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involutions.

o Basic algebras = bounded lattices with sectional antitone
1
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Basic algebras

Recallings

@ Basic algebras = bounded lattices with sectional antitone
involutions.

1
—x 1= Yo(x)
X®y=y(-xVy)

e Basic alg(;.bras = algebras (A, @, —,0) of type (2,1,0)
satisfying the identities
x @0 =x,
X = X,
(x®y)Dy =-(-y ®x) DX,
(-(-(xdy)®y)®z) B (x P 2) = 0.
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Basic algebras

Recallings

Problem
Find an associative basic algebra that is not commutative.
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Basic algebras

Recallings

Problem
Find an associative basic algebra that is not commutative.

o M. Kolafik:
Every associative basic algebra is commutative,
i.e., MV-algebras are just associative basic algebras.
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Basic algebras

Recallings

o M. Kolafik:
Every associative basic algebra is commutative,
i.e., MV-algebras are just associative basic algebras.
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Lattice effect algebras and D-lattices

Definition

An effect algebra is a structure (E,+,0,1) where 0,1 are
elements of E and + is a partial binary operation on E, satisfying
the following conditions:

(EA1) x + y =y + x if one side is defined,

(EA2) x+ (y + z) = (x + y) + z if one side is defined,

(EA3) for every x there exists a unique x’ such that x’ + x = 1,
(EA4)

EA4) x + 1 is defined only for x = 0.

The underlying order:
x <y iff y=x+4 z forsome z;

this z is denoted by y — x.
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D, <, —,0,1) where (D,<,0,1) is a
bounded poset and — is a partial binary operation such that x — y
is defined iff x > y, satisfying the conditions

(DP1) x —0=x,
(DP2) if x <y <z thenz—y <z—x and
(z=x)=(z=y)=y—x
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D, <, —,0,1) where (D,<,0,1) is a
bounded poset and — is a partial binary operation such that x — y
is defined iff x > y, satisfying the conditions

(DP1) x —0=x,
(DP2) if x <y <z thenz—y <z—x and
(z=x)=(z=y)=y—x

To a D-poset (D, <,—,0,1) there corresponds the effect algebra
(D, +,0,1) obtained by letting

x+y:=z iff z>yandz—y=x.
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D, <, —,0,1) where (D,<,0,1) is a
bounded poset and — is a partial binary operation such that x — y
is defined iff x > y, satisfying the conditions

(DP1) x —0=x,
(DP2) if x <y <z thenz—y <z—x and
(z=x)=(z=y)=y—x

To a D-poset (D, <,—,0,1) there corresponds the effect algebra
(D, +,0,1) obtained by letting

x+y:=z iff z>yandz—y=x.

Lattice effect algebras/D-lattices are those with the underlying
lattice order.

J. Kiihr “Basic” Algebras Il



Lattice effect algebras and D-lattices

...as basic algebras

In each effect algebra/D-poset:
@ x — x' + a is an antitone involution on [a, 1],
@ x — a— x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:
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Lattice effect algebras and D-lattices

...as basic algebras

In each effect algebra/D-poset:
@ x — x' + a is an antitone involution on [a, 1],
@ x — a— x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:

Let (E,+,0,1) be a lattice effect algebra. If we set

/

x®y:=(xAy)+y and -x:=x,

then (E, @, —,0) is a basic algebra.
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Lattice effect algebras and D-lattices

...as basic algebras

In each effect algebra/D-poset:
@ x — x' + a is an antitone involution on [a, 1],
@ x — a— x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:

Let (E,+,0,1) be a lattice effect algebra. If we set

/

x®y:=(xAy)+y and -x:=x,

then (E, @, —,0) is a basic algebra.

Proof: x@y = (xXVy) =(xXVy)+y=(xAy)+y.
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Lattice effect algebras and D-lattices

...as basic algebras

In the basic algebra (E,®, —,0) associated to (E,+,0,1) we have:
o xOy:="(y®x)=x—(xAy);
e x—y=x0yforx>y;
o x+y=x@y forx <-y.
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Lattice effect algebras and D-lattices

...as basic algebras

Which basic algebras are derived from lattice effect algebras?
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Lattice effect algebras and D-lattices

...as basic algebras

Which basic algebras are derived from lattice effect algebras?

