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Basic algebras
Recallings

Basic algebras = bounded lattices with sectional antitone
involutions.

0

1

a

γa

6

?

¬x := γ0(x)

x ⊕ y := γy (¬x ∨ y)

Basic algebras = algebras (A,⊕,¬, 0) of type (2, 1, 0)
satisfying the identities

x ⊕ 0 = x ,

¬¬x = x ,

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x ,

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x ⊕ z) = ¬0.
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Basic algebras
Recallings

Problem

Find an associative basic algebra that is not commutative.

M. Kolǎŕık:
Every associative basic algebra is commutative,
i.e., MV-algebras are just associative basic algebras.
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Lattice effect algebras and D-lattices

Definition

An effect algebra is a structure (E ,+, 0, 1) where 0, 1 are
elements of E and + is a partial binary operation on E , satisfying
the following conditions:

(EA1) x + y = y + x if one side is defined,

(EA2) x + (y + z) = (x + y) + z if one side is defined,

(EA3) for every x there exists a unique x ′ such that x ′ + x = 1,

(EA4) x + 1 is defined only for x = 0.

The underlying order:

x ≤ y iff y = x + z for some z ;

this z is denoted by y − x .
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D,≤,−, 0, 1) where (D,≤, 0, 1) is a
bounded poset and − is a partial binary operation such that x − y
is defined iff x ≥ y , satisfying the conditions

(DP1) x − 0 = x ,

(DP2) if x ≤ y ≤ z , then z − y ≤ z − x and
(z − x)− (z − y) = y − x .

To a D-poset (D,≤,−, 0, 1) there corresponds the effect algebra
(D,+, 0, 1) obtained by letting

x + y := z iff z ≥ y and z − y = x .

Lattice effect algebras/D-lattices are those with the underlying
lattice order.
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J. Kühr “Basic” Algebras II



Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D,≤,−, 0, 1) where (D,≤, 0, 1) is a
bounded poset and − is a partial binary operation such that x − y
is defined iff x ≥ y , satisfying the conditions

(DP1) x − 0 = x ,

(DP2) if x ≤ y ≤ z , then z − y ≤ z − x and
(z − x)− (z − y) = y − x .

To a D-poset (D,≤,−, 0, 1) there corresponds the effect algebra
(D,+, 0, 1) obtained by letting

x + y := z iff z ≥ y and z − y = x .

Lattice effect algebras/D-lattices are those with the underlying
lattice order.
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Lattice effect algebras and D-lattices
. . . as basic algebras

In each effect algebra/D-poset:

x 7→ x ′ + a is an antitone involution on [a, 1],

x 7→ a− x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:

Theorem

Let (E ,+, 0, 1) be a lattice effect algebra. If we set

x ⊕ y := (x ∧ y ′) + y and ¬x := x ′,

then (E ,⊕,¬, 0) is a basic algebra.

Proof: x ⊕ y := (x0 ∨ y)y = (x ′ ∨ y)′ + y = (x ∧ y ′) + y .
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Lattice effect algebras and D-lattices
. . . as basic algebras

In the basic algebra (E ,⊕,¬, 0) associated to (E ,+, 0, 1) we have:

x 	 y := ¬(y ⊕ ¬x) = x − (x ∧ y);

x − y = x 	 y for x ≥ y ;

x + y = x ⊕ y for x ≤ ¬y .
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Lattice effect algebras and D-lattices
. . . as basic algebras

Which basic algebras are derived from lattice effect algebras?

Theorem

Let (A,⊕,¬, 0) be a basic algebra, and define the partial operation
+ as follows:

x + y is defined iff x ≤ ¬y , in which case x + y := x ⊕ y .

Then (A,+, 0, 1) is a lattice effect algebra if and only if
(A,⊕,¬, 0) satisfies the quasi-identity

x ≤ ¬y & x ⊕ y ≤ ¬z ⇒ (x ⊕ y)⊕ z = x ⊕ (z ⊕ y). (E)

For x = 0 we have

y ≤ ¬z ⇒ y ⊕ z = z ⊕ y .
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Lattice effect algebras and D-lattices
. . . as basic algebras

Theorem

Let (A,⊕,¬, 0) be a basic algebra, and define the partial operation
− as follows:

x − y is defined iff x ≥ y , in which case x − y := x 	 y .

