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The finite congruence lattice problem

Is it true that for every finite lattice L there exists a finite algebra
with congruence lattice isomorphic to L ?
L is finitely representable (as a congruence lattice)

Con(U; F ) ∼= Con(U; Pol1(U; F )),
since if f ∈ F , f : Un → U, and u1 ≡ v1, . . . , un ≡ vn, then
f (u1, u2, u3, . . . , un) ≡ f (v1, u2, u3, . . . , un) ≡
f (v1, v2, u3, . . . , un) ≡ · · · ≡ f (v1, v2, v3, . . . , vn).
So we assume that the algebra is unary, and the operations form a
transformation monoid F .

If L is finitely representable, we will take a representation where
|U| is minimal such that Con(U; F ) ∼= L.
Variation (Aschbacher): |U| minimal such that Con(U; F ) is
isomorphic to L or its dual.
Börner uses self-dual lattices in his proof.



P5

Theorem (Pavel Pudlák – P3, 1980)
Let L be a finite lattice such that

I L is simple,

I ∀ 0 6= x ∈ L ∃ y1, y2 ∈ L : x ∨ y1 = x ∨ y2 = 1, y1 ∧ y2 = 0,

I |L| > 2, and if 0 6= x ∈ L is not an atom, then there are at
least four atoms < x .

Suppose that (U; F ) is minimal such that Con(U; F ) ∼= L, where F
is a transformation monoid. Then F is a transitive permutation
group (together with some constant operations).

Theorem (P3, 1984)
Let 2 < |U| <∞. If Pol1(U; F ) is a permutation group together
with all constants, then either the algebra is essentially unary, or it
is polynomially equivalent to a vector space.

Tame Congruence Theory (Hobby–McKenzie, 1983)



The finite congruence lattice problem
is a group theoretic problem.



Transitive permutation groups

If H is a subgroup of G then we get a transitive action of G on the
set of right cosets of H by taking (Hx)g = Hxg (x , g ∈ G ). This
G -set is denoted by (G :H; G ). Here the stabilizer of the coset H is
H itself.

If G acts transitively on U, then choosing an element u ∈ U, the
elements of U are in one-to-one correspondence with the right
cosets of the stabilizer Gu, namely, v ↔ {g ∈ G | ug = v}. Thus
(U; G ) ∼= (G :Gu; G ).

So there is a one-to-one correspondence between the transitive
actions of G and the conjugacy classes of subgroups in G .

If ϕ : (U; G )→ (V ; G ) is a homomorphism, then clearly
Gu ≤ Gϕ(u). Conversely, if H ≤ K ≤ G , then Hx 7→ Kx gives a
well-defined homomorphism (G :H; G )→ (G :K ; G ).

Thus if G acts transitively on U, then Con(U; G ) ∼= Int(Gu; G ).

We will assume that the action is core-free, i.e.,
⋂

g∈G g−1Hg = 1.



Normal subgroups

Let 1 6= N C G be a normal subgroup, X = HN.
Then X > H, since H is core-free.
If H ≤ Y ≤ G , then Y ∨ X = YX = YN, hence
|Y | = |Y ∨ X ||Y ∧ X ||X |−1.
So Int(H; G ) cannot contain a pentagon with X and Y1 < Y2 such
that Y1 ∨ X = Y2 ∨ X , Y1 ∧ X = Y2 ∧ X .
Hence X = HN is a modular element in Int(H; G ).

If there are no modular elements in L other than 0 and 1, then
HN = G for every nontrivial normal subgroup N, i.e., N acts
transitively on G :H.
Such permutation groups are called quasi-primitive.

Example for such L.



Minimal normal subgroups

Let G be a finite group, N C G a minimal normal subgroup (so N
is characteristically simple, i.e., no nontrivial proper subgroup of
N is invariant for all automorphisms of N), then

I either N is an elementary abelian p-group (p prime),

I or N = S1 × · · · × Sk (k ≥ 1) is a direct product of pairwise
isomorphic nonabelian simple groups.

In a quasiprimitive group G = HN, so

Int(H; G ) ∼= IntH(H ∩ N; N).

In the first case it is a sublattice of the subgroup lattice of an
abelian group, hence modular.
Let us consider the second case, where N is a nonabelian
characteristically simple group.



Characteristically simple groups

N = S1 × · · · × Sk

The only simple normal subgroups of N are S1, . . . , Sk .
They are permuted transitively by H (in the conjugation action).

Let A = NH(S1), then |H :A| = k ; α : A→ Aut(S1).

If H ∩ N = 1, then G is the twisted wreath product determined by
(S1,H,A, α).

How can we force α(A) ≥ Inn(S1) ?

What happens if H ∩ N 6= 1 ?

These questions are analyzed in the papers of Baddeley, Börner,
and Aschbacher.



