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Alfréd Rényi Institute of Mathematics,

Hungarian Academy of Sciences
and
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Partition lattices
Obviously, the partition lattice Part(k) (the lattice of all
equivalence relations on a k-element set) is a congruence lattice.

It is also an interval in a subgroup lattice, for example

Int(S1 × S2 × S4 × · · · × S2k−1 ; S2k−1) ∼= Part(k).

Lemma. Let S be a finite nonabelian simple group, and
D = {(s, s, . . . , s)|s ∈ S} the diagonal subgroup in Sk .
Then Int(D; Sk) is the dual of Part(k).

Proof. Every subgroup D ≤ X ≤ Sk is a subdirect power of the
form {(sα1

i(1), s
α2

i(2), . . . , s
αk

i(k))|s1, . . . , sm ∈ S}, where

i : {1, . . . , k} → {1, . . . ,m} and α1, . . . , αk ∈ Aut(S). Since
D ≤ X , all automorphisms can be taken to the identity.
For example X = {(s1, s2, s1, s1, s3, s2)|s1, s2, s3 ∈ S}.
So X is determined by the kernel of the mapping i .
The larger the kernel of i is, the smaller is the corresponding
subgroup.



The dual lattice

Theorem (Kurzweil, 1985; Netter)
The dual of a finitely representable lattice is also finitely
representable.
Proof. Let L ∼= Con(U; F ) for a unary algebra (U; F ). Take any
finite nonabelian simple group S .
Take the permutation group (unary algebra) (SU :D; SU), its
congruence lattice is the dual of Part(U).
The elements of SU are functions U → S , the elements of the
diagonal subgroup D are the constant functions.
The operations f ∈ F , f : U → U give rise to operations on SU

simply by composition: if g : U → S , then f (g) : U → S is defined
by (f (g))(u) = g(f (u)).
If we multiply g by a constant, then f (g) will be multiplied by the
same constant, therefore f can be defined on SU :D as well.
A congruence of (SU :D; SU) remains a congruence of the algebra
(SU :D; SU ∪ F ) iff it corresponds to a partition invariant under all
f ∈ F , that is, iff it is a congruence of (U; F ).



Intervals and sublattices

If ϑ ∈ Con(U; F ), then Con(U/ϑ; F ) ∼= Int(ϑ; 1), so a filter in the
congruence lattice is again a congruence lattice.

The theorem about the representation of the dual lattice then
yields:
Corollary. Every interval is a finitely representable lattice is also
finitely representable.
John Snow (2000) gave a direct proof.

Is every sublattice of a finitely representable lattice also finitely
representable?
Theorem (Pudlák and Tůma, 1980)
Every finite lattice can be embedded into a suitable finite partition
lattice.



HSP

Is every homomorphic image of a finitely representable lattice also
finitely representable?

Lemma (P5, 1980) Let e ∈ Pol1(U; F ) be an idempotent function
(e2 = e), then the restriction is a lattice homomorphism of
Con(U; F ) onto Con(e(U); eF ) (the induced algebra).

Lemma. The direct product of finitely representable lattices is also
finitely representable.
Proof. Take the product of transformation monoids containing all
constants, then
Con(U1 × U2; F1 × F2) = Con(U1; F1)× Con(U2; F2).
Here (f1, f2)(u1, u2) = (f1(u1), f2(u2)).



Snowmobile-1

Lemma 1 (Snow, 2000) Let α, β ∈ Con(U; F ). Then we can find
additional operations F ∗ so that

Con(U; F ∪ F ∗) = {γ ∈ Con(U; F )|γ ≤ α or γ ≥ β}.

Proof. Let F ∗ consist of those unary operations whose kernel
contains α and the image lies in one β-class.
If α ≥ γ ∈ Con(U; F ), f ∗ ∈ F ∗ and (u, v) ∈ γ ≤ α, then
f ∗(u) = f ∗(v), so f ∗ preserves γ.
If β ≤ γ ∈ Con(U; F ), f ∗ ∈ F ∗ (and (u, v) ∈ γ), then f ∗(u) and
f ∗(v) lie in the same β-class, so in the same γ-class, hence f ∗

preserves γ.
If γ ∈ Con(U; F ) is such that α 6≥ γ and β 6≤ γ, then choose
(u, v) ∈ γ \ α and (u′, v ′) ∈ β \ γ. Let f ∗ take the value u′ on the
α-class of u and v ′ everywhere else. Then f ∗ ∈ F ∗, (u, v) ∈ γ, but
(f ∗(u), f ∗(v)) = (u′, v ′) /∈ γ.



Snowmobile-2

Lemma 2 (Snow) Let β1 ≤ α1, β2 ≤ α2 be congruences of (U; F )
such that β1 ∨ β2 = 1 and α1 ∧ α2 = 0. Then we can find
additional operations F ∗ so that

Con(U; F ∪ F ∗) = {0} ∪ Int(β1;α1) ∪ Int(β2;α2) ∪ {1}.

