A new family of distance regular covers of complete graphs SSAOS'09

M. Klin¹ Ch. Pech²

¹Ben-Gurion University of the Negev, Beer-Sheva, Israel ²Johannes Kepler University Linz, Linz, Austria

September 2009

Introduction

- In 2008 we (i.e. Klin and P.), using a computer, discovered two new antipodal distance regular graphs on 108 and 135 vertices, respectively (with new parameters).
- After long efforts it became possible to embed the example on 108 vertices to a potentially wide infinite class of distance regular graphs.
- Also progress with the understanding of the example on 135 vertices was achieved.

Metric Decompositions of Graphs

Given:

- A graph Г,
- a vertex u of Γ.

Metric Decomposition:

- Cells of the metric partition of Γ with respect to u are the vertices on the same distance i from u.
- ▶ If the diameter $d = d(\Gamma)$ of Γ is finite, we have d + 1 cells.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

We denote by Γ_i(u) the subgraph of Γ induced by the vertices on distance *i* from u.

A connected regular graph Γ of valency k and diameter d is called distance regular (briefly DRG) if for each vertex u the metric partition

$$[\{u\}, \Gamma_1(u), \ldots, \Gamma_d(u)\}$$

is equitable with the set of intersection numbers which does not depend on the selection of u.

Intersection diagram of a DRG

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- A DRG of diameter d = 2 is called a strongly regular graph (briefly SRG).
- A DRG Γ is called primitive if all distance *i* graphs Γ_i for 1 ≤ *i* ≤ *d* are connected. Otherwise Γ is called imprimitive.
- Note that {x, y} is an edge in Γ_i if and only if d(x, y) = i in the graph Γ.

Example 1

Metric decomposition of the Petersen graph and its intersection diagram:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- An imprimitive DRG Γ of diameter *d* is called antipodal if its distance graph Γ_d is disconnected.
- In this case Γ_d is a disjoint union of n copies of the complete graph K_r.
- The partition formed by the vertices of these n copies is called the antipodal partition of Γ.

Theorem (D.H.Smith, A.Gardiner)

An imprimitive DRG is bipartite or antipodal (here "or" is not exclusive).

Example 3: the 3-dimensional cube Q₃

 Q_3 is bipartite and antipodal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Example 3 (cont.)

Another glance onto Q_3 :

- Antipodal cells are "metavertices".
- The quotient graph is K_4 .
- Each edge of K₄ is represented by 1-factor between two metavertices.

- A graph Γ is called a cover of another graph Δ if there is a surjection h : V(Γ) → V(Δ) that maps edges of Γ to edges of Δ which is locally an isomorphism.
- The function *h* is called a covering of Δ .
- ► Preimages of vertices from △ are called the fibres of the covering.

- Each fibre induces an empty subgraph.
- Between two fibres there are either no edges, or the edges between the two fibres form a perfect matching.
- ► For the covers of a connected graph all fibres have the same size *r*.
- Let ker *h* be the equivalence relation defined by the fibres.

• Clearly, Γ / ker *h* is isomorphic to Δ .

 If the cover Γ of the graph Δ is distance regular, then Γ is called antipodal distance regular cover of Δ.

Note that in this case ∆ is also a DRG.

- From now on and onwards the complete graph will serve as the quotient graph Δ.
- The antipodal distance regular covers in this case have diameter d equal to 3.

Example 7: Line graph of the Petersen graph P

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Lemma

An antipodal r-fold cover of K_n is antipodal distance regular if and only if there exists a constant c_2 such that any two non-adjacent vertices from different fibres of the cover have exactly c_2 common neighbors.

Thus we will call an antipodal distance regular cover of K_n an (n, r, c_2) -cover.

Main known infinite series

Construction	Parameters	Conditions
Mathon	(q+1, r, c)	q = rc + 1 is a
		prime power
Bondy	(<i>n</i> , <i>n</i> – 2, 1)	Projective plane
		of order $n-1$ ex-
		ists
Thas-Somma	(q^{2j}, q, q^{2j-1})	q is a prime
		power
Brouwer	(st+1, s+1, t-1)	spread in pseudo
		GQ
Godsil-Hensel	$(p^{2i}, p^{i-k}, p^{i+k})$	<i>p</i> is prime, $0 \leq$
		<i>k</i> < <i>i</i>
de Caen-Mathon-	$(2^{2t}, 2^{2t-1}, 2)$	
Moorhouse		
de Caen-Fon Der	(q^{d+1},q^d,q)	$q = 2^t$
Flaass		
		<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回> <回

- Let Γ be a connected antipodal distance regular cover of K_n with index r.
- $G = \operatorname{Aut}(\Gamma)$.
- Let us consider the subgroup T ≤ G which stabilizes each of the fibres of Γ (that is, T preserves each fibre as a set).

