Bounded lattices with an antitone involution the complemented elements of which form a sublattice

Ivan Chajda

coauthor: Helmut Länger

Ivan Chajda Department of Algebra and Geometry, Faculty of Science Palacký University Olomouc, Czech Republic e-mail: chajda@inf.upol.cz

Helmut Länger Institute of Discrete Mathematics and Geometry Vienna University of Technology, Austria e-mail: h.laenger@tuwien.ac.at *-lattices (these are bounded lattices with an involution, denoted by *, satisfying De Morgan's laws) often serve as models for logics. *-complemented elements of such logics can be considered as sharp assertions corresponding to classical logic. The natural question arises when these elements form a sublogic. The problem of characterizing the structure of bounded lattices with an antitone involution the complemented elements of which form a sublattice seems to be very hard.

We start with the definition of a bounded lattice with an antitone involution and of a complemented element.

・ロト・日本・日本・日本・日本・日本

Definition

A **bounded lattice with an antitone involution** is an algebra $\mathcal{L} = (L, \lor, \land, ^*, 0, 1)$ of type (2,2,1,0,0) such that $(L, \lor, \land, 0, 1)$ is a bounded lattice and

$$(x \lor y)^* = x^* \land y^*,$$

 $(x \land y)^* = x^* \lor y^*$ and
 $(x^*)^* = x$

hold for all $x, y \in L$. An element *a* of *L* is called **complemented** if $a \lor a^* = 1$ and $a \land a^* = 0$. Let $CE(\mathcal{L})$ denote the set of all complemented elements of \mathcal{L} .

It is evident that if \mathcal{L} is moreover, distributive, i.e. a De Morgan algebra, then $CE(\mathcal{L})$ is the set of its Boolean elements and hence a sublattice of \mathcal{L} . Further, let us mention that $0, 1 \in CE(\mathcal{L})$ in each case.

Denote by **K** the class of all *-lattices \mathcal{L} for which $CE(\mathcal{L})$ is a sublattice of \mathcal{L} .

A *-lattice \mathcal{L}_2 is called a **0-1-homomorphic image** of the *-lattice \mathcal{L}_1 if there exists a homomorphism *f* from \mathcal{L}_1 onto \mathcal{L}_2 satisfying $f^{-1}(\{0\}) = \{0\}$ and $f^{-1}(\{1\}) = \{1\}$.

Further, for every class K_1 of *-lattices let $H_{01}(K_1)$ denote the class of all 0-1-homomorphic images of algebras of K_1 .

First we state some conditions which are equivalent to the fact that a *-lattice belongs to **K**:

(日) (日) (日) (日) (日) (日) (日) (日)

Lemma

```
For a *-lattice \mathcal{L} = (L, \lor, \land, ^*, 0, 1) the following are equivalent:

(i) \mathcal{L} \in \mathbf{K}

(ii) \operatorname{CE}(\mathcal{L}) is a subuniverse of \mathcal{L}

(iii) \operatorname{CE}(\mathcal{L}) is a subuniverse of (L, \lor)

(iv) \operatorname{CE}(\mathcal{L}) is a subuniverse of (L, \land).
```

Now we provide some examples. In the following, Hasse diagrams of *-lattices are drawn in such a way that * is the reflection on the central point of the Hasse diagram.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Example

The modular non-distributive *-lattice $\mathcal{M}_{3,3} = (M_{3,3}, \lor, \land, ^*, 0, 1)$ having the Hasse diagram

does not belong to **K** since $CE(\mathcal{M}_{3,3}) = \{0, \alpha, \beta, \beta^*, \alpha^*, 1\}$ is not a subuniverse of $\mathcal{M}_{3,3}$.

Example

Example

Fig. 3

does not belong to **K** since $CE(\mathcal{L}_0) = \{0, \alpha, \beta, \beta^*, \alpha^*, 1\}$ is not a subuniverse of \mathcal{L}_0 .

