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*-lattices (these are bounded lattices with an involution,
denoted by *, satisfying De Morgan’s laws) often serve as
models for logics. *-complemented elements of such logics can
be considered as sharp assertions corresponding to classical
logic. The natural question arises when these elements form a
sublogic. The problem of characterizing the structure of
bounded lattices with an antitone involution the complemented
elements of which form a sublattice seems to be very hard.

We start with the definition of a bounded lattice with an antitone
involution and of a complemented element.



Definition

A bounded lattice with an antitone involution is an algebra
L=(L,V,A*,0,1) of type (2,2,1,0,0) such that (L,Vv,A,0,1) is
a bounded lattice and

(xVy) =x"Ay",
(xAy) =x*"vy*and
(x*) =x
hold for all x,y € L. An element a of L is called complemented

ifava*=1andaAa*=0. Let CE(L) denote the set of all
complemented elements of L.

It is evident that if £ is moreover, distributive, i.e. a De Morgan
algebra, then CE(L) is the set of its Boolean elements and
hence a sublattice of L. Further, let us mention that

0,1 € CE(L) in each case.



Denote by K the class of all *-lattices £ for which CE(L) is a
sublattice of L.

A *-lattice L, is called a 0-1-homomorphic image of the
*-lattice L if there exists a homomorphism f from £, onto £,

satisfying f~2({0}) = {0} and f~1({1}) = {1}.

Further, for every class K; of *-lattices let Hp1 (K1) denote the
class of all 0-1-homomorphic images of algebras of K;.

First we state some conditions which are equivalent to the fact
that a *-lattice belongs to K:



Lemma

For a *-lattice L = (L,V,A,*,0,1) the following are equivalent:
(LeK

(i) CE(L) is a subuniverse of £

(iii) CE(L) is a subuniverse of (L, V)

(iv) CE(L) is a subuniverse of (L,A).

Now we provide some examples. In the following, Hasse
diagrams of *-lattices are drawn in such a way that * is the
reflection on the central point of the Hasse diagram.



The modular non-distributive *-lattice M3z 3 = (M3 3,V,A,*,0,1)
having the Hasse diagram

1
w .
a y
0

Fig. 1

does not belong to K since CE(M33) = {0,a,3,B*,a*,1} is not
a subuniverse of Mg 3.




The modular non-distributive *-lattice ﬂ&g =10M33®1
(ordinal sum) having the Hasse diagram

.1
5*
Y 18" »a”
a«< B y
5
0
Fig. 2

belongs to K since CE(Mz3) = {0,1} is a subuniverse of Mg 3.




The non-modular *-lattice L having the Hasse diagram
1
B* a*
o 0"
a B
0
Fig. 3
does not belong to K since CE(Lg) = {0,a,3,B8*,a*,1} is not a
subuniverse of Lg.




Remark. It is easy to see that M3 3 ¢ Ho1(Lo).

Remark. K is not a variety since ﬁ&g belongs to K but its
homomorphic image M3 3 does not.

Next we prove necessary respectively sufficient conditions for
*-lattices to belong to K. In the following theorem a necessary
condition for *-lattices to belong to K is given:

For a *-lattice L = (L,Vv,A,*,0,1) the condition
Msz3,L0 & Ho1(S({L})) is necessary for L € K.




Next we state some sufficient conditions for *-lattices to belong
to K. First we define two join-semilattices. Let §; and S, denote
the join-semilattices with 1 with Hasse diagrams

respectively.



Theorem 2
For a *-lattice L = (L, V,A,*,0,1) any single one of the following
conditions is sufficient for £ € K:

(i) X VyV(X*Ay*) > (X Vx*)A(y vy*) forallx,y €L

(i) (xVX*)AYy =(XAYy)V(x*Ay)forallx,y eL

(i) xVyV(xX*Ay*)=(xVyVx*)A(xVyVvy*)forall x,y €L
(iv) 81,82 ¢ H(S({(L,V,1)})).

Remark. Since K is defined completely symmetric with respect
to v and A, the dual assertions also hold.

Corollary. According to Theorem 2 every De Morgan algebra,
i.e. every distributive *-lattice belongs to K.