Proof. Take the additional operations provided by Lemma 1 both
for the pair β1, α2 and for β2, α1. Then the congruences that
remain are those which lie

(above β1 or below α2) and (above β2 or below α1),

that is

γ ≥ β1 ∨ β2 or β1 ≤ γ ≤ α1 or β2 ≤ γ ≤ α2 or γ ≤ α1 ∧ α2.



More Snow (1)

Theorem (Snow, 2000) The ordinal sum and the parallel sum of
two finitely representable lattices are also finitely representable.

Proof. The ordinal sum of L1 and L2 is their disjoint union, where
every element of L1 is smaller than each element of L2. A
somewhat more natural version of the ordinal sum of two lattices is
obtained from the usual ordinal sum if we identify the largest
element of L1 with the smallest element of L2.
This construct will be denoted by L1 + L2.
(A noncommutative—but associative—addition!)
The usual ordinal sum of L1 and L2 is just L1 + 2 + L2.
Now take a finite algebra with conguence lattice L1 × L2 and use
Snowmobile-1 with α = β = (1, 0). Then we obtain a finite
algebra with congruence lattice L1 + L2.



More Snow (2)

The parallel sum of L1 and L2 is the disjoint union

{0} ∪ L1 ∪ L2 ∪ {1},

where the elements of L1 and L2 are pairwise incomparable.
First we prove the claim when L2 is the 1-element lattice, and we
will denote the parallel sum of L and the 1-element lattice by L+.
(It has three additional elements: 0 < m < 1.)
Let Con(U; F ) ∼= L. Take the algebra (U × {1, 2}; F ), where
f (u, i) = (f (u), i). Use Snowmobile-2 with the following
congruences: α1 has two classes U × {1} and U × {2}, β1 has one
nonsingleton class U × {1}, α2 = β2 has 2-element classes
{(u, 1), (u, 2)}.
So we obtain an algebra with congruence lattice isomorphic to L+.
In general, the parallel sum of L1 and L2 can be obtained using
Snowmobile-2 in the congruence lattice L+

1 × L+
2 with

α1 = (11,m), β1 = (01,m), α2 = (m, 12), β2 = (m, 02).



Some classes of finitely representable lattices

Definition A finite(ly generated) lattice L is lower bounded if
there exists an epimorphism ϕ : FL(X )→ L such that
∀a ∈ L : {w ∈ FL(X )|ϕ(w) ≥ a} has a least element.

Theorem. A finite lattice L is lower bounded iff L and Con(L) has
the same number of join irreducible elements.

Theorem (Pudlák and Tůma, 1976)
The finite lower bounded lattices are finitely representable.
(They called these lattices finitely fermentable.)

Theorem (Snow, 2000) Every finite lattice which contains no
three element antichains is finitely representable.

Theorem (Snow, 2003) Every finite lattice in the variety generated
by M3 is finitely representable.



Hereditary congruence lattices

The idea of Snow’s proof is this:
If L is a finite lattice in the variety generated by M3, then L is a
0–1-sublattice of Mk

3 for some k . M3
∼= Part(3), so L can be

considered as a 0–1-sublattice of Part(3)k ⊂ Part(3k). He then
proves that every 0–1-sublattice of Part(3)k is the congruence
lattice of some algebra on the 3k -element set.

Definition (Hegedűs and P3, 2005) A 0–1-sublattice L of all
equivalence relations on a finite set U is called a hereditary
congruence lattice if every 0–1-sublattice L′ ⊆ L is the
congruence lattice of a suitable algebra on U. Furthermore, L is
called power-hereditary if Lk as a lattice of equivalence relations
on Uk is a hereditary congruence lattice for every k ≥ 1.

In this language Snow’s result says that the lattice of all
equivalences on the 3-element set is power-hereditary.



Snakes

Con(Z2 × Z2) (∼= M3) is also power-hereditary (Hegedűs and P3),
but there are non-power-hereditary representations of M3 as well
(P3, 2006).

Problem. Is there a hereditary congruence lattice isomorphic to
M4? That is Con(U; F ) ∼= M4 and for every nontrivial congruence
ϑi (i = 1, . . . , 4) there is a unary function f ∗i such that
Con(U,F ∪ {f ∗i }) = Con(U; F ) \ {ϑi}.

A snake of length n ≥ 2 is a modular lattice glued together from
n − 1 M3’s.

Theorem (Hegedűs and P3, 2005) Every finite lattice in the
variety generated by all snakes is finitely representable.

We construct operator groups (A; +,F ), where (A; +) is an
elementary abelian 2-group and F is a suitable ring of
endomorphisms of (A; +).