Then (A,≤,−, 0, 1) is a D-lattice if and only if (A,⊕,¬, 0) satisfies
the quasi-identity

x ≤ y ≤ z ⇒ (z 	 x)	 (z 	 y) = y 	 x . (E’)
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Effect basic algebras

Definition

We call a basic algebra an effect basic algebra if it satisfies (E)
(equivalently, (E’)).

Effect basic algebras (= lattice effect algebras = D-lattices) form a
variety. This variety is

congruence regular and arithmetical;

an ideal variety; the ideal terms (in y ’s) are

t1(x , y1, y2) = x ∧ (y1 ⊕ y2),

t2(x , y) = ¬x 	 ¬y .
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Effect basic algebras
Compatibility and commutativity

In a lattice effect algebra, two elements x , y are compatible if

(x ∨ y)− y = x − (x ∧ y).

Theorem

Let (E ,⊕,¬, 0) be an effect basic algebra and (E ,+, 0, 1) the
associated lattice effect algebra. Then x , y ∈ E are compatible iff
x ⊕ y = y ⊕ x .

Theorem

For every effect basic algebra E , the following are equivalent:

1 E is an MV-algebra;

2 E is commutative;

3 E satisfies the RDP.
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Effect basic algebras
Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

Theorem

For every basic algebra E , the following are equivalent:

1 E is an effect basic algebra;

2 every block of E is a subalgebra which itself is an MV-algebra.

Theorem

Let E be an effect basic algebra. If E is subdirectly irreducible,
then its MV-centre MV (E ) is a subdirectly irreducible MV-algebra
(hence MV (E ) is linearly ordered).
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J. Kühr “Basic” Algebras II



Effect basic algebras
Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

Theorem

For every basic algebra E , the following are equivalent:

1 E is an effect basic algebra;

2 every block of E is a subalgebra which itself is an MV-algebra.

Theorem

Let E be an effect basic algebra. If E is subdirectly irreducible,
then its MV-centre MV (E ) is a subdirectly irreducible MV-algebra
(hence MV (E ) is linearly ordered).
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Effect basic algebras
Some varieties

BooleanA

OML MVA

?

EBA

CBA
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Basic algebras
Example 1

The smallest effect basic algebra which is neither an OML nor an
MV-algebra:

0

1

ba

6

?

- -

⊕ 0 a b 1 ¬
0 0 a b 1 1
a a 1 b 1 a
b b a 1 1 b
1 1 1 1 1 0

Theorem

The variety generated by the basic algebra from Example 1 is
axiomatized, relative to the variety of distributive EBA’s, by the
identity

(x 	 y)	 (z ⊕ z) = (x 	 (z ⊕ z))	 (y 	 (z ⊕ z)).
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Cantor-Bernstein theorem
Boolean algebras and MV-algebras

Let A and B be σ-complete Boolean algebras. If A is
isomorphic to [0, b] ⊆ B and B is isomorphic to [0, a] ⊆ A,
then A ∼= B.

Let A and B be σ-complete MV-algebras. If A is isomorphic
to [0, b] ⊆ B and B is isomorphic to [0, a] ⊆ A where a, b are
complemented elements, then A ∼= B.

∼
=

0

1

a

0

1

b
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Cantor-Bernstein theorem
Central elements

(0, 1) (1, 0)

(0, 0)

(1, 1)

Definition

We say that a ∈ A is a central element in a basic algebra A if

a = f −1(0, 1) or a = f −1(1, 0)

for some direct product decomposition f : A ∼= A1 × A2.
The centre of A, C (A), is the set of all central elements.
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Cantor-Bernstein theorem
Central elements

C (A) is a subalgebra of A and a Boolean algebra in its own
right.

If A is a commutative basic algebra, then a ∈ C (A) iff a is
complemented iff ¬a is a complement of a.

If A is an effect basic algebra, then a ∈ C (A) iff ¬a is a
complement of a and a ∈ MV (A).

Cantor-Bernstein type theorem

Let A,B be basic algebras satisfying certain conditions. If

A ∼= [0, b] ⊆ B for some b ∈ C (B) and

B ∼= [0, a] ⊆ A for some a ∈ C (A),

then A ∼= B.