Corollary. From the proof of Theorem 2 it follows that every
*-lattice containing at most seven elements belongs to K.



Remark. Though M3 3 belongs to K, it does not satisfy (i) of
Theorem 2 since

avBv(a'AB )=y 28 =(ava)r(BVE)

and hence also (ii) and (iii) of Theorem 2 are not satisfied.
Moreover, M373 does not satisfy (iv) of Theorem 2. This shows
that any single one of the conditions (i)—(iv) of Theorem 2 is not
necessary for L € K.

L is called a near-chain if for all a,b € L eithera and b or a and
b* (or both) are comparable. Let us note that the lattice Lg
depicted in Fig. 3 is a near-chain which is not modular. Of
course, every chain is a near-chain.



Now, we characterize near-chains belonging to K:

For a near-chain £ = (L, V,A,*,0,1) the condition
Lo ¢ Ho1(S({£})) is necessary and sulfficient for £ € K.

Corollary. Every near-chain containing at most nine elements
belongs to K.

Corollary. Every modular near-chain belongs to K.



From now on, we consider bounded lattices with an antitone
involution whose complemented elements do not form a
sublattice. First, we get three technical lemmas.

If a,b € CE(L) and either avb ¢ CE(L) or aAb ¢ CE(L) or both
thenaAb #a*Vvb*and a* Ab* 2aVvb.

Lemma

Leta,b € CE(L).
(i) Ifavb¢CE(L) then 0,1,a,a*,b,b*,aVvb,a* Ab* are
pairwise distinct.
(i) fanb ¢ CE(L) then0,1,a,a*,b,b*;aAb,a*Vvb* are
pairwise distinct.

(i) Ifavb,anb ¢ CE(L) then 0,1,a,a*,b,b*,aVvb,a*Ab*,
aAb,a*Vvb* are pairwise distinct.




Lemma

Ifa,b € CE(L), avb,anb¢ CE(L), aAnb <a*Vvb*and
a* Ab* <aVvb then (i) — (iii) hold:
(i) 0,1,a,a*,b,b*;aVvb,a* Ab*;anb,a*Vvb* (aAnb)V(a*Ab*)
are pairwise distinct.
(i) 0,1,a,a*,b,b*;aVvb,a* Ab*,anb,a*Vvb* (aVvb)A(a*Vb*)
are pairwise distinct.
(i) (anb)v(a*Ab*)<(avb)A(a*Vvb")

Using the previous lemmas, we can prove the last theorem
characterizing minimal forbidden sublattices.



Theorem 4

Let L = (L,V,A,*,0,1) be a bounded lattice with an antitone
involution the set CE(L) of all complemented elements of which
does not form a sublattice. Then there exist a,b € CE(L) such
that either av b ¢ CE(L) or anb ¢ CE(L) or both and, up to
symmetry, the following cases are possible:

(i) avb,anb¢ CE(L),aAb<a*vb*anda*Ab*<aVvb
(i) avb,anb¢ CE(L), anb<a*Vvb*anda*Ab*||aVvb
(i) avb,aAnb ¢ CE(L),anb||a*Vvb*and a* Ab* <aVvb
(iv) avb,anb¢ CE(L), aAb|a*vb*anda*Ab*||aVvb

(v) avbeCEL),anb ¢ CE(L),avb=1andaAb < a*Vvb*
(vi) avbeCE(L), anb¢ CE(L),avb=1andaAb | a*Vb*
(vii) avb e CE(L), anb ¢ CE(L),avb#1andaAb <a*vb*
(viii) avb e CE(L),anb ¢ CE(L),avb#1andaAb| a*vb*




In the listed cases the following minimal (with respect to the
cardinality) lattices exist:

(i):

Here c :=(aAb)V(a*Ab*)=(aVvb)A(a*Vb*).



avbv(a*Ab¥)



@iii):




avbVv(a*Ab*¥)

aAnbA(a*Vvb*)






aAbA(a*Vvb¥)



(vii):




(viii):

aAbA(a*Vvb¥) a*Ab*



Remark. The remaining case aVb ¢ CE(L), aAb € CE(L)
need not be considered since in this case a*,b* satisfies one of
the conditions (v) — (viii).



