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Introduction

▶ In 2008 we (i.e. Klin and P.), using a computer, discovered
two new antipodal distance regular graphs on 108 and 135
vertices, respectively (with new parameters).

▶ After long efforts it became possible to embed the example
on 108 vertices to a potentially wide infinite class of
distance regular graphs.

▶ Also progress with the understanding of the example on
135 vertices was achieved.



Metric Decompositions of Graphs

Given:
▶ A graph Γ,
▶ a vertex u of Γ.

Metric Decomposition:
▶ Cells of the metric partition of Γ with respect to u are the

vertices on the same distance i from u.
▶ If the diameter d = d(Γ) of Γ is finite, we have d + 1 cells.
▶ We denote by Γi(u) the subgraph of Γ induced by the

vertices on distance i from u.



A connected regular graph Γ of valency k and diameter d is
called distance regular (briefly DRG) if for each vertex u the
metric partition

{{u}, Γ1(u), . . . , Γd(u)}

is equitable with the set of intersection numbers which does not
depend on the selection of u.

u Γ1(u)

a1

Γ2(u)

a2

Γd(u)

ad

k 1 b1 c2 b2 cd

Intersection diagram of a DRG



▶ A DRG of diameter d = 2 is called a strongly regular graph
(briefly SRG).

▶ A DRG Γ is called primitive if all distance i graphs Γi for
1 ≤ i ≤ d are connected. Otherwise Γ is called imprimitive.

▶ Note that {x , y} is an edge in Γi if and only if d(x , y) = i in
the graph Γ.
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Metric decomposition of the Petersen graph and its intersection
diagram:
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▶ An imprimitive DRG Γ of diameter d is called antipodal if its
distance graph Γd is disconnected.

▶ In this case Γd is a disjoint union of n copies of the
complete graph Kr .

▶ The partition formed by the vertices of these n copies is
called the antipodal partition of Γ.



Theorem (D.H.Smith, A.Gardiner)
An imprimitive DRG is bipartite or antipodal (here “or” is not
exclusive).

Example 3: the 3-dimensional cube Q3
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Q3 is bipartite and antipodal.



Example 3 (cont.)
Another glance onto Q3:

5 6

21

3 4

87

▶ Antipodal cells are “metavertices”.
▶ The quotient graph is K4.
▶ Each edge of K4 is represented by 1-factor between two

metavertices.



▶ A graph Γ is called a cover of another graph Δ if there is a
surjection h : V (Γ) → V (Δ) that maps edges of Γ to edges
of Δ which is locally an isomorphism.

▶ The function h is called a covering of Δ.
▶ Preimages of vertices from Δ are called the fibres of the

covering.



▶ Each fibre induces an empty subgraph.
▶ Between two fibres there are either no edges, or the edges

between the two fibres form a perfect matching.
▶ For the covers of a connected graph all fibres have the

same size r .
▶ Let ker h be the equivalence relation defined by the fibres.
▶ Clearly, Γ/ ker h is isomorphic to Δ.



▶ If the cover Γ of the graph Δ is distance regular, then Γ is
called antipodal distance regular cover of Δ.

▶ Note that in this case Δ is also a DRG.



▶ From now on and onwards the complete graph will serve
as the quotient graph Δ.

▶ The antipodal distance regular covers in this case have
diameter d equal to 3.



Example 7: Line graph of the Petersen graph P
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3-fold cover of K5



Lemma
An antipodal r -fold cover of Kn is antipodal distance regular if
and only if there exists a constant c2 such that any two
non-adjacent vertices from different fibres of the cover have
exactly c2 common neighbors.

Thus we will call an antipodal distance regular cover of Kn an
(n, r , c2)-cover.



Main known infinite series

Construction Parameters Conditions
Mathon (q + 1, r , c) q = rc + 1 is a

prime power
Bondy (n, n − 2, 1) Projective plane

of order n − 1 ex-
ists

Thas-Somma (q2j , q, q2j−1) q is a prime
power

Brouwer (st + 1, s + 1, t − 1) spread in pseudo
GQ

Godsil-Hensel (p2i , pi−k , pi+k ) p is prime, 0 ≤
k < i

de Caen-Mathon-
Moorhouse

(22t , 22t−1, 2)

de Caen-Fon Der
Flaass

(qd+1, qd , q) q = 2t



▶ Let Γ be a connected antipodal distance regular cover of
Kn with index r .

▶ G = Aut(Γ).
▶ Let us consider the subgroup T ≤ G which stabilizes each

of the fibres of Γ (that is, T preserves each fibre as a set).

Lemma
Every element � ∈ T , � ∕= e is fixed point free.



Corollary

▶ ∣T ∣ ≤ r ,
▶ T acts semiregularly on the fibres.

If the group T has order r and thus acts regularly on each fibre,
then we say that Γ is a regular cover.

If in addition T is abelian or cyclic, then Γ is called abelian or
cyclic cover, respectively.