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ つ へ つ ・

Lemma

Every element $\sigma \in T$, $\sigma \neq e$ is fixed point free.

Corollary

- ► $|T| \leq r$,
- T acts semiregularly on the fibres.

If the group T has order r and thus acts regularly on each fibre, then we say that Γ is a regular cover.

If in addition T is abelian or cyclic, then Γ is called abelian or cyclic cover, respectively.

The group *T* will be called the voltage group.

Godsil-Hensel matrices

"Matrix-representation of symmetric arc functions":

Let *T* be a voltage group, $A = (a_{i,j})$ be a square matrix of order *n*, where

- ► *a_{i,j}* ∈ *T*,
- ▶ $\overline{T} = T \cup \{0\}$, where 0 is an additional element distinct from any element of *T*.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ つ へ つ ・

A will be called a formal matrix over T.

We call $A = (a_{i,j})$ a covering matrix if

•
$$a_{i,j} = (a_{j,i})^{-1}$$
 for all $i, j \in \{1, ..., n\}$,

•
$$a_{i,i} = 0$$
 for all $i \in \{1, ..., n\}$,

Godsil-Hensel matrices (cont.)

We associate to the covering matrix A two graphs:

• the underlying graph $\Delta = \Delta_A$ with the vertex set

$$V(\Delta_A) = \{1, 2, \ldots, n\},\$$

and the edge set

$$E(\Delta_{\mathcal{A}}) = \{\{i, j\} \mid a_{i,j} \neq 0\};\$$

• the cover of $\Gamma = \Gamma^A$ with the vertex set

$$V(\Gamma^{\mathcal{A}}) = \{1, 2, \ldots, n\} \times T,$$

and the edge set

$$E(\Gamma^{A}) = \{\{(i,g), (j,h)\} \mid a_{i,j} \neq 0, g \cdot a_{i,j} = h\}.$$

Godsil-Hensel matrices (cont.)

It is easy to observe that the function

$$h: V(\Gamma^{\mathcal{A}}) \rightarrow V(\Delta_{\mathcal{A}})$$
 defined as $(i,g) \mapsto i$

is a covering function, thus the graph Γ^A is a cover of the graph Δ_A .

Moreover, each regular cover of Δ_A (up to isomorphism) with the voltage group T can be obtained in this way.

If Γ^A is an antipodal distance regular cover of Δ_A , then we call *A* the Godsil-Hensel matrix of this cover (briefly GH-matrix).

Theorem (Godsil-Hensel, 1992)

Let T be a voltage group and let A be a covering matrix of order n over T.

Then A is a GH-matrix of a regular antipodal (n, r, c_2) -cover of K_n with the voltage group T if and only if

$$A^{2} = (n-1)I + \delta A + c_{2}\underline{T}(J-I), \qquad (*)$$

where $\delta = n - 2 - rc_2$.

(Here *I* and *J* are natural modifications of classical notations to formal matrices. Moreover, matrix multiplication is performed in the matrix-ring over the group-ring of *T*, and <u>*T*</u> denotes the sum of all elements of *T* in the group-ring of *T*.)

The class of all such matrices which satisfy (*) will be denoted by

$$\mathsf{GHM}(T, n, r, c_2).$$

We extend the concept of a conjugate transpose matrix A^* onto formal matrices.

Definition

Let *T* be a finite group, and let $A = (a_{i,j})$ be a formal matrix of order *n* over *T* such that *A* does not contain the entry 0. Then we call *A* a generalized Hadamard matrix if for $c = n/|\tau|$ we have:

$$AA^* = A^*A = nI + c\underline{T}(J - I).$$

We denote by gH(T, n) the set of all gH-matrices of order n over T.

Lemma

Let T be a finite group and let A be a covering matrix over T with $\Delta_A = K_n$. Then the graph Γ^A is a regular (n, r, c_2) -cover if and only if

$$(A + I)^2 = nI + (n - rc_2)A + c_2 T(J - I).$$

Proof.

$$(A + I)^{2} = A^{2} + 2A + I$$

= $(n - 1)I + (n - 2 - rc_{2})A + c_{2}\underline{T}(J - I) + 2A + I$
= $nI + (n - rc_{2})A + c_{2}\underline{T}(J - I).$

This slight modification turns out to be helpful for the case $\delta = -2$ (that is $n - rc_2 = 0$).

