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Polynomial operator

The polynomial operator assigns to each class of languages V
the class of all (positive) boolean combinations of the
languages of the form

L0a1L1a2 . . .a`L` , (∗)

where A is an alphabet, a1, . . . ,a` ∈ A, L0, . . . ,L` ∈ V (A) (i.e.
they are over A).
The resulting classes are denoted by PPolV and BPolV ,
respectively.
In the restricted case we fix a natural number k and we allow
only `≤ k in (∗). We get the classes PPolkV and BPolkV ,
respectively.
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Basic examples

1. Let T (A) = { /0,A∗} for each finite set A. Then PPolT is level
1/2 of the Straubing-Thérien hierarchy and BPolT = V1 is level
1, i.e. the piecewise testable languages.
Result (Simon - 1972): Decidability of the membership problem
for the class V1.
Open problem: Decidability of the membership problem for the
class BPolV1 = V2.
2. Let S +(A) be the set of all finite unions of the languages of
the form B∗, where B ⊆ A, for each finite set A.
Result (Pin, Straubing): BPolS + = V2.
Open problem – reformulation:
Is it decidable whether a given regular language L⊆ A∗ can be
expressed as a boolean combination languages of the form
B∗0a1B∗1a2 . . .a`B∗` , where a1, . . . ,a` ∈ A, B0, . . . ,B` ⊆ A.
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1/2 of the Straubing-Thérien hierarchy and BPolT = V1 is level
1, i.e. the piecewise testable languages.
Result (Simon - 1972): Decidability of the membership problem
for the class V1.
Open problem: Decidability of the membership problem for the
class BPolV1 = V2.
2. Let S +(A) be the set of all finite unions of the languages of
the form B∗, where B ⊆ A, for each finite set A.
Result (Pin, Straubing): BPolS + = V2.
Open problem – reformulation:
Is it decidable whether a given regular language L⊆ A∗ can be
expressed as a boolean combination languages of the form
B∗0a1B∗1a2 . . .a`B∗` , where a1, . . . ,a` ∈ A, B0, . . . ,B` ⊆ A.



Other examples

3. Let S (A) be the set of all finite unions of the languages of
the form B, where B ⊆ A, for each finite set A. Here B is the set
of all words over A containing exactly the letters from B.
4. Let m be a fixed natural number. Let Am(A) be the set of all
boolean combinations of the languages of the form
L(a, r) = {u ∈ A∗ | |u|a ≡ r (mod m)}, where a ∈ A and
0≤ r < m, for each finite set A.
Notice that the classes T , S , Am are boolean varieties and
S + is a positive variety.
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Varieties of languages

A boolean variety of languages V associates to every finite
alphabet A a class V (A) of regular languages over A in such a
way that

V (A) is closed under finite unions, finite intersections and
complements (in particular, /0,A∗ ∈ V (A)),
V (A) is closed under derivatives, i.e.
L ∈ V (A), u,v ∈ A∗ implies
u−1Lv−1 = {w ∈ A∗ | uwv ∈ L} ∈ V (A),
V is closed under inverse morphisms, i.e.
f : B∗→ A∗, L ∈ V (A) implies
f−1(L) = {v ∈ B∗ | f (v) ∈ L} ∈ V (B).

To get the notion of a positive variety of languages, we use in
the first item only intersections and unions (not complements).
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Pseudovarieties and varieties of monoids

A pseudovariety of finite (ordered) monoids is a class of finite
monoids closed under submonoids, morphic images and
products of finite families. Similarly for ordered monoids. When
defining a variety of (ordered) monoids we use arbitrary
products.

The pseudovarieties of ordered monoids can be characterized
by pseudoidentities. The pseudovarieties we consider here are
equational – they are given by identities, or equivalently, they
are of the form FinV where V is a variety of (ordered) monoids.
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Syntactic structures

For a regular language L⊆ A∗, we define the relations ∼L and
�L on A∗ as follows: for u,v ∈ A∗ we have

u ∼L v if and only if ( ∀ p,q ∈ A∗ ) ( puq ∈ L⇐⇒ pvq ∈ L ) ,

u �L v if and only if ( ∀ p,q ∈ A∗ ) ( pvq ∈ L =⇒ puq ∈ L ) .

The relation ∼L is the syntactic congruence of L on A∗. It is of
finite index (i.e. there are finitely many classes), the quotient
structure M(L) = A∗/∼L is called the syntactic monoid of L.
The relation �L is the syntactic quasiorder of L and we have
�L ∩ �L= ∼L. Hence �L induces an order on M(L) = A∗/∼L,
namely: u∼L ≤ v∼L if and only if u �L v . We speak about the
syntactic ordered monoid of L; we denote the structure by O(L).
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Eilenberg-type theorems

Result (Eilenberg, Pin)
Boolean varieties (positive varieties) of languages correspond
to pseudovarieties of finite monoids (ordered monoids) . The
correspondence, written V ←→ V ( P ←→ P), is given by the
following relationship: for L⊆ A∗ we have

L ∈ V (A) if and only if M(L) ∈ V

( L ∈P(A) if and only if O(L) ∈ P ) .



Examples

Pseudovarieties of (ordered) monoids corresponding to the
classes T ,S +,S ,Am consist exactly of all finite members of
the following varieties:

T = Mod(x = y ), S+ = Mod(x2 = x , xy = yx ,1≤ x ),

S = Mod(x2 = x , xy = yx ), Am = Mod(xy = yx , xm = 1) .