Let (A, @, —,0) be a basic algebra, and define the partial operation
+ as follows:

x + y is defined iff x < =y, in which case x+y .= x@ y.
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Lattice effect algebras and D-lattices

...as basic algebras

Which basic algebras are derived from lattice effect algebras?

Theorem

Let (A, @, —,0) be a basic algebra, and define the partial operation
+ as follows:

x + y is defined iff x < =y, in which case x+y .= x@ y.

Then (A, +,0,1) is a lattice effect algebra if and only if
(A, @, —,0) satisfies the quasi-identity

x<-y & x®y<-z = (x®y)®z=x®(zdy). (E)

v
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Lattice effect algebras and D-lattices

...as basic algebras

Which basic algebras are derived from lattice effect algebras?

Theorem

Let (A, @, —,0) be a basic algebra, and define the partial operation
+ as follows:

x + y is defined iff x < =y, in which case x+y .= x@ y.

Then (A, +,0,1) is a lattice effect algebra if and only if
(A, @, —,0) satisfies the quasi-identity

x<-y & x®y<-z = (x®y)®z=x®(zdy). (E)

v

For x = 0 we have

y<-z = ydbz=z3Dy.
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Lattice effect algebras and D-lattices

...as basic algebras

Theorem

Let (A, @, —,0) be a basic algebra, and define the partial operation
— as follows:

x — y is defined iff x > y, in which case x — y ;= x O y.

Then (A, <,—,0,1) is a D-lattice if and only if (A, ®, —,0) satisfies
the quasi-identity

x<y<z = (z6x)6(z6y)=yox. (E)

<
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Effect basic algebras

Definition

We call a basic algebra an effect basic algebra if it satisfies (E)
(equivalently, (E")).

Effect basic algebras (= lattice effect algebras = D-lattices) form a
variety. This variety is
@ congruence regular and arithmetical;

@ an ideal variety; the ideal terms (in y's) are

t1(x, y1,¥2) = x A (y1 @ y2),
t2(Xay) =X -y.
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In a lattice effect algebra, two elements x, y are compatible if

(xVy)—y=x—(xAy).
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Effect basic algebras

Compatibility and commutativity

In a lattice effect algebra, two elements x, y are compatible if

(xVy)—y=x—(xAy).

Let (E,®,—,0) be an effect basic algebra and (E,+,0,1) the
associated lattice effect algebra. Then x,y € E are compatible iff
XDy =y>Dx.
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Effect basic algebras

Compatibility and commutativity

In a lattice effect algebra, two elements x, y are compatible if

(xVy)—y=x—(xAy).

Theorem

Let (E,®,—,0) be an effect basic algebra and (E,+,0,1) the
associated lattice effect algebra. Then x,y € E are compatible iff
XDy =y>Dx.

Theorem

For every effect basic algebra E, the following are equivalent:
Q@ E is an MV-algebra;
@ E is commutative;
© E satisfies the RDP.
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Effect basic algebras

Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.
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Effect basic algebras

Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

For every basic algebra E, the following are equivalent:

© E is an effect basic algebra;
@ every block of E is a subalgebra which itself is an MV-algebra.
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Effect basic algebras

Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

For every basic algebra E, the following are equivalent:

© E is an effect basic algebra;
@ every block of E is a subalgebra which itself is an MV-algebra.

Let E be an effect basic algebra. If E is subdirectly irreducible,
then its MV-centre MV/(E) is a subdirectly irreducible MV-algebra
(hence MV/(E) is linearly ordered).

