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0. Quick introduction

Theorem (Grätzer György – Schmidt Tamás, 1963)
For every algebraic lattice L there exists an algebra with
congruence lattice isomorphic to L.

L is representable (as a congruence lattice)

Proofs by Grätzer and Schmidt (1963), Lampe (1973), Pudlák
(1976), Tůma (1989) (almost) always yield an infinite algebra,
even if L is finite.

The finite congruence lattice problem
Is it true that for every finite lattice L there exists a finite algebra
with congruence lattice isomorphic to L ?

L is finitely representable (as a congruence lattice)



1. Reductions

Con(U; F ) = Con(U; Pol1(U; F )), so we will assume that the
algebra is unary, and the operations form a transformation monoid.

If L is finitely representable, we will take a representation where
|U| is minimal such that Con(U; F ) ∼= L.

Theorem (Pavel Pudlák – P3, 1980)
If L satisfies certain assumptions

(that will be specified in
Lecture 2)

, then

(in the minimal unary representation of L)

the
operations form a transitive permutation group

(after removing the
constant operations)

.

This leads to the following equivalent formulation of the finite
congruence representation problem:

Is it true that for every finite lattice L there exists a finite group G
and a (core-free) subgroup H ≤ G such that the interval Int(H; G )
of the subgroup lattice consisting of the subgroups containing H is
isomorphic to L ?
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Transitive permutation groups

G a group acting from the right on the set U

(U; G ) is also called a G-set

Notation: u 7→ ug (u ∈ U, g ∈ G )

u(g1g2) = (ug1)g2 , u1 = u

stabilizer of u ∈ U: Gu = {g ∈ G | ug = u} ≤ G

Gug = g−1Gug

G is transitive: ∀u, v ∈ U ∃g ∈ G : ug = v , i.e., the unary algebra
(U; G ) has no proper subalgebra.



The core

The kernel of a transitive action of G on U is

{g ∈ G | ∀v ∈ U : vg = v} =
⋂
v∈U

Gv =
⋂
g∈G

g−1Gug ,

the largest normal subgroup of G contained in the stabilizer Gu,
the core of Gu.

So we can assume that H is core-free in G , i.e.,
⋂

g∈G g−1Hg = 1.

In fact, if N C G and N ≤ H, then Int(H; G ) ∼= Int(H/N; G/N).



The strategy

Is it true that for every finite lattice L there exists a finite group G
and a core-free subgroup H ≤ G such that Int(H; G ) ∼= L ?

We try to reduce the question to the case when G is an almost
simple group: G has a normal subgroup S which is a nonabelian
simple group and CG (S) = 1.
Hence G embeds into Aut(S). If we identify S with the subgroup
of Aut(S) consisting of the inner automorphisms (the conjugations
by elements of S), then we obtain Inn(S) ≤ G ≤ Aut(S).

Fact (Schreier’s Conjecture): For every finite simple group S ,
the outer automorphism group Aut(S)/ Inn(S) is solvable.
Established using the Classification of Finite Simple Groups
(CFSG).

If the problem is reduced to the case of almost simple groups, then
using the CFSG one can attack it by a case-by-case analysis.



Three important papers

Robert Baddeley, A new approach to the finite lattice
representation problem, Periodica Mathematica Hungarica 36
(1998), 17–59.

Ferdinand Börner, A remark on the finite lattice representation
problem, Contributions to General Algebra 11, Proceedings of the
Olomouc Conference and the Summer School 1998, Verlag
Johannes Heyn, Klagenfurt 1999, 5–38.

Michael Aschbacher, On intervals in subgroup lattices of finite
groups, Journal of the American Mathematical Society 21 (2008),
809–830.

Their conclusion: G is almost simple

or a twisted wreath product.
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What to do now?

Analyze the case of twisted wreath products.

Either show that such groups cannot represent all finite lattices, so
get a reduction to the almost simple case,

or represent every finite lattice as an interval in the subgroup lattice
of a twisted wreath product, perhaps in some “combinatorial” way.



The obstacle

Twisted wreath product (Bernhard H. Neumann, 1963)

Ingredients:

I base group B,

I outer group H,

I a subgroup A ≤ H,

I a homomorphism α : A→ Aut(B); it defines an action of A
on B, which will be denoted — as before — by ba (instead of
bα(a)).

(If α maps every element of A to the identical automorphism of B,
then we obtain the ordinary wreath product — without twist.)



Twisted wreath product (1)

Given: H ≥ A→ Aut(B)

Construction:

BH = {f : H → B} (all functions). It is a group with pointwise
multiplication, isomorphic to B |H| = B × · · · × B.

Define the action of H on BH by

f h(x) = f (hx) (f ∈ BH , h ∈ H, x ∈ H).

It is indeed an action:
f h1h2(x) = f ((h1h2)x) = f (h1(h2x)) = f h1(h2x) = (f h1)h2(x).

f 7→ f h (for a fixed h ∈ H) is an automorphism of BH :
(f1f2)h(x) = (f1f2)(hx) = f1(hx)f2(hx) = f h

1 (x)f h
2 (x).

(The semidirect product of H and BH is the regular wreath
product of B and H.)