The names for the (ordered) monoids of the pseudovarieties
T, S+, S, Am are trivial monoids (semilattices with the smallest
element 1, semilattices and abelian groups of index m,
respectively)



Finite characteristics

Let X = {x1,x2, . . .}. A relation γ on X ∗ is a finite characteristic if
it satisfies the following conditions:
(i) γ is a quasiorder on X ∗;
(ii) γ is compatible with the multiplication, i.e. for each
u,v ,w ∈ X ∗ we have

u γ v implies uw γ vw , wu γ wv ;

(iii) γ is fully invariant, i.e. for each morphism ϕ : X ∗→ X ∗ and
each u,v ∈ X ∗ we have

u γ v implies ϕ(u) γ ϕ(v) ;

(iv) for each finite subset Y of the set X , the set Y ∗ intersects
only finitely many classes of X ∗/γ ∩ γ−1.



Varieties of languages and their finite characteristics

Proposition

Positive varieties of languages having all V (A) finite
correspond to finite characteristics. Namely V 7→ IdV and
L ∈ V (A) iff γ | A∗×A∗ ⊆ �L.

The classes of languages in our basic examples have the
following finite characteristics:
1. Id T = X ∗×X ∗.
2. Id S+ = {(u,v) ∈ X ∗×X ∗ | c(u)⊆ c(v)}.
3. Id S = {(u,v) ∈ X ∗×X ∗ | c(u) = c(v)}.
4. Id Am = {(u,v) ∈ X ∗×X ∗ | (∀ x ∈ X ) |u|x ≡ |v |x (mod m)}.
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Factorizations

Let k be a fixed natural number and γ be a finite characteristic.
For a word u ∈ X ∗, we say that

f = (u0,a1,u1,a2, . . . ,a`,u`)

is a factorization of u of length ` if u0,u1, . . . ,u` ∈ X ∗,
a1,a2, . . . ,a` ∈ X and u0a1u1 . . .a`u` = u.
The set of all factorizations of lengths at most k of the word u is
denoted by Factk (u).



Main construction

For a factorization f = (u0,a1,u1, . . . ,a`,u`) of a word u ∈ X ∗ and
a factorization g = (v0,b1,v1, . . . ,bm,vm) of a word v ∈ X ∗, we
write f ≤γ g if

` = m,
ai = bi for every i ∈ {1, . . . , `},
ui γ vi for every i ∈ {0,1, . . . , `}.

We define the relation pk (γ) on the set X ∗ as follows:
for u,v ∈ X ∗, we have (u,v) ∈ pk (γ) iff

(∀ g ∈ Factk (v)) (∃ f ∈ Factk (u)) f ≤γ g .



Main theorem - CAI

Theorem
Let V be a locally finite positive variety of languages and γ be a
finite characteristic of V . Then PPolkV is a locally finite positive
variety of languages with the finite characteristic pk (γ) and
BPolkV is a locally finite boolean variety of languages with the
finite characteristic pk (γ)∩ (pk (γ))−1.



Basic examples

∩, ∪ ∩, ∪, compl.

S B0a1B1a2 . . .a`B` PPolk (S )⊆ BPolk (S )

∪ | ∪ |

S + B∗0a1B∗1a2 . . .a`B∗` PPolk (S +)⊆ BPolk (S +)

`≤ k , a1, . . . ,a` ∈ A, B0, . . . ,B` ⊆ A



Varieties of languages generated by a finite number of languages -
CAI

Proposition
A positive variety V is generated by a finite number of
languages if and only if the corresponding psedovariety V of
ordered monoids is generated by a single ordered monoid.

Proposition

For each k, the positive variety PPolkS + is generated by a
finite number of languages.

Proposition
The positive variety PPol1S is generated by a finite number of
languages.

Proposition
The positive variety PPol2S is not generated by a finite number
of languages.
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Inclusions

Proposition

The hierarchies PPolk (S +), PPolk (S ), BPolk (S +) and
BPolk (S ) are strict.

Proposition

For each k, the varieties PPolk (S +), PPolk (S ), BPolk (S +)
and BPolk (S ) are pairwise different.

Theorem

The only non-trivial inclusions are

BPol1(S )⊆ PPol2(S ), BPol2(S +), PPol3(S +)

and
BPol1(S +)⊆ PPol2(S +) .
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Certain identities

Let x ,y be two different letters from X and u ∈ X ∗ be a word
which contains both x and y , i.e. x ,y ∈ c(u). The “identity”

uxyx = uyx , where x ,y ∈ c(u) (1)

is equivalent to a pair of identities: we distinguish two cases
u = u1xu2yu3 and u = u1yu2xu3 for some u1,u2,u3 ∈ X ∗, so the
identity (1) is equivalent to the identities

x1 x x2 y x3 · x y x = x1 x x2 y x3 · y x ,

x1 y x2 x x3 · x y x = x1 y x2 x x3 · y x .

We have also the dual version of the identity (1)

xyxu = xyu where x ,y ∈ c(u) .



Proposition 1

Consider also

uxyv = uyxv , where x ,y ∈ c(u)∩c(v) . (2)

Note that this identity represents in fact four identities.

yuyx ≤ yuxyx and xyuy ≤ xyxuy (3)

xuxvx ≤ xuvx . (4)

Proposition
(i) The identities (1) and (2) form a finite basis of identities for
the variety of monoids corresponding to BPol1(S +).
(ii) The identities (2), (3) and (4) form a finite basis of identities
for the variety of ordered monoids corresponding to PPol1(S +).
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Proposition 2

Proposition

(i) The variety of monoids corresponding to BPol1(S ) has a
finite basis of identities.
(ii) The variety of ordered monoids corresponding to PPol1(S )
has a finite basis of identities.