The group T will be called the voltage group.



Godsil-Hensel matrices

“Matrix-representation of symmetric arc functions”:
Let T be a voltage group, A = (ai,j) be a square matrix of order
n, where

▶ ai,j ∈ T ,

▶ T = T ∪ {0}, where 0 is an additional element distinct from
any element of T .

A will be called a formal matrix over T .

We call A = (ai,j) a covering matrix if
▶ ai,j = (aj,i)

−1 for all i , j ∈ {1, . . . , n},
▶ ai,i = 0 for all i ∈ {1, . . . , n},



Godsil-Hensel matrices (cont.)

We associate to the covering matrix A two graphs:
▶ the underlying graph Δ = ΔA with the vertex set

V (ΔA) = {1, 2, . . . , n},

and the edge set

E(ΔA) = {{i , j} ∣ ai,j ∕= 0};

▶ the cover of Γ = ΓA with the vertex set

V (ΓA) = {1, 2, . . . , n} × T ,

and the edge set

E(ΓA) = {{(i , g), (j , h)} ∣ ai,j ∕= 0, g ⋅ ai,j = h}.



Godsil-Hensel matrices (cont.)

It is easy to observe that the function

h : V (ΓA) → V (ΔA) defined as (i , g) 7→ i

is a covering function, thus the graph ΓA is a cover of the graph
ΔA.

Moreover, each regular cover of ΔA (up to isomorphism) with
the voltage group T can be obtained in this way.

If ΓA is an antipodal distance regular cover of ΔA, then we call
A the Godsil-Hensel matrix of this cover (briefly GH-matrix).



Theorem (Godsil-Hensel, 1992)
Let T be a voltage group and let A be a covering matrix of order
n over T .
Then A is a GH-matrix of a regular antipodal (n, r , c2)-cover of
Kn with the voltage group T if and only if

A2 = (n − 1)I + �A + c2T (J − I), (*)

where � = n − 2 − rc2.

(Here I and J are natural modifications of classical notations to
formal matrices. Moreover, matrix multiplication is performed in
the matrix-ring over the group-ring of T , and T denotes the sum
of all elements of T in the group-ring of T .)
The class of all such matrices which satisfy (∗) will be denoted
by

GHM(T , n, r , c2).



We extend the concept of a conjugate transpose matrix A∗ onto
formal matrices.

Definition
Let T be a finite group, and let A = (ai,j) be a formal matrix of
order n over T such that A does not contain the entry 0.
Then we call A a generalized Hadamard matrix if for c = n/∣T ∣

we have:
AA∗ = A∗A = nI + cT (J − I).

We denote by gH(T , n) the set of all gH-matrices of order n
over T .



Lemma
Let T be a finite group and let A be a covering matrix over T
with ΔA = Kn. Then the graph ΓA is a regular (n, r , c2)-cover if
and only if

(A + I)2 = nI + (n − rc2)A + c2T (J − I).

Proof.

(A + I)2 = A2 + 2A + I

= (n − 1)I + (n − 2 − rc2)A + c2T (J − I) + 2A + I

= nI + (n − rc2)A + c2T (J − I).

This slight modification turns out to be helpful for the case
� = −2 (that is n − rc2 = 0).



Corollary
Let T be a finite group with neutral element e and let A be a
covering matrix over T with ΔA = Kn.
Then the graph ΓA is a regular (n, r , c2) cover with � = −2 if and
only if A + I is a self-adjoint gH(T , n)-matrix (note that this
generalized Hadamard matrix has everywhere on its diagonal
the element e).



Remarks

(1) It is convenient to call self-adjoint gH-matrices with identity
diagonal skew gH-matrices.

(2) If T is a cyclic group of order 2, then we obtain the
equivalence of distance regular double covers of Kn to
regular two-graphs and in turn to classical skew Hadamard
matrices.



The following construction leads to new infinite series of DRGs.

Theorem
Let T be a finite group, let H = (hi,j) be any gH(T , n). Let
 : {1, 2, . . . , n}2 → {1, 2, . . . , n2} be any bijection.
Define

RH = (r(i,j) ,(k ,l) )

according to
r(i,j) ,(k ,l) = hk ,j ⋅ h−1

i,l .

Then RH is a skew gH(T , n2).



Corollary
If there exists a gH(T , n) over a finite group T , then for all
t ∈ ℕ ∖ {0} there exists a skew gH(T , n2t

).

Therefore, starting from any gH(T , n)-matrix we obtain an
infinite series of regular covers of complete graphs.