A
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Basic algebras
Example 1

The smallest effect basic algebra which is neither an OML nor an
MV-algebra:

1 ®|0 a b 1|

0|0 a b 1|1

a b ala 1l b 1]a
b|b a 1 1|5b

0 1/1 1 1 1|0
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Basic algebras
Example 1

The smallest effect basic algebra which is neither an OML nor an
MV-algebra:

1 +/0 a b 1]’

0|0 a b 1|1

a b ala 1 x x/|a
b|b x 1 x|b

0 111 x x x |0
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Basic algebras
Example 1

The smallest effect basic algebra which is neither an OML nor an
MV-algebra:

1 ®|0 a b 1|

0|0 a b 1|1

a b ala 1l b 1]a
b|b a 1 1|5b

0 1/1 1 1 1|0

The variety generated by the basic algebra from Example 1 is
axiomatized, relative to the variety of distributive EBA'’s, by the
identity

(xoy)o(zez)=(xo(z@2))o(yo (20 2)).
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Cantor-Bernstein theorem
Boolean algebras and MV-algebras

o Let A and B be o-complete Boolean algebras. If A is
isomorphic to [0, b] C B and B is isomorphic to [0, a] C A,
then A= B.
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Cantor-Bernstein theorem
Boolean algebras and MV-algebras

o Let A and B be o-complete Boolean algebras. If A is
isomorphic to [0, b] C B and B is isomorphic to [0, a] C A,
then A= B.

@ Let A and B be o-complete MV-algebras. If A is isomorphic
to [0, b] C B and B is isomorphic to [0, a] C A where a, b are
complemented elements, then A= B.
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Cantor-Bernstein theorem

Central elements

(L)

0,1) (1,0)

(0,0)

Definition
We say that a € A is a central element in a basic algebra A if

a=f"10,1) or a=f"1(1,0)

for some direct product decomposition f: A= A; x As.
The centre of A, C(A), is the set of all central elements.
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Cantor-Bernstein theorem

Central elements

@ C(A) is a subalgebra of A and a Boolean algebra in its own
right.

e If Ais a commutative basic algebra, then a € C(A) iff a is
complemented iff —a is a complement of a.

o If Ais an effect basic algebra, then a € C(A) iff ~ais a
complement of a and a € MV (A).
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Cantor-Bernstein theorem

Central elements

@ C(A) is a subalgebra of A and a Boolean algebra in its own
right.

e If Ais a commutative basic algebra, then a € C(A) iff a is
complemented iff —a is a complement of a.

o If Ais an effect basic algebra, then a € C(A) iff ~ais a
complement of a and a € MV (A).

Cantor-Bernstein type theorem

Let A, B be basic algebras satisfying certain conditions. If
e A0, b] C B for some b € C(B) and
e B=0,a] C A for some a € C(A),

then A = B.
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Cantor-Bernstein theorem

Let IC be a K-congruence distributive quasivariety. We shall say
that an algebra A € KC satisfies the condition &7 if for every
countable set {#; | i € I} of factor KC-congruences of A such that
0; 0 0k = V4 for all j # k, the congruence

0o =)0
icl
is a factor KC-congruence of A and

Albss = T A/0:.

i€l
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Cantor-Bernstein theorem

Let IC be a K-congruence distributive quasivariety. We shall say
that an algebra A € KC satisfies the condition &7 if for every
countable set {#; | i € I} of factor K-congruences of A such that
0; 0 0k = V4 for all j # k, the congruence

0o =)0
icl
is a factor KC-congruence of A and

Al = T A/0:.

i€l

Let A and B be two algebras in K satisfying the condition &. If

A=2BxC and B=2AxD

for some C,D € K, then A= B.
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Cantor-Bernstein theorem

Let A € K and ¢ be a factor K-congruence of A. Then 6 D ¢ is a
factor [C-congruence of A if and only if /¢ is a factor
KC-congruence of A/¢.
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Cantor-Bernstein theorem

Let A € K and ¢ be a factor K-congruence of A. Then 6 D ¢ is a
factor [C-congruence of A if and only if /¢ is a factor
KC-congruence of A/¢.

Let A € K. If A satisfies &, then so does A/¢ for every factor
K-congruence ¢ of A.
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Cantor-Bernstein theorem

Let A € K satisfy the condition &2. Let 6; C 6, be factor
KC-congruences of A. If A= A/, then A= A/6;.
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Cantor-Bernstein theorem

Let A € K satisfy the condition &2. Let 6; C 6, be factor
KC-congruences of A. If A=~ A/0,, then A= A/b6;.

