (resp. LoA).

Definition 16

- (C, D)-AlgSp is the category, the objects of which are (C, D)-algebral spaces, i.e., algebral spaces (A, (X, A), T) with A in C and A in D.
- Morphisms (A, (X, A), T) ((φ,(f,Φ)^{op}))/(B, (Y, B), S) are
 C × (Set ⊙ D)^{op}-morphisms (A, (X, A)) ((φ,(f,Φ)^{op}))/(B, (Y, B)))
 making the following diagram commute

• The underlying functor to the category $C \times (Set \odot D)^{op}$ is |-|.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra ●000	Problems 000			
Topological spaces versus algebral spaces							
From fuzzy to non-commutative							

Lemma 17

There is a full embedding $LoA-GTop \subseteq E \rightarrow ((A, LoA)-AlgSp)^{op}$ defined by

$$\mathsf{E}((X, \mathcal{A}, \tau) \xrightarrow{(f, \Phi)} (Y, \mathcal{B}, \sigma)) =$$
$$(\tau, (X, \mathcal{A}), \iota_{\tau}) \xrightarrow{((f, \Phi)^{\leftarrow}, (f, \Phi)^{op})^{op}} (\sigma, (Y, \mathcal{B}), \iota_{\sigma}),$$

where ι_{τ} (resp. ι_{σ}) are the inclusion maps.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra ○●○○	Problems 000		
Topological spaces versus algebral spaces						
From non-commutative to fuzzy						

Lemma 18

There is a functor $((\mathbf{A}, \mathbf{LoA}) - \mathbf{AlgSp})^{op} \xrightarrow{\mathrm{Spat}} \mathbf{LoA} - \mathbf{GTop}$ defined by $\operatorname{Spat}((A, (X, \mathcal{A}), \mathcal{T}) \xrightarrow{(\varphi, (f, \Phi)^{op})^{op}} (B, (Y, \mathcal{B}), \mathcal{S})) = (X, \mathcal{A}, \mathcal{T}^{\rightarrow}(A)) \xrightarrow{(f, \Phi)} (Y, \mathcal{B}, \mathcal{S}^{\rightarrow}(B)).$

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 00●0	Problems 000
Topological spaces ve	rsus algebral spaces			
The main	result			

Theorem 19

Spat is a right-adjoint-left-inverse to E.

Corollary 20

LoA-GTop is isomorphic to a full coreflective subcategory of ((A, LoA)-AlgSp)^{op}.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces 0000000000	Algebral spaces	Topology versus algebra 00●0	Problems 000	
Topological spaces versus algebral spaces					
The main	result				

Theorem 19

Spat is a right-adjoint-left-inverse to E.

Corollary 20

LoA-GTop is isomorphic to a full coreflective subcategory of $((A, LoA)-AlgSp)^{op}$.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Jniversity of Latvi

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
0000	0000000000		○○○●	000
Consequences				

Fuzzy versus non-commutative

Consequences

- Corollary 20 shows that the non-commutative approach gives a more general framework for developing topology than the respective fuzzy one does.
- Quantal spaces of C. J. Mulvey and J. W. Pelletier provide a generalization of fuzzy topology developed in the framework of quantales.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
0000	000000000		○○○●	000
Consequences				

Fuzzy versus non-commutative

Consequences

- Corollary 20 shows that the non-commutative approach gives a more general framework for developing topology than the respective fuzzy one does.
- Quantal spaces of C. J. Mulvey and J. W. Pelletier provide a generalization of fuzzy topology developed in the framework of quantales.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems ●○○
Problem 1				
Topolog	ical systems			

- Let C be a subcategory of LoA. A C-topological system is a tuple D = (pt D, ΣD, ΩD, κ), where (pt D, ΣD, ΩD) is a Set × C × C-object and ΩD ^κ→ (ΣD)^{pt D} is a homomorphism.
- A **C**-continuous map $D_1 \xrightarrow{f} D_2$ is a **Set** \times **C** \times **C**-morphism (pt $D_1, \Sigma D_1, \Omega D_1$) $\xrightarrow{f=(pt f, (\Sigma f)^{op}, (\Omega f)^{op})}$ (pt $D_2, \Sigma D_2, \Omega D_2$) making the following diagram commute

 The category C-TopSys comprises C-topological systems and C-continuous maps, with the underlying functor to the ground category Set × C × C denoted by | - |.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems ●00
Problem 1				
- · ·				

