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Introduction

» In 2008 we (i.e. Klin and P.), using a computer, discovered
two new antipodal distance regular graphs on 108 and 135
vertices, respectively (with new parameters).

» After long efforts it became possible to embed the example
on 108 vertices to a potentially wide infinite class of
distance regular graphs.

» Also progress with the understanding of the example on
135 vertices was achieved.



Metric Decompositions of Graphs

Given:

» AgraphT,

» avertex u of I'.
Metric Decomposition:

» Cells of the metric partition of I' with respect to u are the
vertices on the same distance i from u.

» If the diameter d = d(I') of I is finite, we have d + 1 cells.

» We denote by Ii(u) the subgraph of I induced by the
vertices on distance i from u.



A connected regular graph I of valency k and diameter d is
called distance regular (briefly DRG) if for each vertex u the
metric partition

{{u}, Ta(u), -, Ta(u)}

is equitable with the set of intersection numbers which does not
depend on the selection of u.

Intersection diagram of a DRG



» A DRG of diameter d = 2 is called a strongly regular graph
(briefly SRG).

» A DRGI is called primitive if all distance i graphs T; for
1 <i < d are connected. Otherwise I is called imprimitive.

» Note that {x,y} isanedgeinT;ifand onlyifd(x,y) =1iin
the graph T.



Example 1

Metric decomposition of the Petersen graph and its intersection
diagram:




» An imprimitive DRG I of diameter d is called antipodal if its
distance graph Iy is disconnected.

» In this case Iy is a disjoint union of n copies of the
complete graph K;.

» The partition formed by the vertices of these n copies is
called the antipodal partition of I



Theorem (D.H.Smith, A.Gardiner)

An imprimitive DRG is bipartite or antipodal (here “or” is not
exclusive).

Example 3: the 3-dimensional cube Q3

Qs is bipartite and antipodal.



Example 3 (cont.)

Another glance onto Qs:

» Antipodal cells are “metavertices”.

» The quotient graph is K.

» Each edge of K4 is represented by 1-factor between two
metavertices.



» A graph T is called a cover of another graph A if there is a
surjection h : V(') — V(A) that maps edges of I to edges
of A which is locally an isomorphism.

» The function h is called a covering of A.

» Preimages of vertices from A are called the fibres of the
covering.



Each fibre induces an empty subgraph.

Between two fibres there are either no edges, or the edges
between the two fibres form a perfect matching.

For the covers of a connected graph all fibres have the
same sizer.

Let ker h be the equivalence relation defined by the fibres.
Clearly, I'/ ker h is isomorphic to A.



» If the cover I of the graph A is distance regular, then I is
called antipodal distance regular cover of A.

» Note that in this case A is also a DRG.



» From now on and onwards the complete graph will serve
as the quotient graph A.

» The antipodal distance regular covers in this case have
diameter d equal to 3.



Example 7: Line graph of the Petersen graph P

3-fold cover of Kg



Lemma

An antipodal r-fold cover of K, is antipodal distance regular if
and only if there exists a constant ¢, such that any two
non-adjacent vertices from different fibres of the cover have
exactly c, common neighbors.

Thus we will call an antipodal distance regular cover of K, an
(n,r,cy)-cover.



Main known infinite series

Construction Parameters Conditions

Mathon (g+1,r,c) q=1rc+1lisa
prime power

Bondy (n,n—2,1) Projective plane
of order n — 1 ex-
ists

Thas-Somma (9%,q,99°1) q is a prime
power

Brouwer

(st+1,s+1,t—1)

spread in pseudo

GQ

Godsil-Hensel (P?,p' %, p'*)  p is prime, 0 <
k <i

de Caen-Mathon- (22,221 2)

Moorhouse

de Caen-Fon Der (q9+1,q9,q) q=2"

Flaass



» Let I be a connected antipodal distance regular cover of
K, with index r.

» G = Aut(IN).

» Let us consider the subgroup T < G which stabilizes each
of the fibres of I (that is, T preserves each fibre as a set).

Lemma
Every element o € T, ¢ # e is fixed point free.



Corollary

> [Tl<r,
» T acts semiregularly on the fibres.

If the group T has order r and thus acts regularly on each fibre,
then we say that I' is a regular cover.

If in addition T is abelian or cyclic, then I is called abelian or
cyclic cover, respectively.

The group T will be called the voltage group.