▶ Consider the following gH-matrix A of order 6 over ℤ3:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

03 03 03 03 03 03

03 03 13 −13 −13 13

03 13 03 13 −13 −13

03 −13 13 03 13 −13

03 −13 −13 13 03 13

03 13 −13 −13 13 03

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

▶ Consider, for example, the function  : (i , j) 7→ 6(i − 1) + j



Get a skew gH-matrix B of order 36:

B =

⎛
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1−1−1−1−1−1−1
0 0 0 0 0 0−1−1−1−1−1−1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1
0 0 0 0 0 0−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 0 0 0 0 0 0
0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1
0 0−1 1 1−1 0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1−1−1 1 0 0 1 1 1 0−1−1 0
0 0−1 1 1−1 1 1 0−1−1 0 0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1−1−1 1 0 0 1
0 0−1 1 1−1−1−1 1 0 0 1 1 1 0−1−1 0 0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1
0 0−1 1 1−1−1−1 1 0 0 1−1−1 1 0 0 1 1 1 0−1−1 0 0 0−1 1 1−1 1 1 0−1−1 0
0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1−1−1 1 0 0 1 1 1 0−1−1 0 0 0−1 1 1−1
0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1
0−1 0−1 1 1 0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0−1 1−1 1 0 0 1 0 1 0−1−1
0−1 0−1 1 1 1 0 1 0−1−1 0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0−1 1−1 1 0 0
0−1 0−1 1 1−1 1−1 1 0 0 1 0 1 0−1−1 0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0
0−1 0−1 1 1−1 1−1 1 0 0−1 1−1 1 0 0 1 0 1 0−1−1 0−1 0−1 1 1 1 0 1 0−1−1
0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0−1 1−1 1 0 0 1 0 1 0−1−1 0−1 0−1 1 1
0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1
0 1−1 0−1 1 0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0−1 0 1−1 1 0 1−1 0 1 0−1
0 1−1 0−1 1 1−1 0 1 0−1 0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0−1 0 1−1 1 0
0 1−1 0−1 1−1 0 1−1 1 0 1−1 0 1 0−1 0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0
0 1−1 0−1 1−1 0 1−1 1 0−1 0 1−1 1 0 1−1 0 1 0−1 0 1−1 0−1 1 1−1 0 1 0−1
0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0−1 0 1−1 1 0 1−1 0 1 0−1 0 1−1 0−1 1
0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1
0 1 1−1 0−1 0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1−1 0 0 1−1 1 1−1−1 0 1 0
0 1 1−1 0−1 1−1−1 0 1 0 0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1−1 0 0 1−1 1
0 1 1−1 0−1−1 0 0 1−1 1 1−1−1 0 1 0 0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1
0 1 1−1 0−1−1 0 0 1−1 1−1 0 0 1−1 1 1−1−1 0 1 0 0 1 1−1 0−1 1−1−1 0 1 0
0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1−1 0 0 1−1 1 1−1−1 0 1 0 0 1 1−1 0−1
0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0
0−1 1 1−1 0 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1−1 1 0 0 1−1 1 0−1−1 0 1
0−1 1 1−1 0 1 0−1−1 0 1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1−1 1 0 0 1−1
0−1 1 1−1 0−1 1 0 0 1−1 1 0−1−1 0 1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1
0−1 1 1−1 0−1 1 0 0 1−1−1 1 0 0 1−1 1 0−1−1 0 1 0−1 1 1−1 0 1 0−1−1 0 1
0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1−1 1 0 0 1−1 1 0−1−1 0 1 0−1 1 1−1 0
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▶ Matrix B is a skew gH(ℤ3, 36).
▶ Hence B − I is a GHM(ℤ3, 36, 3, 12),
▶ We obtain a regular (36, 3, 12)-cover.

▶ To the best of our knowledge, the series of DRGs on 3 ⋅ 62k

vertices is new.



# parameters of H parameters of RH (n, r , c2) of ΓRH ∣V (ΓRH )∣

1 gH(E2, 2) gH(E2, 4) (4, 2, 2) 8
2 gH(E3, 3) gH(E3, 9) (9, 3, 3) 27
3 gH(E4, 4) gH(E4, 16) (16, 4, 4) 64
4 gH(E2, 4) gH(E2, 16) (16, 2, 8) 32
5 gH(E5, 5) gH(E5, 25) (25, 5, 5) 125
6 gH(E3, 6) gH(E3, 36) (36, 3, 12) 108
7 gH(E7, 7) gH(E7, 49) (49, 7, 7) 343
8 gH(E8, 8) gH(E8, 64) (64, 8, 8) 512
9 gH(E4, 8) gH(E4, 64) (64, 4, 16) 256

10 gH(E2, 8) gH(E2, 64) (64, 2, 32) 128
11 gH(E9, 9) gH(E9, 81) (81, 9, 9) 729
12 gH(E3, 9) gH(E3, 81) (81, 3, 27) 243
13 gH(E5, 10) gH(E5, 100) (100, 5, 20) 500
14 gH(E11, 11) gH(E11, 121) (121, 11, 11) 1331
15 gH(E3, 12) gH(E3, 144) (144, 3, 48) 432
16 gH(E4, 12) gH(E4, 144) (144, 4, 36) 576
17 gH(E2, 12) gH(E2, 144) (144, 2, 72) 288

Table: Small regular covers obtained from our construction
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