Affine complete permutation groups

András Pongrácz, Peter Mayr, Gábor Horváth

ELTE Budapest, Hungary

Stará Lesná, September 2009.

Affine completeness

An algebra \mathcal{A} is affine complete if every compatible function is a polynomial on \mathcal{A} .

Affine completeness

An algebra $\mathcal A$ is affine complete if every compatible function is a polynomial on $\mathcal A$.

Definition

 $f: A^k \to A \text{ compatible}: \text{ for all } \theta \in Con(A) \text{ we have } (\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta.$

Affine completeness

An algebra \mathcal{A} is affine complete if every compatible function is a polynomial on \mathcal{A} .

Definition

 $f: A^k \to A \text{ compatible}: \text{ for all } \theta \in Con(A) \text{ we have } (\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta.$

constants, fundamental operations

Affine completeness

An algebra \mathcal{A} is affine complete if every compatible function is a polynomial on \mathcal{A} .

Definition

 $f: A^k \to A$ compatible: for all $\theta \in Con(A)$ we have $(\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta$.

- constants, fundamental operations
- polynomials

Affine completeness

An algebra \mathcal{A} is affine complete if every compatible function is a polynomial on \mathcal{A} .

Definition

 $f: A^k \to A \text{ compatible}: \text{ for all } \theta \in Con(A) \text{ we have}$ $(\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta.$

- constants, fundamental operations
- polynomials

k-affine completeness

An algebra A is k-affine coplete if every compatible function of arity at most k is a polynomial on A.

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

 Z_p

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Z_p

every function is compatible

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Z_p

- every function is compatible
- polynomials: $\sum_{i=1}^{n} a_i x_i + b$

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Z_p

- every function is compatible
- polynomials: $\sum_{i=1}^{n} a_i x_i + b$
- ullet \Rightarrow not affine complete

Describe the affine complete algebras.

Describe the affine complete algebras.

First significant results:

Describe the affine complete algebras.

First significant results:

Boolean algebras

Describe the affine complete algebras.

First significant results:

- Boolean algebras
- Bounded distributive lattices: not containing proper Boolean intervals

Some known results

- Abelian groups: K. Kaarli
- Semilattices: K. Kaarli, L. Márki, E. T. Schmidt
- Vector spaces: H. Werner
- Distributive lattices: M. Ploščica
- Stone algebras: M. Haviar, M. Ploščica
- Kleene algebras: M. Haviar, K. Kaarli, M. Ploščica

G-set

G-set

 \bullet (Ω, G) pair

G-set

- \bullet (Ω, G) pair
- ullet underlying set: Ω

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- type: for all $g \in G$ a unary operation is given:

$$m_g: \alpha \mapsto g\alpha$$

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- ullet type: for all $g \in G$ a unary operation is given:

$$m_g: \alpha \mapsto g\alpha$$

Transitive group actions

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- type: for all $g \in G$ a unary operation is given:

$$m_{g}:\alpha\mapsto g\alpha$$

Transitive group actions

• $S \leq G$, Ω : cosets of S

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- type: for all $g \in G$ a unary operation is given:

$$\textit{m}_{\textit{g}}:\alpha\mapsto\textit{g}\,\alpha$$

Transitive group actions

- S < G, Ω : cosets of S
- $m_g(hS) = ghS$

Congruences

• $S \leq H \leq G$

Congruences

• $S \leq H \leq G$

Congruences

•
$$S \leq H \leq G$$

$$\rho_{H} = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

Congruences

• $S \leq H \leq G$

$$\rho_H = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

• Congruences $\longleftrightarrow \{H|S \leq H \leq G\}$

Congruences

• $S \leq H \leq G$

$$\rho_H = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

- Congruences $\longleftrightarrow \{H|S \leq H \leq G\}$
- $Con((\Omega, G)) = [S, G] \le L(G)$

Congruences

• $S \leq H \leq G$

$$\rho_H = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

- Congruences $\longleftrightarrow \{H|S \leq H \leq G\}$
- $Con((\Omega, G)) = [S, G] \le L(G)$

Regular G-sets

$$Con(R(G)) = {\rho_H | H \leq G} \cong L(G)$$
 (subgroup lattice)

Unary compatible functions

R(G): regular permutation representation of G

Unary compatible functions

R(G): regular permutation representation of G

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a, b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a,b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a,b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

• constants $x \mapsto g, g \in G$

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a, b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

- ullet constants $x\mapsto g$, $g\in \mathcal{G}$
- left translations $x \mapsto gx$, $g \in G$

Regular actions

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a, b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

- constants $x \mapsto g, g \in G$
- left translations $x \mapsto gx$, $g \in G$
- These are the only unary polynomial functions on R(G).

Theorem

Pálfy (1984.): Classification of minimal algebras.

Theorem

Pálfy (1984.): Classification of minimal algebras.

Corollary

 (Ω, G) 1-affine complete \Rightarrow affine complete, except:

Theorem

Pálfy (1984.): Classification of minimal algebras.

Corollary

 (Ω, G) 1-affine complete \Rightarrow affine complete, except:

•
$$|\Omega| = 2$$

Theorem

Pálfy (1984.): Classification of minimal algebras.

Corollary

 (Ω, G) 1-affine complete \Rightarrow affine complete, except:

- $|\Omega| = 2$
- There exists a division ring D and a vector space $_DV$ such that $\Omega =_DV$ and $G = \{x \mapsto dx + v | d \in D, v \in V\}$

Describe the 1-affine complete G-sets.