Godsil-Hensel matrices

“Matrix-representation of symmetric arc functions”:

Let T be a voltage group, A = (a; j) be a square matrix of order
n, where

> qj € T,
» T =T U {0}, where 0 is an additional element distinct from
any element of T.
A will be called a formal matrix over T.

We call A = (a; ;) a covering matrix if
» ajj = (a,) *foralli,j € {1,...,n},
» a; =0foralli € {1,...,n},



Godsil-Hensel matrices (cont.)

We associate to the covering matrix A two graphs:
» the underlying graph A = A with the vertex set

V(Ap) ={1,2,...,n},
and the edge set
E(Aa) ={{i.i} | aij # 0};
» the cover of I = ' with the vertex set
V(M) ={1,2,...,n} x T,
and the edge set

E(M) = {{(i,9),G,h)} | aij # 0,9 -aj = h}.



Godsil-Hensel matrices (cont.)

It is easy to observe that the function
h: V(') — V(An) defined as (i,g) — i
is a covering function, thus the graph ' is a cover of the graph

Anp.

Moreover, each regular cover of Ap (up to isomorphism) with
the voltage group T can be obtained in this way.

If I is an antipodal distance regular cover of Aa, then we call
A the Godsil-Hensel matrix of this cover (briefly GH-matrix).



Theorem (Godsil-Hensel, 1992)

Let T be a voltage group and let A be a covering matrix of order
noverT.

Then A is a GH-matrix of a regular antipodal (n,r, c,)-cover of
K, with the voltage group T if and only if

A% =(n— 1)l +6A+cT(J 1), (*)

where 6 =n — 2 —rc,.

(Here | and J are natural modifications of classical notations to
formal matrices. Moreover, matrix multiplication is performed in
the matrix-ring over the group-ring of T, and T denotes the sum
of all elements of T in the group-ring of T.)
The class of all such matrices which satisfy (x) will be denoted
by

GHM(T,n,r,cp).



We extend the concept of a conjugate transpose matrix A* onto
formal matrices.

Definition
Let T be a finite group, and let A = (& j) be a formal matrix of
order n over T such that A does not contain the entry 0.
Then we call A a generalized Hadamard matrix if for c = n/|1|
we have:

AA* =A"A=nl+cT(J-1).

We denote by gH(T, n) the set of all gH-matrices of order n
over T.



Lemma

Let T be a finite group and let A be a covering matrix over T
with Ap = K,,. Then the graph ' is a regular (n,r, c,)-cover if
and only if

(A+1)? =nl+(n—rc)A+c,T(J —1).
Proof.

(A+1)2 =A% L 2A+1
=n—-1l+(n—-2—-rc))A+cT (I —1)+2A+1
=nl+(n—rcy)A+cT(J —1).

This slight modification turns out to be helpful for the case
0 = —2 (thatisn —rc, = 0).



Corollary

Let T be a finite group with neutral element e and let A be a
covering matrix over T with Ay = Kp.

Then the graph ' is a regular (n,r, c,) cover with § = —2 if and
only if A+ | is a self-adjoint gH(T, n)-matrix (note that this
generalized Hadamard matrix has everywhere on its diagonal
the element e).



Remarks

(1) Itis convenient to call self-adjoint gH-matrices with identity
diagonal skew gH-matrices.

(2) If T is a cyclic group of order 2, then we obtain the
equivalence of distance regular double covers of K, to
regular two-graphs and in turn to classical skew Hadamard
matrices.



The following construction leads to new infinite series of DRGs.

Theorem

Let T be a finite group, let H = (h; ;) be any gH(T,n). Let
¥ :{1,2,...,n}?> = {1,2,...,n?} be any bijection.
Define

Ru = (Vgijye k1))
according to
gy = D i

Then Ry is a skew gH(T, n?).



Corollary
If there exists a gH(T, n) over a finite group T, then for all
t € N\ {0} there exists a skew gH(T,n2").

Therefore, starting from any gH(T, n)-matrix we obtain an
infinite series of regular covers of complete graphs.



