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∗-lattices (these are bounded lattices with an involution,
denoted by ∗, satisfying De Morgan’s laws) often serve as
models for logics. ∗-complemented elements of such logics can
be considered as sharp assertions corresponding to classical
logic. The natural question arises when these elements form a
sublogic. The problem of characterizing the structure of
bounded lattices with an antitone involution the complemented
elements of which form a sublattice seems to be very hard.

We start with the definition of a bounded lattice with an antitone
involution and of a complemented element.



Definition

A bounded lattice with an antitone involution is an algebra
L = (L,∨,∧,∗ , 0,1) of type (2,2,1,0,0) such that (L,∨,∧,0,1) is
a bounded lattice and

(x ∨y)∗ = x∗∧y∗,

(x ∧y)∗ = x∗∨y∗ and

(x∗)∗ = x

hold for all x ,y ∈ L. An element a of L is called complemented
if a∨a∗ = 1 and a∧a∗ = 0. Let CE(L) denote the set of all
complemented elements of L.

It is evident that if L is moreover, distributive, i.e. a De Morgan
algebra, then CE(L) is the set of its Boolean elements and
hence a sublattice of L. Further, let us mention that
0,1 ∈ CE(L) in each case.



Denote by K the class of all ∗-lattices L for which CE(L) is a
sublattice of L.

A ∗-lattice L2 is called a 0-1-homomorphic image of the
∗-lattice L1 if there exists a homomorphism f from L1 onto L2

satisfying f−1({0}) = {0} and f−1({1}) = {1}.

Further, for every class K1 of ∗-lattices let H01(K1) denote the
class of all 0-1-homomorphic images of algebras of K1.

First we state some conditions which are equivalent to the fact
that a ∗-lattice belongs to K:



Lemma

For a ∗-lattice L = (L,∨,∧,∗ ,0,1) the following are equivalent:
(i) L ∈ K
(ii) CE(L) is a subuniverse of L

(iii) CE(L) is a subuniverse of (L,∨)
(iv) CE(L) is a subuniverse of (L,∧).

Now we provide some examples. In the following, Hasse
diagrams of ∗-lattices are drawn in such a way that ∗ is the
reflection on the central point of the Hasse diagram.



Example

The modular non-distributive ∗-lattice M3,3 = (M3,3,∨,∧,∗ ,0,1)
having the Hasse diagram

0

α β γ

α∗β ∗γ∗

1

Fig. 1

does not belong to K since CE(M3,3) = {0,α ,β ,β ∗,α∗,1} is not
a subuniverse of M3,3.



Example

The modular non-distributive ∗-lattice M3,3 = 1⊕M3,3 ⊕1
(ordinal sum) having the Hasse diagram

0

δ

α β γ

α∗β ∗γ∗

δ ∗

1

Fig. 2

belongs to K since CE(M3,3) = {0,1} is a subuniverse of M3,3.



Example

The non-modular ∗-lattice L0 having the Hasse diagram

0

γ βα

δ δ ∗

α∗γ∗β ∗

1

Fig. 3

does not belong to K since CE(L0) = {0,α ,β ,β ∗,α∗,1} is not a
subuniverse of L0.



Remark. It is easy to see that M3,3 /∈ H01(L0).

Remark. K is not a variety since M3,3 belongs to K but its
homomorphic image M3,3 does not.

Next we prove necessary respectively sufficient conditions for
∗-lattices to belong to K. In the following theorem a necessary
condition for ∗-lattices to belong to K is given:

Theorem 1

For a ∗-lattice L = (L,∨,∧,∗ ,0,1) the condition
M3,3,L0 /∈ H01(S({L})) is necessary for L ∈ K.



Next we state some sufficient conditions for ∗-lattices to belong
to K. First we define two join-semilattices. Let S1 and S2 denote
the join-semilattices with 1 with Hasse diagrams

respectively.



Theorem 2

For a ∗-lattice L = (L,∨,∧,∗ ,0,1) any single one of the following
conditions is sufficient for L ∈ K:

(i) x ∨y ∨ (x∗∧y∗) ≥ (x ∨x∗)∧ (y ∨y∗) for all x ,y ∈ L

(ii) (x ∨x∗)∧y = (x ∧y)∨ (x∗∧y) for all x ,y ∈ L

(iii) x ∨y ∨ (x∗∧y∗) = (x ∨y ∨x∗)∧ (x ∨y ∨y∗) for all x ,y ∈ L

(iv) S1,S2 /∈ H(S({(L,∨,1)})).

Remark. Since K is defined completely symmetric with respect
to ∨ and ∧, the dual assertions also hold.

Corollary. According to Theorem 2 every De Morgan algebra,
i.e. every distributive ∗-lattice belongs to K.

Corollary. From the proof of Theorem 2 it follows that every
∗-lattice containing at most seven elements belongs to K.



Remark. Though M3,3 belongs to K, it does not satisfy (i) of
Theorem 2 since

α ∨β ∨ (α∗∧β ∗) = γ∗ � δ ∗ = (α ∨α∗)∧ (β ∨β ∗)

and hence also (ii) and (iii) of Theorem 2 are not satisfied.
Moreover, M3,3 does not satisfy (iv) of Theorem 2. This shows
that any single one of the conditions (i)–(iv) of Theorem 2 is not
necessary for L ∈ K.