Twisted wreath product (2)

Given: H ≥ A→ Aut(B).
So far we have constucted BH and the action of H on it.
Here comes the twist:

Let

U = {u : H → B | ∀x ∈ H, a ∈ A : u(xa) = u(x)a}.

It is a subgroup of BH , and U ∼= B |H:A|. Namely, the value u(x)
determines the values on the whole left coset xA.

If u ∈ U, h ∈ H, then uh(xa) = u(hxa) = u(hx)a = (uh(x))a, so
uh ∈ U, i.e., U is an H-invariant subgroup of BH .

HU is the twisted wreath product of the ingredients (B,H,A, α).

(h1u1)(h2u2) = (h1h2)(uh2
1 u2)



The interval Int(H ; HU)

If H ≤ X ≤ HU, then X = H(U ∩ X ), where U ∩ X is an
H-invariant subgroup of U.

Conversely, if V ≤ U is H-invariant, then H ≤ HV ≤ HU.

So
Int(H; HU) ∼= SubH(U),

the lattice of H-invariant subgroups of U.



Restrictive conditions

In general, SubH(U) is too complex, but the reduction in the
papers of Baddeley, Börner, and Aschbacher leads to twisted
wreath products with severely restricted ingredients.

I (a) B is a nonabelian simple group,

I (b) α(A) ≥ Inn(B),

I (c) Kerα is core-free in H.

We have to determine SubH(U), the lattice of H-invariant
subgroups of U under these hypotheses.



SubH(U) (1)

Let 1 6= V ≤ U ≤ BH be a nontrivial H-invariant subgroup.

Let V (x) = {v(x) | v ∈ V } ≤ B (x ∈ H).

Since V is H-invariant,

V (x) = {v(x1) | v ∈ V } = {v x(1) | v ∈ V } = V (1),

so V (x) is independent of x .

For a ∈ A,

V (1) = V (a) = {v(1a) | v ∈ V } = {v(1)a | v ∈ V } = V (1)a.

Now since every inner automorphism of B is induced by some
element of A (Condition (b)), V (1) is a normal subgroup of B,
hence by the simplicity of B (Condition (a)), V (x) = V (1) = B,
i.e., V is a subdirect power of B.



Subdirect powers

What does a subdirect power of a nonabelian simple group look
like?

(It is an essential ingredient in the proof of the
O’Nan–Scott[–Aschbacher] Theorem on primitive permutation
groups.)

Lemma. Let B be a nonabelian simple group and V ≤ Bn a
subdirect power of B. Then V is isomorphic to Bm for some
1 ≤ m ≤ n via an isomorphism Bm → V ,

(b1, . . . , bm) 7→ (bβ1

i(1), . . . , b
βn

i(n)),

where i : {1, . . . , n} → {1, . . . ,m} is a surjective map and
β1, . . . , βn ∈ Aut(B).

Example. n = 5, m = 2:
V = {(b1, b

β
1 , b2, b

γ
1 , b

β
2 ) | b1, b2 ∈ B} ≤ B5



SubH(U) (2)

Let 1 6= V ≤ U ≤ BH be a nontrivial H-invariant subgroup.

Define T = {t ∈ H | ∀v ∈ V : v(1) = 1 =⇒ v(t) = 1}, and for
t ∈ T let β(t) ∈ Aut(B) such that v(t) = v(1)β(t).

If u ∈ U, then u(a) = u(1)a, hence A ≤ T , and β(a) = α(a) for all
a ∈ A.

v(xt) = v x(t) = v x(1)β(t) = v(x)β(t) (x ∈ H, t ∈ T ),

v(t1t2) = v(t1)β(t2) = v(1)β(t1)β(t2) (t1, t2 ∈ T ), so T is a
subgroup and β(t1t2) = β(t1)β(t2), i.e., β : T → Aut(B) is a
homomorphism.

Thus HV is the twisted wreath product constructed from the data
(B,H,T , β).

Theorem. The dual of the lattice SubH(U) ∼= Int(H; HU) is
isomorphic to the lattice of all extensions of α to subgroups of H
with a largest element added.



Examples

B = A5, H = S5 × A5, A = {(a, a) | a ∈ A5}, α the natural
mapping A ∼= A5 → Aut(B) = Aut(A5) ∼= S5

The subgroups containing A are A < A5 × A5 < S5 × A5 = H.
There are two extensions of α to both A5 × A5 and S5 × A5 (the
projections).
So Int(H; HU) is the hexagon.

Aschbacher gave a somewhat different example yielding the
hexagon. It also provided an answer to a question about von
Neumann algebras left open by Watatani (1996).
B = A5, H = A6 × A6, A = {(a, a) | a ∈ A5}
The subgroups containing A are
A < A5 × A5 < A6 × A5,A5 × A6 < A6 × A6 = H.
There are two extensions of α to A5 × A5, unique extensions to
both A6 × A5 and A5 × A6, and no extension to H = A6 × A6.



Happy birthday

I learned about the finite congruence lattice problem at Ervin
Fried’s seminar in 1976.

Ervin Fried was born on September 6, 1929.

Happy birthday!