Proof: We construct the sequence 6y C 61 C 0, C O3 C ... of
factor K-congruences of A so that A/0, = A/0,4 for all n € Np:

@ Oy := Ap and 07 C 65 are the initial congruences;

@ Once p C 6y C...C 0h—1 (n>3) satisfying A/6; = A/ 12
forall i=0,1,...,n— 3 are given, the congruence 6, is
defined by the rule

Gn/an—l — f(en—2/9n—3)

where f: A/0p,_3 = A/0,_1.
Skipping trivialities, we have g C 01 C --- C 6,1 C O, C....
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Cantor-Bernstein theorem

For every n € Ny, let ¢,/0, be the complement (6,11/6,)* of
0n+1/05 in the lattice Conx(A/60,).
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Cantor-Bernstein theorem

For every n € Ny, let ¢,/0, be the complement (6,11/6,)* of
0n+1/05 in the lattice Conx(A/6,). Then ¢, is a factor
IC-congruence of A. Under the isomorphism A/, = A/0,.2,
®n/0n corresponds to ¢ni2/0,+2. Hence

A/¢n = (A/O,,)/((j),,/@,,) = (A/9n+2)/(¢n+2/9n+2) = A/¢n+2-
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Cantor-Bernstein theorem

For every n € Ny, let ¢,/0, be the complement (6,11/6,)* of
0n+1/05 in the lattice Conx(A/6,). Then ¢, is a factor
IC-congruence of A. Under the isomorphism A/, = A/0,.2,
®n/0n corresponds to ¢ni2/0,+2. Hence

A/¢n = (A/O,,)/((j),,/@,,) = (A/9n+2)/(¢n+2/9n+2) = A/¢n+2-

It is easily seen that ¢; o ¢y = V4 for all j # k. Now, the property
& implies that ¢, 1= ﬂneNo ¢n is a factor KC-congruence of A and

Alpoo = ] Aldn = Alo x Aldn x Aldo x A1 x ...,

neNy

whence

A AIGE X A dos 2 AIG% X Aldo x Aldy x Al x Alpy x ...
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Cantor-Bernstein theorem

For every n € N, ¢,/0; is a factor K-congruence of A/0; since
¢n 2 0p 2 01. We have (¢;/01) o (¢x/01) = V ase, for j # k.
Since A/0; fulfils 2,

/01 := () ¢n/61

neN

is a factor K-congruence of A/6; and

A81 = (A161)/(0/61)" x T](A/61)/(60/61).

neN
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Cantor-Bernstein theorem

For every n € N, ¢,/0; is a factor K-congruence of A/0; since
¢n 2 0p 2 01. We have (¢;/01) o (¢x/01) = V ase, for j # k.
Since A/0; fulfils 2,

/01 := () ¢n/61
neN
is a factor K-congruence of A/6; and
AlO1 2= (A/01)/(1/61)" x T](A/61)/(¢n/61)-
neN

Obviously, ¥ = [ ,,cny @n and so ¢oo = ¥ N ¢o, where ¢g = 07 as
qb()/ao == (91/90)* in COHK(A/H()) and 9() == AA.
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Cantor-Bernstein theorem

For every n € N, ¢,/0; is a factor K-congruence of A/0; since
¢n 2 0p 2 01. We have (¢;/01) o (¢x/01) = V ase, for j # k.
Since A/0; fulfils 2,

/01 := () ¢n/61
neN
is a factor K-congruence of A/6; and
A81 = (A161)/(0/61)" x T](A/61)/(60/61).
neN

Obviously, ¥ = [ ,,cny @n and so ¢oo = ¥ N ¢o, where ¢g = 07 as
$0/00 = (61/600)" in Cong(A/6p) and 8y = A,. Further, let

V0L = (/)"
Then

Aby = Al x T A/dn.

neN
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Cantor-Bernstein theorem

Since 9! is the complement of 1 in [61, V alconk(4), We have

P =PtV By = bV @h = (1 N o)t = %, where 1" is the
complement of ¢ in Conk(A).