J. Kühr “Basic” Algebras II



Cantor-Bernstein theorem
Central elements

C (A) is a subalgebra of A and a Boolean algebra in its own
right.

If A is a commutative basic algebra, then a ∈ C (A) iff a is
complemented iff ¬a is a complement of a.

If A is an effect basic algebra, then a ∈ C (A) iff ¬a is a
complement of a and a ∈ MV (A).

Cantor-Bernstein type theorem

Let A,B be basic algebras satisfying certain conditions. If

A ∼= [0, b] ⊆ B for some b ∈ C (B) and

B ∼= [0, a] ⊆ A for some a ∈ C (A),

then A ∼= B.
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Cantor-Bernstein theorem

Let K be a K-congruence distributive quasivariety. We shall say
that an algebra A ∈ K satisfies the condition P if for every
countable set {θi | i ∈ I} of factor K-congruences of A such that
θj ◦ θk = ∇A for all j 6= k, the congruence

θ∞ :=
⋂
i∈I

θi

is a factor K-congruence of A and

A/θ∞ ∼=
∏
i∈I

A/θi .

Theorem

Let A and B be two algebras in K satisfying the condition P. If

A ∼= B × C and B ∼= A× D

for some C ,D ∈ K, then A ∼= B.
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Cantor-Bernstein theorem

Lemma

Let A ∈ K and φ be a factor K-congruence of A. Then θ ⊇ φ is a
factor K-congruence of A if and only if θ/φ is a factor
K-congruence of A/φ.

Lemma

Let A ∈ K. If A satisfies P, then so does A/φ for every factor
K-congruence φ of A.
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Cantor-Bernstein theorem

Lemma

Let A ∈ K satisfy the condition P. Let θ1 ⊆ θ2 be factor
K-congruences of A. If A ∼= A/θ2, then A ∼= A/θ1.

Proof: We construct the sequence θ0 ⊆ θ1 ⊆ θ2 ⊆ θ3 ⊆ . . . of
factor K-congruences of A so that A/θn ∼= A/θn+2 for all n ∈ N0:

θ0 := ∆A and θ1 ⊆ θ2 are the initial congruences;

Once θ0 ⊆ θ1 ⊆ . . . ⊆ θn−1 (n ≥ 3) satisfying A/θi ∼= A/θi+2

for all i = 0, 1, . . . , n − 3 are given, the congruence θn is
defined by the rule

θn/θn−1 = f (θn−2/θn−3)

where f : A/θn−3
∼= A/θn−1.

Skipping trivialities, we have θ0 ⊂ θ1 ⊂ · · · ⊂ θn−1 ⊂ θn ⊂ . . . .
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Cantor-Bernstein theorem

For every n ∈ N0, let φn/θn be the complement (θn+1/θn)
∗ of

θn+1/θn in the lattice ConK(A/θn). Then φn is a factor
K-congruence of A. Under the isomorphism A/θn ∼= A/θn+2,
φn/θn corresponds to φn+2/θn+2. Hence

A/φn
∼= (A/θn)/(φn/θn) ∼= (A/θn+2)/(φn+2/θn+2) ∼= A/φn+2.

It is easily seen that φj ◦ φk = ∇A for all j 6= k. Now, the property
P implies that φ∞ :=

⋂
n∈N0

φn is a factor K-congruence of A and

A/φ∞ ∼=
∏
n∈N0

A/φn
∼= A/φ0 × A/φ1 × A/φ0 × A/φ1 × . . . ,

whence

A ∼= A/φ∗∞×A/φ∞ ∼= A/φ∗∞×A/φ0×A/φ1×A/φ0×A/φ1× . . . .
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It is easily seen that φj ◦ φk = ∇A for all j 6= k. Now, the property
P implies that φ∞ :=

⋂
n∈N0

φn is a factor K-congruence of A and

A/φ∞ ∼=
∏
n∈N0

A/φn
∼= A/φ0 × A/φ1 × A/φ0 × A/φ1 × . . . ,

whence

A ∼= A/φ∗∞×A/φ∞ ∼= A/φ∗∞×A/φ0×A/φ1×A/φ0×A/φ1× . . . .
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Cantor-Bernstein theorem

For every n ∈ N, φn/θ1 is a factor K-congruence of A/θ1 since
φn ⊇ θn ⊇ θ1. We have (φj/θ1) ◦ (φk/θ1) = ∇A/θ1

for j 6= k.
Since A/θ1 fulfils P,

ψ/θ1 :=
⋂
n∈N

φn/θ1

is a factor K-congruence of A/θ1 and

A/θ1 ∼= (A/θ1)/(ψ/θ1)
∗ ×

∏
n∈N

(A/θ1)/(φn/θ1).

