State BL-algebras

L. C. Ciungu*, A. Dvurečenskij, M. Hyčko

* SAIA scholarship at

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK-81473 Bratislava, Slovakia lavinia_ciungu@math.pub.ro, {dvurecenskij, hycko}@mat.savba.sk

Outline

- History
- Basic definitions
- State BL-algebras, examples, properties
- Strong state BL-algebras
- State-morphism BL-algebras
- States on state BL-algebras
- Special classes of state BL-algebras
 - simple, semisimple, perfect, local

History

- T. Flaminio, F. Montagna MV-algebras with an internal state *state MV-algebras*
- algebraization of Łukasiewicz logic with modality

History

- T. Flaminio, F. Montagna MV-algebras with an internal state *state MV-algebras*
- algebraization of Łukasiewicz logic with modality
- A. Di Nola, A. Dvurečenskij *state-morphism MV-algebras*
- internal state as endomorphism

History

- T. Flaminio, F. Montagna MV-algebras with an internal state *state MV-algebras*
- algebraization of Łukasiewicz logic with modality
- A. Di Nola, A. Dvurečenskij *state-morphism MV-algebras*
- internal state as endomorphism
- J. Rachůnek, D. Šalounová *state pseudo MV-algebras*
- a generalization for pseudo MV-algebras

Basic definitions - BL algebras

- P. Hájek algebraic model of fuzzy logic of continuous t-norms
- A *BL-algebra* is an algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ of the type (2, 2, 2, 2, 0, 0) such that
 - $(A, \land, \lor, 0, 1)$ is a bounded lattice,
 - $(A, \odot, 1)$ is a commutative monoid,
 - $c \le a \to b \text{ iff } a \odot c \le b, (adjointness)$
 - $a \wedge b = a \odot (a \rightarrow b)$, (divisibility)
 - $(a \rightarrow b) \lor (b \rightarrow a) = 1$, (prelinearity) for all a, b, c in A.

Basic definitions - states

• A Bosbach state, or a state on A is a function $s: A \rightarrow [0,1]$ with the following properties: $(BS1) \ s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x);$ $(BS2) \ s(0) = 0$ and s(1) = 1, for any x, y in A.

Basic definitions - states

- A Bosbach state, or a state on A is a function $s: A \rightarrow [0,1]$ with the following properties: $(BS1) \ s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x);$ $(BS2) \ s(0) = 0$ and s(1) = 1, for any x, y in A.
- A function $s:A\to [0,1]$ is called a *Riečan state* if the following conditions hold:

$$(RS1)$$
 if $x \perp y$, then $s(x + y) = s(x) + s(y)$; $(RS2) \ s(0) = 0$,

- $x \perp y$ denotes orthogonal elements, i. e. $x^{--} \leq y^{-}$.
- For two orthogonal elements x, y we define $x + y := y^- \rightarrow x^{--} (= x^- \rightarrow y^{--}).$

Basic definitions

- A. Dvurečenskij, J. Rachůnek
 - states and Riečan states coincide on BL
- $x \oplus y := (x^- \odot y^-)^-$,
- $x \ominus y := x \odot y^-$,
- $d(x,y) = (x \rightarrow y) \odot (y \rightarrow x)$
- ord(x) the smallest n such that $x^n = 0$. If such n does not exist, then ord $(x) = \infty$.
- Rad(A)
 - the intersection of all maximal filters in A

State BL-algebras

Let A be a BL-algebra and let $\sigma: A \to A$ be a mapping with the following properties:

- 1. $\sigma(0) = 0$;
- 2. $\sigma(x \to y) = \sigma(x) \to \sigma(x \land y)$;
- 3. $\sigma(x \odot y) = \sigma(x) \odot \sigma(x \rightarrow x \odot y);$
- 4. $\sigma(\sigma(x) \odot \sigma(y)) = \sigma(x) \odot \sigma(y)$;
- 5. $\sigma(\sigma(x) \to \sigma(y)) = \sigma(x) \to \sigma(y)$.

Then σ is called a *state operator* and (A, σ) a *state-morphism BL-algebra*.

