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Orthomodular lattices I

OMLs = “Boolean algebras which are not distributive nor
uniquely complemented”:

x ∧ (y ∨ z) 6= (x ∧ y) ∨ (x ∧ z),

x ∨ y = 1, x ∧ y = 0 6⇒ y = x′.
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Orthomodular lattices II

Kröger, Beran (70’s): OMLs are skew Boolean algebras.

x ∧̇ y := x ∧ (x′ ∨ y)

(In Boolean algebras ∧̇ = ∧.)
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Orthomodular lattices II

Kröger, Beran (70’s): OMLs are skew Boolean algebras.

x ∧̇ y := x ∧ (x′ ∨ y)

(In Boolean algebras ∧̇ = ∧.)

OML = “BA which are not commutative nor associative”:

x ∧̇ y 6= y ∧̇x,

(x ∧̇ y) ∧̇ z 6= x ∧̇ (y ∧̇ z),

x ∧̇ (y ∨ z) = (x ∧̇ y) ∨ (x ∧̇ z),

x ∨̇ y = 1, x ∧̇ y = 0 ⇒ y = x′.
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Assymetry of the skew operations

Sasaki adjunction:

x ∧̇ y ≤ z ⇔ y ≤ x →̇ z (= x′ ∨̇ z),

x ∧̇ y ≤ x,

x ≤ y ⇔ x = y ∧̇x,

x ∧̇ y = y ∧̇x ⇔ xCy (then = x ∧ y).
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Skew order

Can be every property of BA “translated” to OML by adding
the necessary dots?
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Skew order

Can be every property of BA “translated” to OML by adding
the necessary dots?

x ≤̇ y :⇔ x = x ∧̇ y

In P(H) (closed subspaces/projections on a Hilbert space),
x ≤̇ y means that

x is projected injectively into y,

y is projected surjectively onto x,

x is a “subspace” of y upto a deviation < π/2.
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Properties of the skew order

x ≤̇ y ⇔ x ∧ y′ = 0 ⇔ x′ ∨ y = 1 ⇔ y ∨̇x = y.

x ∧̇ y ≤̇ y.

≤̇ is reflexive. It is transitive or antisymmetric only in
BA.

(Skew antisymmetry) x ≤ y, y ≤̇x ⇒ x = y.

(Skew transitivity) x ≤ y ≤̇ z or x ≤̇ y ≤ z ⇒ x ≤̇ z.

x ≤ y ⇔ x ≤̇ y, xCy. In particular, ≤̇ contains ≤.

When x =̇ y :⇔ x ≤̇ y, y ≤̇ x, then ( ≤̇ ) = ( =̇ ) ◦ (≤) =

(≤) ◦ ( =̇ ). Namely, for x ≤̇ y we have x =̇ x ∧̇ y ≤ y and
x ≤ y ∨̇x =̇ y.
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Example
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Uniqueness

Theorem. Let xρy be given by identities in language
(∧,∨, 0, 1,′ ) and variables x, y such that ρ is ≤ on a Boolean
algebra. Then, in any OML, ρ is either ≤ or ≤̇ .
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Uniqueness

Theorem. Let xρy be given by identities in language
(∧,∨, 0, 1,′ ) and variables x, y such that ρ is ≤ on a Boolean
algebra. Then, in any OML, ρ is either ≤ or ≤̇ .

Proof.

{li = ri}
(=)=(≤)∩(≥)

// {lj ≤ rj}
Sasaki adjunction

// {lk ≤ 0}
W

k

��

l = x ∧̇ y′ or l = x ∧ y′ l = 0
Pavičić, Megill

oo
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Skew adjointness

Theorem. Considering all 6 quantum meets and all 6
quantum implications, the Sasaki adjunction

x ∧̇ y ≤ z ⇔ y ≤ x →̇ z

and the skew adjunction

x ∧ y ≤̇ z ⇔ y ≤̇x → z

(where x → z = x′ ∨ z) are the only ones valid for all OML.
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Skew adjointness

Theorem. Considering all 6 quantum meets and all 6
quantum implications, the Sasaki adjunction

x ∧̇ y ≤ z ⇔ y ≤ x →̇ z

and the skew adjunction

x ∧ y ≤̇ z ⇔ y ≤̇x → z

(where x → z = x′ ∨ z) are the only ones valid for all OML.

Proof. An easy manipulation with 6-element OML
{0, a, a′, b, b′, 1} eliminates other possibilities. The skew
adjunction is obvious, since both sides are equivalent to
x ∧ y ∧ z′ = 0.
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Skew nuclei

j(x ∧ y) = j(x) ∧ j(y),

j2 = j,

x ≤̇ j(x).

Theorem. By ordering nuclei j ≤ k : ⇔ (∀x)(j(x) ≤̇ k(x)) we
get an isomorphism L ∼= N(L) between OML L and lattice
N(L) of all skew nuclei.

Proof. Every skew nucleus is of the form ca(x) = a ∨̇x for
some a ∈ L.
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Applications and problems

In OML, x ∧̇ y is the (unique) skew largest element which is
≤ y and ≤̇x.
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Applications and problems

In OML, x ∧̇ y is the (unique) skew largest element which is
≤ y and ≤̇x.

Given a (nc.) C*-algebra A, (RIdl (A),≤, ≤̇ ) is a full
invariant of A. TFAE:
(i) RIdl (A) is closed under ∧̇ ,
(ii) Embedding RIdl (A) → L is skew adjoint.
Does they hold for any A?
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Applications and problems

In OML, x ∧̇ y is the (unique) skew largest element which is
≤ y and ≤̇x.

Given a (nc.) C*-algebra A, (RIdl (A),≤, ≤̇ ) is a full
invariant of A. TFAE:
(i) RIdl (A) is closed under ∧̇ ,
(ii) Embedding RIdl (A) → L is skew adjoint.
Does they hold for any A?

Skew orders in non-orthomodular lattices?
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