Obviously, ψ =
⋂

n∈N φn and so φ∞ = ψ ∩ φ0, where φ0 = θ∗1 as
φ0/θ0 = (θ1/θ0)

∗ in ConK(A/θ0) and θ0 = ∆A. Further, let

ψ\/θ1 := (ψ/θ1)
∗.

Then
A/θ1 ∼= A/ψ\ ×

∏
n∈N

A/φn.
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Cantor-Bernstein theorem

Since ψ\ is the complement of ψ in [θ1,∇A]ConK(A), we have

ψ\ = ψ∗ ∨ θ1 = ψ∗ ∨ φ∗0 = (ψ ∩ φ0)
∗ = φ∗∞ where ψ∗ is the

complement of ψ in ConK(A). Hence

A/θ1 ∼= A/ψ\ ×
∏
n∈N

A/φn = A/φ∗∞ ×
∏
n∈N

A/φn

∼= A/φ∗∞ × A/φ1 × A/φ0 × A/φ1 × A/φ0 × . . .

which together with

A ∼= A/φ∗∞ × A/φ0 × A/φ1 × A/φ0 × A/φ1 × . . .

yields A ∼= A/θ1.
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Cantor-Bernstein theorem

Theorem

Let A and B be two algebras in K satisfying the condition P. If

A ∼= B × C and B ∼= A× D

for some C ,D ∈ K, then A ∼= B.

Proof: Let A ∼= B × C and B ∼= A× D. Then A ∼= A× D × C .
Let θ1 and θ2 be the congruences on A corresponding, respectively,
to the projections p1 : (a, d , c) 7→ (a, d) and p2 : (a, d , c) 7→ a.
Then θ1 ⊆ θ2 and A ∼= A/θ2. Hence by the last lemma we have
A ∼= A/θ1 ∼= A× D ∼= B.
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Cantor-Bernstein theorem
. . . for basic algebras

The condition P

If {θi | i ∈ I} is a countable set of factor K-congruences with
θi ◦ θj = ∇A for all i 6= j , then

1 θ∞ :=
⋂

i∈I θi is a factor K-congruence,

2 A/θ∞ ∼=
∏

i∈I A/θi .

In basic algebras, the factor congruences correspond one-one to the
central elements:

The condition P for basic algebras

If {ai | i ∈ I} is a countable set of central elements such that
ai ∧ aj = 0 for all i 6= j , then

1 a∞ :=
∨

i∈I ai exists and is a central element,

2 for every {xi | i ∈ I} ⊆ A such that xi ≤ ai for all i ∈ I , the
supremum

∨
i∈I xi exists.
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Cantor-Bernstein theorem
. . . for basic algebras

Cantor-Bernstein type theorem

Let A,B be basic algebras satisfying certain conditions.
If

A ∼= [0, b] ⊆ B for some b ∈ C (B) and

B ∼= [0, a] ⊆ A for some a ∈ C (A),

then A ∼= B.

The condition P for basic algebras

If {ai | i ∈ I} is a countable set of central elements such that
ai ∧ aj = 0 for all i 6= j , then
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Cantor-Bernstein theorem
. . . for CBA’s and EBA’s

A basic algebra is orthogonally σ-complete if there exists the
supremum

∨
X of every countable subset X such that x ∧ y = 0

for all x 6= y .

Theorem

Let A and B be orthogonally σ-complete commutative (or effect)
basic algebras. If

A ∼= [0, a] ⊆ B for some a ∈ C (B) and

B ∼= [0, b] ⊆ A for some b ∈ C (A),

then A ∼= B.
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Thank you for your attention!
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