• (A, id_A) is a state BL-algebra;

- (A, id_A) is a state BL-algebra;
- E. Turunen Consider $A = \{0, a, b, 1\}$ where 0 < a < b < 1. Then $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a BL-algebra with the operations:

\odot	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

\longrightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	0	a	1	1
1	0	a	b	1

- (A, id_A) is a state BL-algebra;
- E. Turunen Consider $A = \{0, a, b, 1\}$ where 0 < a < b < 1. Then $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a BL-algebra with the operations:

•	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

$ \longrightarrow$	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	0	a	1	1
1	0	a	b	1

- $\sigma(0) = 0, \sigma(a) = a, \sigma(b) = 1, \sigma(1) = 1$
- (A, σ) is a state BL-algebra

- Moreover, $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$ and
- $\sigma(x \to y) = \sigma(x) \to \sigma(y)$.

- Moreover, $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$ and
- $\sigma(x \to y) = \sigma(x) \to \sigma(y)$.
- A. Di Nola, A. Dvurečenskij for MV-algebras
- Let (A, σ) be a state BL-algebra. Let us consider $\sigma_1: A \times A \to A \times A$ and $\sigma_2: A \times A \to A \times A$, such that $\sigma_1((a,b)) = (a,a), \sigma_2((a,b)) = (b,b)$. Then
 - $(A \times A, \sigma_1)$, $(A \times A, \sigma_2)$ state BL-algebras.
 - $(A \times A, \sigma_1) \cong (A \times A, \sigma_2),$
 - non-linear examples of subdirectly irreducible state BL-algebras (if A is subdirectly irreducible).

- $\sigma(1) = 1;$
- $\sigma(x^-) = \sigma(x)^-;$
- if $x \leq y$ then $\sigma(x) \leq \sigma(y)$;

- $\sigma(1) = 1;$
- $\sigma(x^-) = \sigma(x)^-;$
- if $x \leq y$ then $\sigma(x) \leq \sigma(y)$;
- $\sigma(x \odot y) \ge \sigma(x) \odot \sigma(y)$ and if $x \odot y = 0$ then $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$;

- $\sigma(1) = 1;$
- $\sigma(x^-) = \sigma(x)^-;$
- if $x \leq y$ then $\sigma(x) \leq \sigma(y)$;
- $\sigma(x \odot y) \ge \sigma(x) \odot \sigma(y)$ and if $x \odot y = 0$ then $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$;
- $\sigma(x \ominus y) \ge \sigma(x) \ominus \sigma(y)$ and if $x \le y$ then $\sigma(x \ominus y) = \sigma(x) \ominus \sigma(y)$;

- $\sigma(1) = 1;$
- $\sigma(x^-) = \sigma(x)^-;$
- if $x \leq y$ then $\sigma(x) \leq \sigma(y)$;
- $\sigma(x \odot y) \ge \sigma(x) \odot \sigma(y)$ and if $x \odot y = 0$ then $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$;
- $\sigma(x \ominus y) \ge \sigma(x) \ominus \sigma(y)$ and if $x \le y$ then $\sigma(x \ominus y) = \sigma(x) \ominus \sigma(y)$;
- $\sigma(x \wedge y) = \sigma(x) \odot \sigma(x \rightarrow y);$

- $\sigma(1) = 1;$
- $\sigma(x^-) = \sigma(x)^-;$
- if $x \leq y$ then $\sigma(x) \leq \sigma(y)$;
- $\sigma(x \odot y) \ge \sigma(x) \odot \sigma(y)$ and if $x \odot y = 0$ then $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$;
- $\sigma(x \ominus y) \ge \sigma(x) \ominus \sigma(y)$ and if $x \le y$ then $\sigma(x \ominus y) = \sigma(x) \ominus \sigma(y)$;
- $\sigma(x \wedge y) = \sigma(x) \odot \sigma(x \rightarrow y);$
- $\sigma(x \to y) \le \sigma(x) \to \sigma(y)$ and if x, y are comparable then $\sigma(x \to y) = \sigma(x) \to \sigma(y)$;

