Skew order: A new look on orthomodular lattices

David Kruml

Masaryk University, Brno

Orthomodular lattices I

OMLs = "Boolean algebras which are not distributive nor uniquely complemented":

$$x \wedge (y \lor z) \neq (x \wedge y) \lor (x \wedge z),$$
$$x \lor y = 1, x \land y = 0 \Rightarrow y = x'.$$

Orthomodular lattices II

Kröger, Beran (70's): OMLs are skew Boolean algebras.

$$x \wedge y := x \wedge (x' \vee y)$$

(In Boolean algebras $\dot{\land} = \land$.)

Orthomodular lattices II

Kröger, Beran (70's): OMLs are skew Boolean algebras.

$$x \wedge y := x \wedge (x' \vee y)$$

(In Boolean algebras $\dot{\land} = \land$.)

OML = "BA which are not commutative nor associative":

$$\begin{aligned} x \wedge y \neq y \wedge x, \\ (x \wedge y) \wedge z \neq x \wedge (y \wedge z), \\ x \wedge (y \vee z) &= (x \wedge y) \vee (x \wedge z), \\ x \vee y &= 1, x \wedge y = 0 \implies y = x'. \end{aligned}$$

Assymetry of the skew operations

Sasaki adjunction:

$$\begin{aligned} x &\land y \leq z \iff y \leq x \rightarrow z \ (= x' \lor z), \\ x &\land y \leq x, \\ x \leq y \iff x = y \land x, \\ x &\land y = y \land x \iff xCy \ (\text{then} = x \land y). \end{aligned}$$

Skew order

Can be every property of BA "translated" to OML by adding the necessary dots?

Skew order

Can be every property of BA "translated" to OML by adding the necessary dots?

$$x \leq y :\Leftrightarrow x = x \wedge y$$

Skew order

Can be every property of BA "translated" to OML by adding the necessary dots?

$$x \leq y :\Leftrightarrow x = x \wedge y$$

In $\mathcal{P}(H)$ (closed subspaces/projections on a Hilbert space), $x \leq y$ means that

- x is projected injectively into y,
- y is projected surjectively onto x,
- x is a "subspace" of y upto a deviation $< \pi/2$.

Properties of the skew order

- $x \leq y \iff x \wedge y' = 0 \iff x' \vee y = 1 \iff y \lor x = y.$
- $\, \bullet \, x \, \dot{\wedge} \, y \, \dot{\leq} \, y.$
- \leq is reflexive. It is transitive or antisymmetric only in BA.
- (Skew antisymmetry) $x \le y, y \le x \Rightarrow x = y$.
- (Skew transitivity) $x \le y \le z$ or $x \le y \le z \implies x \le z$.
- $x \le y \iff x \le y, xCy$. In particular, \le contains \le .
- When $x \doteq y : \Leftrightarrow x \leq y, y \leq x$, then $(\leq) = (=) \circ (\leq) = (\leq) \circ (=)$. Namely, for $x \leq y$ we have $x \doteq x \land y \leq y$ and $x \leq y \lor x \doteq y$.

Example

Uniqueness

Theorem. Let $x\rho y$ be given by identities in language $(\land,\lor,0,1,')$ and variables x, y such that ρ is \leq on a Boolean algebra. Then, in any OML, ρ is either \leq or \leq .

Uniqueness

Theorem. Let $x\rho y$ be given by identities in language $(\land,\lor,0,1,')$ and variables x,y such that ρ is \leq on a Boolean algebra. Then, in any OML, ρ is either \leq or \leq .

Proof.

Skew adjointness

Theorem. Considering all 6 quantum meets and all 6 quantum implications, the Sasaki adjunction

$$x \,\dot{\wedge}\, y \le z \iff y \le x \,\dot{\rightarrow}\, z$$

and the skew adjunction

$$x \wedge y \stackrel{\cdot}{\leq} z \iff y \stackrel{\cdot}{\leq} x \to z$$

(where $x \to z = x' \lor z$) are the only ones valid for all OML.

Skew adjointness

Theorem. Considering all 6 quantum meets and all 6 quantum implications, the Sasaki adjunction

$$x \,\dot{\wedge}\, y \le z \iff y \le x \,\dot{\rightarrow}\, z$$

and the skew adjunction

$$x \wedge y \stackrel{\cdot}{\leq} z \iff y \stackrel{\cdot}{\leq} x \to z$$

(where $x \to z = x' \lor z$) are the only ones valid for all OML.

Proof. An easy manipulation with 6-element OML $\{0, a, a', b, b', 1\}$ eliminates other possibilities. The skew adjunction is obvious, since both sides are equivalent to $x \wedge y \wedge z' = 0$.

Skew nuclei

$$\begin{split} j(x \wedge y) &= j(x) \wedge j(y), \\ j^2 &= j, \\ x &\leq j(x). \end{split}$$

Theorem. By ordering nuclei $j \le k : \Leftrightarrow (\forall x)(j(x) \le k(x))$ we get an isomorphism $L \cong N(L)$ between OML L and lattice N(L) of all skew nuclei.

Proof. Every skew nucleus is of the form $c_a(x) = a \lor x$ for some $a \in L$.

Applications and problems

In OML, $x \land y$ is the (unique) skew largest element which is $\leq y$ and $\leq x$.

Applications and problems

In OML, $x \land y$ is the (unique) skew largest element which is $\leq y$ and $\leq x$.

Given a (nc.) C*-algebra A, (RIdl $(A), \leq, \leq$) is a full invariant of A. TFAE: (i) RIdl (A) is closed under \land , (ii) Embedding RIdl $(A) \rightarrow L$ is skew adjoint. Does they hold for any A?

Applications and problems

In OML, $x \land y$ is the (unique) skew largest element which is $\leq y$ and $\leq x$.

Given a (nc.) C*-algebra A, (RIdl $(A), \leq, \leq$) is a full invariant of A. TFAE: (i) RIdl (A) is closed under \land , (ii) Embedding RIdl $(A) \rightarrow L$ is skew adjoint. Does they hold for any A?

Skew orders in non-orthomodular lattices?