Topological systems

Definition 21

- Let C be a subcategory of LoA. A C-topological system is a tuple D = (pt D, ΣD, ΩD, κ), where (pt D, ΣD, ΩD) is a Set × C × C-object and ΩD ^κ→ (ΣD)^{pt D} is a homomorphism.
- A **C**-continuous map $D_1 \xrightarrow{f} D_2$ is a **Set** \times **C** \times **C**-morphism (pt $D_1, \Sigma D_1, \Omega D_1$) $\xrightarrow{f=(pt f, (\Sigma f)^{op}, (\Omega f)^{op})}$ (pt $D_2, \Sigma D_2, \Omega D_2$) making the following diagram commute

 The category C-TopSys comprises C-topological systems and C-continuous maps, with the underlying functor to the ground category Set × C × C denoted by | - |.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems ●00
Problem 1				

Topological systems

Definition 21

- Let C be a subcategory of LoA. A C-topological system is a tuple D = (pt D, ΣD, ΩD, κ), where (pt D, ΣD, ΩD) is a Set × C × C-object and ΩD ^κ→ (ΣD)^{pt D} is a homomorphism.
- A **C**-continuous map $D_1 \xrightarrow{f} D_2$ is a **Set** \times **C** \times **C**-morphism (pt $D_1, \Sigma D_1, \Omega D_1$) $\xrightarrow{f=(pt f, (\Sigma f)^{op}, (\Omega f)^{op})}$ (pt $D_2, \Sigma D_2, \Omega D_2$) making the following diagram commute

 The category C-TopSys comprises C-topological systems and C-continuous maps, with the underlying functor to the ground category Set × C × C denoted by | - |.

Introduction 0000	Topological spaces 0000000000	Algebral spaces	Topology versus algebra 0000	Problems ○●○		
Problem 1						
Topological systems versus algebral spaces						

The category (C, D)-AlgSp of algebral spaces generalizes the category C-TopSys of topological systems.

Problem 22

Investigate algebral spaces from the point of view of topological systems, trying to provide analogues of the already existing results for the latter structures.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs
Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems ○●○		
Problem 1						
Topological systems versus algebral spaces						

The category (**C**, **D**)-**AlgSp** of algebral spaces generalizes the category C-TopSys of topological systems.

Problem 22

Investigate algebral spaces from the point of view of topological systems, trying to provide analogues of the already existing results for the latter structures.

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra	Problems ○○●
Problem 2				
On exter	nsion of functo	ors		

• By Lemma 8 the composition

$$\mathsf{Set} \times \mathsf{LoA} \xrightarrow{\mathsf{E}} \mathsf{Set} \odot \mathsf{LoA} \xrightarrow{(-)^{\leftarrow}} \mathsf{LoA}$$

gives the standard powerset operator Set \times LoA $\xrightarrow{(-)^{\leftarrow}}$ LoA.

Problem 23

Which functors **Set** × **LoA** \xrightarrow{F} **C** are extendable to **Set** \odot **LoA** $\xrightarrow{\overline{F}}$ **C**?

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

niversity of Latvia

26/28

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra	Problems ○○●
Problem 2				
On exter	sion of functo	ors		

• By Lemma 8 the composition

$$\mathsf{Set} \times \mathsf{LoA} \xrightarrow{\mathsf{E}} \mathsf{Set} \odot \mathsf{LoA} \xrightarrow{(-)^{\leftarrow}} \mathsf{LoA}$$

gives the standard powerset operator $\textbf{Set} \times \textbf{LoA} \xrightarrow{(-)^{\leftarrow}} \textbf{LoA}.$

Problem 23

Which functors
$$\mathbf{Set} \times \mathbf{LoA} \xrightarrow{F} \mathbf{C}$$
 are extendable to $\mathbf{Set} \odot \mathbf{LoA} \xrightarrow{\overline{F}} \mathbf{C}$?

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of Latv

Introduction 0000	Topological spaces	Algebral spaces	Topology versus algebra 0000	Problems 000
References				

- J. Adámek, H. Herrlich, and G. E. Strecker, *Abstract and Concrete Categories: the Joy of Cats*, Repr. Theory Appl. Categ. **2006** (2006), no. 17, 1–507.
- M. Demirci, *Pointed semi-quantales and lattice-valued topological spaces*, submitted.
- C. J. Mulvey and J. W. Pelletier, *On the quantisation of spaces*, J. Pure Appl. Algebra **175** (2002), no. 1-3, 289-325.
- S. E. Rodabaugh, *Categorical Foundations of Variable-Basis Fuzzy Topology*, Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (U. Höhle and S. E. Rodabaugh, eds.), Kluwer Acad. Publ., 1999, pp. 273–388.
- S. Solovyov, *Generalized fuzzy topology versus non-commutative topology*, submitted.

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of Lat

Introduction	Topological spaces	Algebral spaces	Topology versus algebra	Problems
0000	0000000000	000	0000	000

Thank you for your attention!

Generalized fuzzy topology versus non-commutative topology

Sergejs Solovjovs

University of La