•
$$\sigma(x \to y) \odot \sigma(y \to x) \le d(\sigma(x), \sigma(y));$$

- $\sigma(x \to y) \odot \sigma(y \to x) \le d(\sigma(x), \sigma(y));$
- $\sigma(x) \oplus \sigma(y) \ge \sigma(x \oplus y)$ and if $x \oplus y = 1$ then $\sigma(x) \oplus \sigma(y) = \sigma(x \oplus y) = 1$;

- $\sigma(x \to y) \odot \sigma(y \to x) \le d(\sigma(x), \sigma(y));$
- $\sigma(x) \oplus \sigma(y) \ge \sigma(x \oplus y)$ and if $x \oplus y = 1$ then $\sigma(x) \oplus \sigma(y) = \sigma(x \oplus y) = 1$;
- $\sigma(\sigma(x)) = \sigma(x)$;
- $\sigma(A)$ is a BL-subalgebra of A;
- $\sigma(A) = \{x \in A : x = \sigma(x)\};$
- if $ord(x) < \infty$, then $\sigma(x) \notin Rad(A)$.

•
$$\sigma(x \to y) = \sigma(x) \to \sigma(y) \Leftrightarrow$$

 $\sigma(x \land y) = \sigma(x) \land \sigma(y).$

- $\sigma(x \to y) = \sigma(x) \to \sigma(y) \Leftrightarrow$ $\sigma(x \land y) = \sigma(x) \land \sigma(y).$
- The operator σ preserves the operation \rightarrow (as homomorphism) iff σ preserves the operation \wedge .

- $\sigma(x \to y) = \sigma(x) \to \sigma(y) \Leftrightarrow$ $\sigma(x \land y) = \sigma(x) \land \sigma(y).$
- The operator σ preserves the operation \rightarrow (as homomorphism) iff σ preserves the operation \wedge .
- σ preserves \rightarrow iff σ preserves \vee .

- $\sigma(x \to y) = \sigma(x) \to \sigma(y) \Leftrightarrow$ $\sigma(x \land y) = \sigma(x) \land \sigma(y).$
- The operator σ preserves the operation \rightarrow (as homomorphism) iff σ preserves the operation \wedge .
- σ preserves \rightarrow iff σ preserves \vee .
- $x \lor y = [(x \to y) \to y] \land [(y \to x) \to x]$

- $\sigma(x \to y) = \sigma(x) \to \sigma(y) \Leftrightarrow$ $\sigma(x \land y) = \sigma(x) \land \sigma(y).$
- The operator σ preserves the operation \rightarrow (as homomorphism) iff σ preserves the operation \wedge .
- σ preserves \rightarrow iff σ preserves \vee .

•
$$x \lor y = [(x \to y) \to y] \land [(y \to x) \to x]$$

•
$$(x \lor y) \to y = x \to y$$

Strong state BL-algebras

 Cignoli, Esteva, Godo, Torrens
 for MV-algebras and linear product BL-algebras:

$$x \to x \odot y = x^- \vee y$$

Strong state BL-algebras

 Cignoli, Esteva, Godo, Torrens
 for MV-algebras and linear product BL-algebras:

$$x \to x \odot y = x^- \vee y$$

• Strong state BL-algebra - axiom 3. is replaced by 3'. $\sigma(x \odot y) = \sigma(x) \odot \sigma(x^- \lor y)$

Strong state BL-algebras

 Cignoli, Esteva, Godo, Torrens
 for MV-algebras and linear product BL-algebras:

$$x \to x \odot y = x^- \vee y$$

- Strong state BL-algebra axiom 3. is replaced by 3'. $\sigma(x \odot y) = \sigma(x) \odot \sigma(x^- \lor y)$
- every strong state BL-algebra is a state BL-algebra
- the converse is not true

Consider the following state BL-algebra $A = \{0, a, b, c, d, e, 1\}$, with the order:

The operations are given by the tables:

•	0	a	b	c	d	e	1
0	0	0	0	0	0	0	0
a	0	0	a	0	0	a	a
b	0	a	b	a	a	b	b
C	0	0	a	0	С	a	С
d	0	0	a	C	d	C	d
e	0	a	b	a	С	b	e
1	0	a	b	c	d	e	1