L is called a near-chain if for all a,b ∈ L either a and b or a and
b∗ (or both) are comparable. Let us note that the lattice L0

depicted in Fig. 3 is a near-chain which is not modular. Of
course, every chain is a near-chain.



Now, we characterize near-chains belonging to K:

Theorem 3

For a near-chain L = (L,∨,∧,∗ ,0,1) the condition
L0 /∈ H01(S({L})) is necessary and sufficient for L ∈ K.

Corollary. Every near-chain containing at most nine elements
belongs to K.

Corollary. Every modular near-chain belongs to K.



From now on, we consider bounded lattices with an antitone
involution whose complemented elements do not form a
sublattice. First, we get three technical lemmas.

Lemma

If a,b ∈ CE(L) and either a∨b /∈ CE(L) or a∧b /∈ CE(L) or both
then a∧b 6≥ a∗∨b∗ and a∗∧b∗ 6≥ a∨b.

Lemma

Let a,b ∈ CE(L).

(i) If a∨b /∈ CE(L) then 0,1,a,a∗,b,b∗,a∨b,a∗∧b∗ are
pairwise distinct.

(ii) If a∧b /∈ CE(L) then 0,1,a,a∗,b,b∗,a∧b,a∗∨b∗ are
pairwise distinct.

(iii) If a∨b,a∧b /∈ CE(L) then 0,1,a,a∗,b,b∗,a∨b,a∗∧b∗,
a∧b,a∗∨b∗ are pairwise distinct.



Lemma

If a,b ∈ CE(L), a∨b,a∧b /∈ CE(L), a∧b < a∗∨b∗ and
a∗∧b∗ < a∨b then (i) – (iii) hold:

(i) 0,1,a,a∗,b,b∗,a∨b,a∗∧b∗,a∧b,a∗∨b∗,(a∧b)∨ (a∗∧b∗)
are pairwise distinct.

(ii) 0,1,a,a∗,b,b∗,a∨b,a∗∧b∗,a∧b,a∗∨b∗,(a∨b)∧ (a∗∨b∗)
are pairwise distinct.

(iii) (a∧b)∨ (a∗∧b∗) ≤ (a∨b)∧ (a∗∨b∗)

Using the previous lemmas, we can prove the last theorem
characterizing minimal forbidden sublattices.



Theorem 4

Let L = (L,∨,∧,∗ ,0,1) be a bounded lattice with an antitone
involution the set CE(L) of all complemented elements of which
does not form a sublattice. Then there exist a,b ∈ CE(L) such
that either a∨b /∈ CE(L) or a∧b /∈ CE(L) or both and, up to
symmetry, the following cases are possible:

(i) a∨b,a∧b /∈ CE(L), a∧b < a∗∨b∗ and a∗∧b∗ < a∨b

(ii) a∨b,a∧b /∈ CE(L), a∧b < a∗∨b∗ and a∗∧b∗ ‖ a∨b

(iii) a∨b,a∧b /∈ CE(L), a∧b ‖ a∗∨b∗ and a∗∧b∗ < a∨b

(iv) a∨b,a∧b /∈ CE(L), a∧b ‖ a∗∨b∗ and a∗∧b∗ ‖ a∨b

(v) a∨b ∈ CE(L), a∧b /∈ CE(L), a∨b = 1 and a∧b < a∗∨b∗

(vi) a∨b ∈ CE(L), a∧b /∈ CE(L), a∨b = 1 and a∧b ‖ a∗∨b∗

(vii) a∨b ∈ CE(L), a∧b /∈ CE(L), a∨b 6= 1 and a∧b < a∗∨b∗

(viii) a∨b ∈ CE(L), a∧b /∈ CE(L), a∨b 6= 1 and a∧b ‖ a∗∨b∗



In the listed cases the following minimal (with respect to the
cardinality) lattices exist:
(i):

0

a∧b a∗∧b∗

a b c b∗ a∗

a∨b a∗∨b∗

1

Here c := (a∧b)∨ (a∗∧b∗) = (a∨b)∧ (a∗∨b∗).



(ii):

0

a∧b a∗∧b∗∧ (a∨b)

a b a∗∧b∗

a∨b b∗ a∗

a∨b∨ (a∗∧b∗) a∗∨b∗

1



(iii):

0

a∧b∧ (a∗∨b∗) a∗∧b∗

a∧b b∗ a∗

a b a∗∨b∗

a∨b a∗∨b∗∨ (a∧b)

1



(iv):

0

a∧b∧ (a∗∨b∗) a∗∧b∗∧ (a∨b)

a∧b a∗∧b∗

a b a∗b∗

a∨b a∗∨b∗

a∨b∨ (a∗∧b∗) a∗∨b∗∨ (a∧b)

1



(v):

0

a∧b b∗ a∗

a b a∗∨b∗

1



(vi):

0

a∧b

b∗ a∗a∧b∧ (a∗∨b∗)

a b a∗∨b∗∨ (a∧b)

a∗∨b∗

1



(vii):

0

a∧b a∗∧b∗

a b b∗ a∗

a∨b a∗∨b∗

1



(viii):

0

a∧b∧ (a∗∨b∗) a∗∧b∗

a∧b b∗ a∗

a b a∗∨b∗

a∨b a∗∨b∗∨ (a∧b)

1



Remark. The remaining case a∨b /∈ CE(L), a∧b ∈ CE(L)
need not be considered since in this case a∗,b∗ satisfies one of
the conditions (v) – (viii).