Proposition

Let G be an abelian group. Then R(G) is not 1-affine complete, except if G is an elementary abelian 2-group.

Proposition

Let G be an abelian group. Then R(G) is not 1-affine complete, except if G is an elementary abelian 2-group.

Proof

 $x \mapsto x^2$ is compatible.

Aim:
$$xH = yH \Rightarrow x^2H = y^2H$$

Proposition

Let G be an abelian group. Then R(G) is not 1-affine complete, except if G is an elementary abelian 2-group.

Proof

 $x \mapsto x^2$ is compatible.

Aim:
$$xH = yH \Rightarrow x^2H = y^2H$$

Proposition

Let G be an abelian group. Then R(G) is not 1-affine complete, except if G is an elementary abelian 2-group.

Proof

 $x \mapsto x^2$ is compatible.

Aim: $xH = yH \Rightarrow x^2H = y^2H$

 $x^2H = xHx$

Proposition

Let G be an abelian group. Then R(G) is not 1-affine complete, except if G is an elementary abelian 2-group.

Proof

```
x \mapsto x^2 is compatible.
Aim: xH = yH \Rightarrow x^2H = y^2H
x^2H = xHx
```

$$x^2H = yHx$$

Proposition

Let G be an abelian group. Then R(G) is not 1-affine complete, except if G is an elementary abelian 2-group.

Proof

```
x \mapsto x^2 is compatible.

Aim: xH = yH \Rightarrow x^2H = y^2H

x^2H = xHx

x^2H = yHx

x^2H = yxH
```

Proposition

Let G be an abelian group. Then R(G) is not 1-affine complete, except if G is an elementary abelian 2-group.

Proof

```
x \mapsto x^2 is compatible.

Aim: xH = yH \Rightarrow x^2H = y^2H

x^2H = xHx

x^2H = yHx

x^2H = yxH

x^2H = y^2H
```

Proposition

```
x \mapsto x^{|G:Z(G)|} (transfer) is compatible R(G) is 1-affine complete \Rightarrow |G:Z(G)| is divisible by exp(G).
```

Proposition

 $x \mapsto x^{|G:Z(G)|}$ (transfer) is compatible R(G) is 1-affine complete $\Rightarrow |G:Z(G)|$ is divisible by exp(G).

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then R(G) is not 1-affine complete.

Expanding property

Theorem

Let $A, B \leq G$ such that $\langle A, B \rangle = G$. If R(A), R(B) are 1-affine complete, then exactly one of the following holds:

Expanding property

Theorem

Let $A, B \leq G$ such that $\langle A, B \rangle = G$. If R(A), R(B) are 1-affine complete, then exactly one of the following holds:

• R(G) is 1-affine complete

Expanding property

Theorem

Let $A, B \leq G$ such that $\langle A, B \rangle = G$. If R(A), R(B) are 1-affine complete, then exactly one of the following holds:

- R(G) is 1-affine complete
- $G = A \times B$ and gcd(|A|, |B|) = 1.

Definition

Let $C(G) := \langle H \leq G \mid R(H) \text{ is } 1 - \text{affine complete } \rangle$.

Definition

Let $C(G) := \langle H \leq G \mid R(H) \text{ is } 1 - \text{affine complete } \rangle$.

Properties of C(G)

Definition

Let $C(G) := \langle H \leq G \mid R(H) \text{ is } 1 - \text{affine complete } \rangle$.

Properties of C(G)

• C(G) char G

Definition

Let $C(G) := \langle H \leq G \mid R(H) \text{ is } 1 - \text{affine complete } \rangle$.

Properties of C(G)

- C(G) char G
- C(G) is the direct product of 1-affine complete maximal subgroups.

Theorem: Mayr, Horváth, Szabó, Pongrácz

Theorem: Mayr, Horváth, Szabó, Pongrácz

The regular G-set corresponding to the following groups are 1-affine complete:

nonabelian p-groups of exponent p

Theorem: Mayr, Horváth, Szabó, Pongrácz

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$

Theorem: Mayr, Horváth, Szabó, Pongrácz

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups

Theorem: Mayr, Horváth, Szabó, Pongrácz

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups

Theorem: Mayr, Horváth, Szabó, Pongrácz

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups
- Groups all of whose minimal normal subgroups are nonabelian

Theorem: Mayr, Horváth, Szabó, Pongrácz

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups
- Groups all of whose minimal normal subgroups are nonabelian
- GL(n, F) $(n \ge 2)$

Theorem: Mayr, Horváth, Szabó, Pongrácz

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups
- Groups all of whose minimal normal subgroups are nonabelian
- GL(n, F) $(n \ge 2)$
- G arbitrary: $G \times D_n$ with n = 2exp(G)

$$C(G)=1$$

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

C(G)=1

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

nonabelian p-groups of exponent p

C(G)=1

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$

$$C(G)=1$$

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups

C(G)=1

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups

Problems

$$C(G)=1$$

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups

Problems

• Describe 1-affine complete G-sets

$$C(G)=1$$

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups

Problems

- Describe 1-affine complete G-sets
- Describe groups without 1-affine complete subgroups, i.e.:

$$C(G)=1$$

If C(G) = 1, then |G| is odd (hence solvable) and does not contain subgroups isomorphic to:

- nonabelian p-groups of exponent p
- $Z_p \rtimes Z_q$ (nonabelian), $(Z_p)^n \rtimes Z_q$
- Frobenius groups, Zassenhaus groups

Problems

- Describe 1-affine complete G-sets
- Describe groups without 1-affine complete subgroups, i.e.:
- When is C(G) = 1?