A little bit of taste

If 1 < R1 < S1 is an A-invariant subgroup, then

〈h−1R1h|h ∈ H〉 = R1 × R2 × · · · × Rk

is H-invariant.
If all subgroups in IntH(H ∩ N; N) have this form, then
IntH(H ∩ N; N) ∼= IntA(A ∩ S1; S1) ∼= Int(A; AS1).
AS1 is not necessarily an almost simple group, but it has a simple
normal subgroup (although maybe with a nontrivial centralizer).

If H ∩ N is a subdirect product in N = S1 × · · · × Sk , then we can
use the description of subdirect powers of simple groups as it was
given in the first lecture.



Signalizer lattices (1)

The twisted wreath product HU is built up form (B,H,A, α).

Theorem. The dual of the lattice SubH(U) is isomorphic to the
lattice of all extensions of α to subgroups of H with a largest
element added.

β : T → Aut(B), β
∣∣
A

= α

Aut(B) ≥ β(T ) ≥ α(A) ≥ Inn(B)

Aut(B)/ Inn(B) is solvable (Schreier’s Conjecture) and “small”.

We can extend the kernel, like in the example we had:
A = {(a, a)|a ∈ A5} < A5 × A5 < S5 × A5.

Lemma (Aschbacher) If β : T → Aut(B) extends
α : A→ Aut(B), then Kerβ uniquely determines β.



Signalizer lattices (2)

So instead of talking about extensions of α, we can talk about
pairs (T ,K ) with

I A ≤ T ≤ H,

I K C T ,

I K ∩ A = Kerα, and

I T/K isomorphic to a subgroup of Aut(B).

Take the reverse order of these pairs
(T1,K1) ≤ (T2,K2) ⇐⇒ T1 ≥ T2 and K1 ≥ K2

(T2 ∩ K1 = K2

follows automatically)
and add a smallest element.

This is called a signalizer lattice by Aschbacher.
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Proof of the Lemma

Lemma (Aschbacher) If β : T → Aut(B) extends
α : A→ Aut(B), then Kerβ uniquely determines β.

Proof. Let K be the kernel, then β gives an embedding of T/K
into Aut(B) that extends a fixed embedding of A/(A ∩ K ). If we
have two β’s with the same kernel K , then there is an isomorphism
between two subgroups of Aut(B) which is the identity on Inn(B).
Let σ 7→ σ′ denote this isomorphism, and let ιb be the conjugation
by b ∈ B (an inner automorphism). Then

ιbσ = σ−1ιbσ 7→ (σ′)−1ι′bσ
′ = (σ′)−1ιbσ

′ = ιbσ′ ,

so bσ = bσ
′

for all b ∈ B, thus σ = σ′.



The kernel

Excercise. Determine the kernel of the action of the twisted
wreath product HU on U.

The stabilizer of 1 ∈ U is H, so we have to find

{h ∈ H | ∀u ∈ U : uh = u}.

Rewrite: ∀u ∈ U, ∀x ∈ H : u(hx) = u(x).

u(x) determines the values of u on xA, the other values are
independent of u(x), hence hx ∈ xA, hx = xa for some a ∈ A.

Then u(x) = u(hx) = u(xa) = u(x)a, so x−1hx = a ∈ Kerα for all
x ∈ H.

Therefore the kernel of the action of G on U is⋂
x∈H

x(Kerα)x−1,

the core of Kerα in H.



Mn (1)

Mn is the (modular) lattice consisting of a smallest, a largest, and
n pairwise incomparable elements.
Except for the three papers, most work have been devoted to the
study of representing Mn’s.
Over the finite field of q elements the 2-dimensional vector space
has congruence lattice Mq+1, and here q is a prime-power. So we
have finite representations of Mn with
n = q + 1 = 3, 4, 5, 6, 8, 9, 10, 12, . . . .
For the smallest missing cases Feit (1983) found the following
examples:
Int(31 · 5,A31) ∼= M7 and Int(31 · 3,A31) ∼= M11.
These cannot be generalized:
Theorem (Basile, 2001) If Int(H; Ad) or Int(H; Sd) ∼= Mn, then
either n ≤ 3 or one of the following holds:
(n, d) = (5, 13), (7, 31), (11, 31).



Mn (2)

A series of examples was found by Lucchini (1994): Mn is finitely
representable if

n = q + 2 or n =
qt + 1

q + 1
+ 1,

where q is a prime-power and t is an odd prime, so
n = q + 2 = 4, 5, 6, 7, 9, 10, 11, 13, . . . ,
n = q2 − q + 2 = 4, 8, 14, 22, 44, . . . ,
n = q4 − q3 + q2 − q + 2 = 12, 62, . . . , etc.
The remaining cases (n = 16, 23, 35, . . . ) are still open.
Baddeley–Lucchini 100-page paper (1997): reduction to questions
about almost simple groups.
For example:
Problem. Describe all pairs (S ,A), where S is a nonabelian simple
group, A ≤ Aut(S) such that there is exactly one proper nontrivial
A-invariant subgroup of S .


