Functionally Complete Algebras from the Computational Perspective

Gábor Horváth

Joint work with: Chrystopher L. Nehaniv, Csaba Szabó

6th September, 2009.

Functionally Complete Groups

- Theorem: *Maurer, Rhodes (1965)* For a finite group *G* the following are equivalent:
 - 1. G is a simple, non-Abelian group,
 - 2. G is functionally complete.
- A finite algebra \mathcal{A} is *functionally complete*, iff every $A^n \to A$ function can be represented as an \mathcal{A} -polynomial.

$$\begin{array}{c|c|c|c|c|c|c|c|c|} \mathsf{Ex.} & \underline{x \setminus y} & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 1 \end{array} \text{ over } \mathbb{Z}_2 \text{ is } \mathbf{x} \cdot \mathbf{y} + \mathbf{y} + \mathbf{1}. \end{array}$$

Motivation

• Theorem: Krohn, Maurer, Rhodes (1966)

A finite state machine based on G can compute any Boolean function f by some word $w \iff G$ is simple non-Abelian.

- proof was not algorithmic
- no bounds on ||w||

Finite state machine based on G

G is simple, nonabelian

generated by two elements g_0 and g_1 $0 \leftrightarrow g_0, \quad 1 \leftrightarrow g_1$

 $H \leq G$ is a maximal subgroup

States: right cosets $\{Hg : g \in G\}$

Initial state: H

Transitions: $Hg \xrightarrow{g_0} Hgg_0, Hg \xrightarrow{g_1} Hgg_1$

Output: States $\rightarrow \{0, 1\}$

Finite state machine based on A_5

- $G \simeq A_5, \qquad H = Stab_G(1) \simeq A_4$ $g_0 = (123), \qquad g = (245)$ Output: $\{1, 3, 5\} \rightarrow 1, \qquad g_1$

Finite state machine based on G

Theorem: Horváth, Nehaniv (2008)

- G is simple
- $f: \left\{0,1\right\}^n \rightarrow \left\{0,1\right\}$
- $\bullet \, \left| f^{-1} \left(1 \right) \right| = k$
- A finite automaton based on G can compute f by a word w $||w|| \leq c_1 (G) \cdot n^8 \cdot k.$

Finite state machine based on G

Theorem: Horváth, Nehaniv (2008)

- G is simple
- $f: \left\{0,1\right\}^n \rightarrow \left\{0,1\right\}$

•
$$\left|f^{-1}\left(1
ight)
ight|=k^{-1}=O\left(2^{n}
ight)$$

• A finite automaton based on G can compute f by a word w $||w|| \leq c_1 \, (G) \cdot n^8 \cdot k.$

Rem.: exists f s.t. for every w $||w|| \geq c_1'(G) \cdot 2^n / \log n.$

Finite state machine based on A_m

Theorem: Horváth, Nehaniv (2008)

- A_m is simple
- $f: \left\{0,1\right\}^n \rightarrow \left\{0,1\right\}$

•
$$\left|f^{-1}\left(1
ight)
ight|=k$$
 = $O\left(2^{n}
ight)$

• A finite automaton based on A_m can compute f by a word w $||w|| \leq c_2 \, (A_m) \cdot n^2 \cdot k.$

Rem.: exists f s.t. for every w $||w|| \geq c_2' \left(A_m\right) \cdot 2^n / \log n.$

Functions over groups

Cor.: Horváth, Nehaniv (2008)

- G is a simple group
- $f \colon G^n \to G$
- $ullet \left| f^{-1} \left(G \setminus 1
 ight)
 ight| = k$
- f can be realized by a word w over G $||w|| \leq c_3 \, (G) \cdot n^8 \cdot k.$
- w uses iterated commutators
- f can be realized by a word w over $(G, [\cdot, \cdot])$ $||w|| \leq c_4 \, (G) \cdot {\color{black} n} \cdot {\color{black} k}.$

Polynomials over groups

Theorem: Horváth, Nehaniv (2008)

Let G be a simple group. Let $p: G^n \to G$ an *n*-ary polynomial. Then there exists an *n*-ary polynomial $w: G^n \to G$, s.t.

$$egin{aligned} w(g_1,\ldots,g_n)&=p(g_1,\ldots,g_n),\ &||w||&\leq c_3\,(G)\cdot {n\!\!\!n}^8\cdot k. \end{aligned}$$

There exists an *n*-ary polynomial $w' \colon G^n \to G$ using commutators s.t.

$$w'(g_1,\ldots,g_n)=p(g_1,\ldots,g_n), \ ||w'||\leq c_4\,(G)\cdot oldsymbol{n}\cdotoldsymbol{k}.$$

Equivalence Problem

 ${\boldsymbol{\mathcal{A}}}$ finite algebra

- identity: two polynomials p_1, p_2 over \mathcal{A} . $p_1 \equiv p_2 \iff \begin{array}{l} \text{for every } a_1, \dots, a_n \in \mathcal{A} \\ p_1(a_1, \dots, a_n) = p_2(a_1, \dots, a_n) \end{array}$
- equivalence problem: (identity checking problem) Input: two polynomials p_1, p_2 over \mathcal{A} Question: is $p_1 \equiv p_2$ or not?
- What is the complexity? (P or coNP-complete)

Functionally complete algebras

• Theorem: Horváth, Nehaniv, Szabó (2008)

functionally complete algebra \implies coNP-complete equiv.