Remark. It is easy to see that $\mathcal{M}_{3,3} \notin \mathbf{H}_{01}(\mathcal{L}_0)$.

Remark. K is not a variety since $\overline{\mathcal{M}}_{3,3}$ belongs to K but its homomorphic image $\mathcal{M}_{3,3}$ does not.

Next we prove necessary respectively sufficient conditions for *-lattices to belong to **K**. In the following theorem a necessary condition for *-lattices to belong to **K** is given:

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem 1

For a *-lattice $\mathcal{L} = (L, \lor, \land, ^*, 0, 1)$ the condition $\mathcal{M}_{3,3}, \mathcal{L}_0 \notin H_{01}(\mathbf{S}(\{\mathcal{L}\}))$ is necessary for $\mathcal{L} \in \mathbf{K}$.

Next we state some sufficient conditions for *-lattices to belong to **K**. First we define two join-semilattices. Let S_1 and S_2 denote the join-semilattices with 1 with Hasse diagrams

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

respectively.

Theorem 2

For a *-lattice $\mathcal{L} = (L, \lor, \land, ^*, 0, 1)$ any single one of the following conditions is sufficient for $\mathcal{L} \in \mathbf{K}$:

(i)
$$x \lor y \lor (x^* \land y^*) \ge (x \lor x^*) \land (y \lor y^*)$$
 for all $x, y \in L$

(ii)
$$(x \lor x^*) \land y = (x \land y) \lor (x^* \land y)$$
 for all $x, y \in L$

(iii) $x \lor y \lor (x^* \land y^*) = (x \lor y \lor x^*) \land (x \lor y \lor y^*)$ for all $x, y \in L$ (iv) $\mathfrak{S}_1, \mathfrak{S}_2 \notin H(S(\{(L, \lor, 1)\})).$

Remark. Since K is defined completely symmetric with respect to \lor and \land , the dual assertions also hold.

Corollary. According to Theorem 2 every De Morgan algebra, i.e. every distributive *-lattice belongs to **K**.

Corollary. From the proof of Theorem 2 it follows that every *-lattice containing at most seven elements belongs to **K**.

Remark. Though $\overline{\mathcal{M}}_{3,3}$ belongs to **K**, it does not satisfy (i) of Theorem 2 since

$$lpha \lor eta \lor (lpha^* \land eta^*) = \gamma^* \precneqq \delta^* = (lpha \lor lpha^*) \land (eta \lor eta^*)$$

and hence also (ii) and (iii) of Theorem 2 are not satisfied. Moreover, $\overline{\mathfrak{M}}_{3,3}$ does not satisfy (iv) of Theorem 2. This shows that any single one of the conditions (i)–(iv) of Theorem 2 is not necessary for $\mathcal{L} \in \mathbf{K}$.

 \mathcal{L} is called a **near-chain** if for all $a, b \in L$ either a and b or a and b^* (or both) are comparable. Let us note that the lattice \mathcal{L}_0 depicted in Fig. 3 is a near-chain which is not modular. Of course, every chain is a near-chain.

Now, we characterize near-chains belonging to K:

Theorem 3

For a near-chain $\mathcal{L} = (L, \lor, \land, ^*, 0, 1)$ the condition $\mathcal{L}_0 \notin H_{01}(S(\{\mathcal{L}\}))$ is necessary and sufficient for $\mathcal{L} \in K$.

Corollary. Every near-chain containing at most nine elements belongs to **K**.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Corollary. Every modular near-chain belongs to K.

From now on, we consider bounded lattices with an antitone involution whose complemented elements do not form a sublattice. First, we get three technical lemmas.

Lemma

If $a, b \in CE(\mathcal{L})$ and either $a \lor b \notin CE(\mathcal{L})$ or $a \land b \notin CE(\mathcal{L})$ or both then $a \land b \ngeq a^* \lor b^*$ and $a^* \land b^* \nsucceq a \lor b$.

Lemma

Let $a, b \in CE(\mathcal{L})$.