» Consider the following gH-matrix A of order 6 over Zs:

O3 03 03 O3
03 03 13 -—13
03 13 03 13
03 —-13 13 O3
03 -1z —13 13
03 13 -13 13

03 O3
-13 13
—13 —13

1; 13

03 13

13 O3

» Consider, for example, the function v : (i, ]



Get a skew gH-matrix B of order 36:

0000000000O00O00O00O00O0O0O0O0O0O0OO0OO0OO0OO0OO0OOOOOOOOOOOO0O
oooo0o0000O0OO0OO0OO0O1T1I1211111-1-1-1-1-1-1-1-1-1-1-1 111111

coo0o0000111111200000011121111-1-1-2-1-1-1-1-1-1-1-1-1

cooo0000-1-1-1-1-2-12111111000000111111-1-1-1-1-1-1

cooo0000-1-1-1-2-2-1-1-1-1-1-1-1111111000000111111

coo0o000011112111-2-1-1-2-1-1-1-1-1-1-1-1 111111000000
00-111-100-111-1200-111-1200-1211-200-111-100-11 1-1

00-111-100-111-1110-1-10-1-11001-1-11001110-1-10

00-111-1110-1-2000-1211-12110-1-10-1-11001-1-11001
00-111-1-1-11001110-1-1000-111-1110-1-10-1-11001
00-111-1-1-11001-12-11001110-1-1000-111-1110-1-10
00-111-1110-1-10-1-11001-1-11001110-1-1000-11 1-1
0-10-1110-10-1110-10-1110-120-1110-10-1110-10-111

0-10-1110-10-121111010-1-1-11-1100-11-11001010-1-1

0-10-12111010-1-10-10-12111010-1-1-11-1100-11-1100
0-10-111-11-110010101-10-10-1111010-1-1-11-1100

0o-10-1111010-1-12-11-1100-11-11001010-1-10-10-111
01-10-1101-10-1101-10-1101-120-1101-10-1101-10-11
01-10-1101-10-111-1010-1-101-110-101-1101-1010-1

01-10-111-1010-101-10-111-1010-1-101-110-101-110

01-10-11-101-1101-1010-101-10-111-1010-1-101-110

01-10-11-101-110-1201-12101-1010-101-10-111-1010-1
01-10-111-1010-1-1201-110-101-1101-1010-101-10-11
011-10-12011-20-12011-20-12011-10-12011-10-1011-10-1
011-10-2011-120-11-1-1010-1001-11-1001-111-1-1010
011-10-11-1-1010011-120-11-1-1010-1001-11-100 1-11

011-10-1-12001-111-1-1010011-10-11-1-1010-1001-11
011-10-1-12001-11-12001-111-1-12010011-10-11-1-1010

011-10-11-1-1010-1001-11-1001-111-1-1201001 1-10-1

0-111-100-111-1200-111-1200-111-100-111-100-111-10
0-111-100-111-1010-12-1201-11001-1-11001-110-1-101
0-111-10101-2010-111-1010-1-101-11001-1-1100 1-1
0-111-10-11001-1101-12010-111-1010-1-101-1100 1-1
0-111-10-110011-11001-110-1-1010-111-1010-1-101
0-111-1010-1-101-121001-1-121001-110-1-1010-111-10




v

v

v

v

Matrix B is a skew gH(Zs, 36).
Hence B — | is a GHM(Z3s, 36, 3,12),
We obtain a regular (36, 3, 12)-cover.

To the best of our knowledge, the series of DRGs on 3 - 62
vertices is new.



# | parameters of H | parameters of Ry | (n,r,cy) of TRH [ [V (TRH))]
1 | gH(E 2) gH(E>, 4) (4,2,2) 8
2 | gH(Es, 3) gH(Es, 9) (9,3,3) 27
3 | gH(E4,4) gH(Eg, 16) (16,4,4) 64
4 | gH(Ez, 4) gH(E>, 16) (16,2.8) 32
5 | gH(Es,5) gH(Es, 25) (25,5,5) 125
6 | gH(Es,6) 9H(E3, 36) (36,3,12) 108
7 | gH(E7,7) gH(E, 49) (49,7,7) 343
8 | gH(Es, 8) gH(Es, 64) (64,8,8) 512
9 | gH(E4,8) gH(Ey, 64) (64, 4,16) 256
10 | gH(E,, 8) gH(E>, 64) (64,2,32) 128
11 | gH(Es, 9) gH(Eq, 81) (81,9,9) 729
12 | gH(Es, 9) gH(Es, 81) (81,3,27) 243
13 | gH(Es, 10) gH(Es, 100) (100, 5, 20) 500
14 | gH(E11, 11) gH(Eq1, 121) (121,11,11) | 1331
15 | gH(Es, 12) gH(Es, 144) (144, 3,48) 432
16 | gH(Es, 12) gH(E;, 144) (144, 4, 36) 576
17 | gH(E, 12) gH(E,, 144) (144,2,72) 288

Table: Small regular covers obtained from our construction
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