J. Kiihr “Basic” Algebras Il



Cantor-Bernstein theorem

Since 9! is the complement of 1 in [61, V alconk(4), We have

P =tV By = bV @f = (1 N do)* = F, where ¥* is the
complement of ¢ in Cong(A). Hence

Al 2= AJt x [ Algn = Aldt, x ] Alén

neN neN
S A/PE X Aldr X Aldo X Aldr X Al X ...
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Cantor-Bernstein theorem

Since 9! is the complement of 1 in [61, V alconk(4), We have

P =tV By = bV @f = (1 N do)* = F, where ¥* is the
complement of ¢ in Cong(A). Hence

Al = AJY* x T Algn = Alor, x ] Al¢n
neN neN
= A/pL X} Alp1 X Alpg X Afp1 X Ao X ...

which together with

AZA/o5 X Aldg x A1 X Ao X A/p1 X ...
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Cantor-Bernstein theorem

Since 9! is the complement of 1 in [61, V alconk(4), We have

P =tV By = bV @f = (1 N do)* = F, where ¥* is the
complement of ¢ in Cong(A). Hence

Al 2= AJt x [ Algn = Aldt, x ] Alén

neN neN
S A/PE X Aldr X Aldo X Aldr X Al X ...

which together with

AZA/o5 X Aldg x A1 X Ao X A/p1 X ...

yields A= A/6;.
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Cantor-Bernstein theorem

Let A and B be two algebras in K satisfying the condition &. If

A=2BxC and B=AxD

for some C,D € I, then A= B.
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Cantor-Bernstein theorem

Let A and B be two algebras in K satisfying the condition &. If

A=2BxC and B=AxD

for some C,D € IC, then A= B.

Proof: Let AXBx Cand BZAXxD. Then AZAx D x C.
Let 61 and 6, be the congruences on A corresponding, respectively,
to the projections p;: (a,d, c) — (a,d) and ps: (a,d,c) — a.
Then 01 C 6, and A= A/6. Hence by the last lemma we have
A= A/0; 2 AxD=B.
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Cantor-Bernstein theorem

... for basic algebras

The condition &

If {6; | i € I} is a countable set of factor C-congruences with
0;i00; =V forall i # j, then

@ 0o :=ig, bi is a factor K-congruence,

Q@ A/ =i, A/0i-

In basic algebras, the factor congruences correspond one-one to the
central elements:

The condition &2 for basic algebras

If {aj | i € I} is a countable set of central elements such that
aj A\ aj =0 for all i # j, then
Q a = \/,-e, a; exists and is a central element,

@ for every {x; | i € I} C A such that x; < a; for all i € [, the
supremum \/;, x; exists.
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Cantor-Bernstein theorem

... for basic algebras

Cantor-Bernstein type theorem

Let A, B be basic algebras satisfying certain conditions.
If

e A0, b] C B for some b € C(B) and
e B=10,a] C A for some a € C(A),
then A= B.
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Cantor-Bernstein theorem

... for basic algebras

Cantor-Bernstein type theorem

Let A, B be basic algebras satisfying the condition &.
If

e A0, b] C B for some b € C(B) and
e B=10,a] C A for some a € C(A),
then A= B.

The condition &7 for basic algebras

If {aj | i € I} is a countable set of central elements such that
aj A\ aj =0 for all i # j, then
Q o — \/iel a; exists and is a central element,

@ for every {x; | i € I} C A such that x; < a; for all i € I, the
supremum \/;, x; exists.
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Cantor-Bernstein theorem
...for CBA’'s and EBA's

A basic algebra is orthogonally o-complete if there exists the
supremum \/ X of every countable subset X such that x Ay =0
for all x # y.

Theorem

Let A and B be orthogonally o-complete commutative (or effect)
basic algebras. If

e A=0,a] C B for some a € C(B) and
e B]0,b] C A for some b € C(A),
then A= B.
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Thank you for your attention!
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