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Functionally Complete Groups

∙ Theorem: Maurer, Rhodes (1965)
For a finite group G the following are equivalent:

1. G is a simple, non-Abelian group,
2. G is functionally complete.

∙ A finite algebra 퓐 is functionally complete, iff
every An→ A function can be represented as an
퓐-polynomial.

Ex.
x∖y 0 1
0 1 0
1 1 1

over ℤ2 is x ⋅ y + y + 1.



Motivation

∙ Theorem: Krohn, Maurer, Rhodes (1966)
A finite state machine based on G can compute any Boolean
function f by some word w⇐⇒ G is simple non-Abelian.

∙ proof was not algorithmic

∙ no bounds on ∣∣w∣∣



Finite state machine based on G

G is simple, nonabelian

generated by two elements g0 and g1
0↔ g0, 1↔ g1

H ≤ G is a maximal subgroup

States: right cosets {Hg : g ∈ G}

Initial state: H

Transitions: Hg
g0−→ Hgg0, Hg

g1−→ Hgg1

Output: States→ {0, 1}



Finite state machine based on A5

G ≃ A5, H = StabG(1) ≃ A4

g0 = (123), g1 = (345)

Output:

{1, 3, 5} → 1,
{2, 4} → 0
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Finite state machine based on G

Theorem: Horváth, Nehaniv (2008)

∙ G is simple

∙ f : {0, 1}n→ {0, 1}

∙
∣∣f−1 (1)

∣∣ = k

∙ A finite automaton based on G can compute f by a word w

∣∣w∣∣ ≤ c1 (G) ⋅ n8 ⋅ k.



Finite state machine based on G

Theorem: Horváth, Nehaniv (2008)

∙ G is simple

∙ f : {0, 1}n→ {0, 1}

∙
∣∣f−1 (1)

∣∣ = k = O (2n)

∙ A finite automaton based on G can compute f by a word w

∣∣w∣∣ ≤ c1 (G) ⋅ n8 ⋅ k.

Rem.: exists f s.t. for every w

∣∣w∣∣ ≥ c′1 (G) ⋅ 2n/ logn.



Finite state machine based on Am

Theorem: Horváth, Nehaniv (2008)

∙ Am is simple

∙ f : {0, 1}n→ {0, 1}

∙
∣∣f−1 (1)

∣∣ = k = O (2n)

∙ A finite automaton based on Am can compute f by a word w

∣∣w∣∣ ≤ c2 (Am) ⋅ n2 ⋅ k.

Rem.: exists f s.t. for every w

∣∣w∣∣ ≥ c′2 (Am) ⋅ 2n/ logn.



Functions over groups

Cor.: Horváth, Nehaniv (2008)

∙ G is a simple group

∙ f : Gn→ G

∙
∣∣f−1 (G ∖ 1)

∣∣ = k

∙ f can be realized by a word w over G
∣∣w∣∣ ≤ c3 (G) ⋅ n8 ⋅ k.

∙ w uses iterated commutators

∙ f can be realized by a word w over (G, [⋅, ⋅])
∣∣w∣∣ ≤ c4 (G) ⋅ n ⋅ k.



Polynomials over groups

Theorem: Horváth, Nehaniv (2008)

Let G be a simple group. Let p : Gn→ G an n-ary polynomial.
Then there exists an n-ary polynomial w : Gn→ G, s.t.

w(g1, . . . , gn) = p(g1, . . . , gn),

∣∣w∣∣ ≤ c3 (G) ⋅ n8 ⋅ k.

There exists an n-ary polynomial w′ : Gn→ G using
commutators s.t.

w′(g1, . . . , gn) = p(g1, . . . , gn),

∣∣w′∣∣ ≤ c4 (G) ⋅ n ⋅ k.





Equivalence Problem

퓐 finite algebra

∙ identity: two polynomials p1, p2 over 퓐.

p1
?
≡ p2⇐⇒

for every a1, . . . , an ∈ 퓐
p1(a1, . . . , an) = p2(a1, . . . , an)

∙ equivalence problem: (identity checking problem)
Input: two polynomials p1, p2 over 퓐
Question: is p1 ≡ p2 or not?

∙ What is the complexity? (P or coNP-complete)



Functionally complete algebras

∙ Theorem: Horváth, Nehaniv, Szabó (2008)

functionally complete algebra =⇒ coNP-complete equiv.