Corollary

Let T be a finite group with neutral element e and let A be a covering matrix over T with $\Delta_A = K_n$. Then the graph Γ^A is a regular (n, r, c_2) cover with $\delta = -2$ if and only if A + I is a self-adjoint gH(T, n)-matrix (note that this generalized Hadamard matrix has everywhere on its diagonal the element e).

Remarks

- It is convenient to call self-adjoint gH-matrices with identity diagonal skew gH-matrices.
- (2) If *T* is a cyclic group of order 2, then we obtain the equivalence of distance regular double covers of *K_n* to regular two-graphs and in turn to classical skew Hadamard matrices.

The following construction leads to new infinite series of DRGs.

Theorem Let *T* be a finite group, let $H = (h_{i,j})$ be any gH(*T*, *n*). Let $\psi : \{1, 2, ..., n\}^2 \rightarrow \{1, 2, ..., n^2\}$ be any bijection. Define

$$\mathsf{R}_{\mathsf{H}} = (\mathsf{r}_{(i,j)^{\psi},(\mathsf{k},\mathsf{l})^{\psi}})$$

according to

$$r_{(i,j)^{\psi},(k,l)^{\psi}} = h_{k,j} \cdot h_{i,l}^{-1}.$$

Then R_H is a skew gH(T, n^2).

Corollary

If there exists a gH(*T*, *n*) over a finite group *T*, then for all $t \in \mathbb{N} \setminus \{0\}$ there exists a skew gH(*T*, n^{2^t}).

Therefore, starting from any gH(T, n)-matrix we obtain an infinite series of regular covers of complete graphs.

► Consider the following gH-matrix A of order 6 over Z₃:

$$A = \begin{pmatrix} 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 \\ 0_3 & 0_3 & 1_3 & -1_3 & -1_3 & 1_3 \\ 0_3 & 1_3 & 0_3 & 1_3 & -1_3 & -1_3 \\ 0_3 & -1_3 & 1_3 & 0_3 & 1_3 & -1_3 \\ 0_3 & 1_3 & -1_3 & 1_3 & 0_3 & 1_3 \\ 0_3 & 1_3 & -1_3 & -1_3 & 1_3 & 0_3 \end{pmatrix}$$