- (i) If a ∨ b ∉ CE(L) then 0, 1, a, a*, b, b*, a ∨ b, a* ∧ b* are pairwise distinct.
- (ii) If a ∧ b ∉ CE(L) then 0, 1, a, a*, b, b*, a ∧ b, a* ∨ b* are pairwise distinct.

(iii) If $a \lor b, a \land b \notin CE(\mathcal{L})$ then $0, 1, a, a^*, b, b^*, a \lor b, a^* \land b^*$, $a \land b, a^* \lor b^*$ are pairwise distinct.

Lemma

If $a, b \in CE(\mathcal{L})$, $a \lor b, a \land b \notin CE(\mathcal{L})$, $a \land b < a^* \lor b^*$ and $a^* \land b^* < a \lor b$ then (i) – (iii) hold:

 (i) 0,1,a,a*,b,b*,a∨b,a*∧b*,a∧b,a*∨b*,(a∧b)∨(a*∧b*) are pairwise distinct.

 (ii) 0,1,a,a*,b,b*,a∨b,a*∧b*,a∧b,a*∨b*,(a∨b)∧(a*∨b*) are pairwise distinct.

(iii)
$$(a \wedge b) \vee (a^* \wedge b^*) \leq (a \vee b) \wedge (a^* \vee b^*)$$

Using the previous lemmas, we can prove the last theorem characterizing minimal forbidden sublattices.

Theorem 4

Let $\mathcal{L} = (L, \lor, \land, ^*, 0, 1)$ be a bounded lattice with an antitone involution the set $CE(\mathcal{L})$ of all complemented elements of which does not form a sublattice. Then there exist $a, b \in CE(\mathcal{L})$ such that either $a \lor b \notin CE(\mathcal{L})$ or $a \land b \notin CE(\mathcal{L})$ or both and, up to symmetry, the following cases are possible:

(i) $a \lor b, a \land b \notin CE(\mathcal{L}), a \land b < a^* \lor b^*$ and $a^* \land b^* < a \lor b$

(ii) $a \lor b, a \land b \notin CE(\mathcal{L}), a \land b < a^* \lor b^* \text{ and } a^* \land b^* \parallel a \lor b$

(iii) $a \lor b, a \land b \notin CE(\mathcal{L}), a \land b \parallel a^* \lor b^*$ and $a^* \land b^* < a \lor b$

(iv) $a \lor b, a \land b \notin CE(\mathcal{L}), a \land b \parallel a^* \lor b^*$ and $a^* \land b^* \parallel a \lor b$

(v) $a \lor b \in CE(\mathcal{L}), a \land b \notin CE(\mathcal{L}), a \lor b = 1 \text{ and } a \land b < a^* \lor b^*$

(vi) $a \lor b \in CE(\mathcal{L}), a \land b \notin CE(\mathcal{L}), a \lor b = 1 \text{ and } a \land b \parallel a^* \lor b^*$

(vii) $a \lor b \in CE(\mathcal{L}), a \land b \notin CE(\mathcal{L}), a \lor b \neq 1 \text{ and } a \land b < a^* \lor b^*$

(viii) $a \lor b \in CE(\mathcal{L})$, $a \land b \notin CE(\mathcal{L})$, $a \lor b \neq 1$ and $a \land b \parallel a^* \lor b^*$

In the listed cases the following minimal (with respect to the cardinality) lattices exist:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

(ii):

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(iv):

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

(v):

4 日 > 4 日 > 4 目 > 4 目 > 1 日 >

(vi):

▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - の へ ()・

4 日 > 4 日 > 4 目 > 4 目 > 目 の 4 0

・ロト・(四ト・(川下・(日下・))

Remark. The remaining case $a \lor b \notin CE(\mathcal{L})$, $a \land b \in CE(\mathcal{L})$ need not be considered since in this case a^*, b^* satisfies one of the conditions (v) – (viii).

▲□▶▲□▶▲□▶▲□▶ □ のQ@