▶ Consider, for example, the function ψ : $(i, j) \mapsto 6(i - 1) + j$

・ロト・日本・モート モー シック

Get a skew gH-matrix B of order 36:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ -1 - 1 - 1 - 1 - 1$ - 1 1 1 1 1 100000 0 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1 - 10 0 - 11 1-1 0 0-1 1 1-1 0 0-1 1 1-1 1 1 0-1-1 0-1-1 1 0 0 1-1-1 1 0 0 0 - 1 - 1 00 0-1 1 1-1 1 1 0-1-1 0 0 0-1 1 1-1 1 1 0-1-1 0-1-1 1 0 0 1 - 1 - 11 0 0 1 0 0-1 1 1-1-1-1 1 0 0 1 1 1 0-1-1 0 0 0-1 1 1-1 1 1 0-1-1 0 0 1 0 0-1 1 1-1-1 1 0 0 1-1-1 1 0 0 1 1 1 0-1-1 0 0 0-1 1 1-1 1 $1 \quad 0 - 1 - 1 \quad 0$ 0 0-1 1 1-1 1 1 0-1-1 0-1-1 1 0 0 1-1-1 1 0 0 1 1 1 0-1-1 0 0 0-1 1 1-1 0 - 1 - 10-1 0-1 1 1 1 0 1 0-1-1 0-1 0-1 1 1 1 0 1 0-1-1-1 1-1 1 0 0-1 1-1 1 0 0 0-1 0-1 1 1-1 1-1 1 0 0 1 0 1 0-1-1 0-1 0-1 1 1 1 0 1 0-1-1-1 1-1 1 0 00-1 0-1 1 1 1 0 1-1 0-1 1 0 1-1 0-1 1 0 1-1 0-1 1 0 1-1 0-1 1 0 1-1 0-1 1 0 1-1 0-1 1 0 1-1 0-1 1 0 1-1 0-1 1 1-1 0 1 0-1-1 0 1-1 1 0-1 0 1-1 1 0 1-1 0 1 0-1 0 1-1 0-1 1-1 0 1-1 1 0 1-1 0 1 0-1 0 1-1 0-1 1 1-1 0 1 0-1-1 0 1-1 1 0 0 1-1 0-1 1-1 0 1-1 1 0-1 0 1-1 1 0 1-1 0 1 0-1 0 1-1 0 1-1 0-1 1 1-1 0 1 0-1 0 1-1 0-1 1 1-1 0 1 0-1-1 0 1-1 1 0-1 0 1-1 1 0 1-1 0 1 0-1 0 1-1 0 1-1 0 1-1 0 1-1 0-1 1 0 1 1-1 0-1-1 0 0 1-1 1 1-1-1 0 1 0 0 1 1-1 0-1 1-1-1 0 1 0-1 0 1 1-1 1 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 0-1 1 1-1 0 1 0-1-1 0 1-1 1 0 0 1-1-1 1 0 0 1-1 1 0 0 1-1 1 0 0 1-1 1 0 1 0-1 1 1-1 0 1 0-1-1 0 1 0-1 1 1-1 0 1 0-1-1 0 1-1 1 0 0 1-1-1 1 0 0 1-1 0-1 1 1-1 0-1 1 0 0 1-1 1 0-1-1 0 1 0-1 1 1-1 0 1 0-1-1 0 1-1 1 0 0 1-1 0-1 1 1-1 0-1 1 0 0 1-1-1 1 0 0 1-1 1 0-1-1 0 1 0-1 1 1-1 0 1 0-1-1 0 1 .0-1 1 1-1 0 1 0-1-1 0 1-1 1 0 0 1-1-1 1 0 0 1-1 1 0-1-1 0 1 0-1 1 1-1 0/

B =

イロト 人間 とくほとくほとう

- nac

- Matrix *B* is a skew $gH(\mathbb{Z}_3, 36)$.
- Hence B I is a $GHM(\mathbb{Z}_3, 36, 3, 12)$,
- ▶ We obtain a regular (36, 3, 12)-cover.
- To the best of our knowledge, the series of DRGs on 3 · 6^{2^k} vertices is new.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ つ へ つ ・

#	parameters of H	parameters of R _H	(n, r, c_2) of Γ^{R_H}	$ V(\Gamma^{R_{H}}) $
1	$gH(E_2, 2)$	$gH(E_2,4)$	(4, 2, 2)	8
2	gH(<i>E</i> ₃ , 3)	gH(<i>E</i> ₃ , 9)	(9, 3, 3)	27
3	$gH(E_4,4)$	gH(<i>E</i> ₄ , 16)	(16, 4, 4)	64
4	$gH(E_2,4)$	gH(<i>E</i> ₂ , 16)	(16, 2, 8)	32
5	gH(<i>E</i> ₅ , 5)	gH(<i>E</i> ₅ , 25)	(25, 5, 5)	125
6	gH(E ₃ , 6)	gH(E ₃ , 36)	(36 , 3 , 12)	108
7	gH(<i>E</i> ₇ ,7)	gH(<i>E</i> ₇ , 49)	(49,7,7)	343
8	gH(<i>E</i> ₈ , 8)	gH(<i>E</i> ₈ , 64)	(64, 8, 8)	512
9	gH(<i>E</i> ₄ , 8)	gH(<i>E</i> ₄ , 64)	(64, 4, 16)	256
10	gH(<i>E</i> ₂ , 8)	gH(<i>E</i> ₂ , 64)	(64, 2, 32)	128
11	gH(<i>E</i> ₉ , 9)	gH(<i>E</i> ₉ , 81)	(81,9,9)	729
12	gH(<i>E</i> ₃ , 9)	gH(<i>E</i> ₃ , 81)	(81, 3, 27)	243
13	gH(E ₅ , 10)	gH(E ₅ , 100)	(100, 5, 20)	500
14	gH(<i>E</i> ₁₁ , 11)	gH(<i>E</i> ₁₁ , 121)	(121, 11, 11)	1331
15	gH(E ₃ , 12)	gH(E ₃ , 144)	(144, 3, 48)	432
16	gH(E ₄ , 12)	gH(E ₄ , 144)	(144, 4, 36)	576
17	gH(E ₂ , 12)	gH(E ₂ , 144)	(144, 2, 72)	288

Table: Small regular covers obtained from our construction