\longrightarrow	0	a	b	c	d	e	1
0	1	1	1	1	1	1	1
a	d	1	1	1	1	1	1
b	0	d	1	d	d	1	1
C	C	e	e	1	1	1	1
d	a	b	b	e	1	e	1
e	0	c	e	d	d	1	1
1	0	a	b	c	d	e	1

$ \longrightarrow$	0	a	b	c	d	e	1
0	1	1	1	1	1	1	1
a	d	1	1	1	1	1	1
b	0	d	1	d	d	1	1
C	С	e	e	1	1	1	1
d	a	b	b	e	1	e	1
e	0	С	e	d	d	1	1
1	0	a	b	c	d	e	1

	0	a	b	c	d	e	1
σ	0	c	1	c	c	1	1

- Then (A, σ) is a state BL-algebra, but axiom 3'. fails for the pairs $(x, y) \in \{(c, d), (d, c), (d, d)\}$.
- It holds $\sigma(x \to y) = \sigma(x) \to \sigma(y)$, but $\sigma(x \odot y) \neq \sigma(x) \odot \sigma(y)$, e.g. for (d, d).

Properties - (strong) state BL

- $\sigma(x\odot y) \geq \sigma(x)\odot\sigma(y)$ and if $x^-\leq y$ then $\sigma(x\odot y) = \sigma(x)\odot\sigma(y);$
- $\sigma(x \ominus y) \ge \sigma(x) \ominus \sigma(y)$ and if x and y are comparable then $\sigma(x \ominus y) = \sigma(x) \ominus \sigma(y)$;

Properties - (strong) state BL

- $\sigma(x \odot y) \ge \sigma(x) \odot \sigma(y)$ and if $x^- \le y$ then $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$;
- $\sigma(x \ominus y) \ge \sigma(x) \ominus \sigma(y)$ and if x and y are comparable then $\sigma(x \ominus y) = \sigma(x) \ominus \sigma(y)$;
- **Lemma:** Let (A, σ) be a linearly ordered state BL-algebra. Then for $x, y \in A$ we have: $(1) \ \sigma(x \to y) = \sigma(x) \to \sigma(y)$; Moreover if (A, σ) is strong, we have: $(2) \ \sigma(x \odot y) = \sigma(x) \odot \sigma(y)$.

Properties - (strong) state BL

- $\sigma(x \odot y) \ge \sigma(x) \odot \sigma(y)$ and if $x^- \le y$ then $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$;
- $\sigma(x \ominus y) \ge \sigma(x) \ominus \sigma(y)$ and if x and y are comparable then $\sigma(x \ominus y) = \sigma(x) \ominus \sigma(y)$;
- Lemma: Let (A, σ) be a linearly ordered state BL-algebra. Then for $x, y \in A$ we have: $(1) \ \sigma(x \to y) = \sigma(x) \to \sigma(y)$; Moreover if (A, σ) is strong, we have: $(2) \ \sigma(x \odot y) = \sigma(x) \odot \sigma(y)$.
- State BL-algebras on the subclass of MV-algebras $(x^{--} = x)$ coincide with state MV-algebras defined by FlMo.

State-morphism BL-algebras

- Let (A, σ) be a state BL-algebra. If the operator σ satisfies the following properties:
 - $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$,
 - $\sigma(x \to y) = \sigma(x) \to \sigma(y)$,

for $x, y \in A$. Then σ is called a *state-morphism* operator on A and (A, σ) is a *state-morphism* BL-algebra.

State-morphism BL-algebras

- Let (A, σ) be a state BL-algebra. If the operator σ satisfies the following properties:
 - $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$,
 - $\sigma(x \to y) = \sigma(x) \to \sigma(y)$,

for $x, y \in A$. Then σ is called a *state-morphism* operator on A and (A, σ) is a *state-morphism* BL-algebra.

• "Turunen's example" is a state-morphism BL-algebra, the 7-element example is not.

State-morphism BL-algebras

- Let (A, σ) be a state BL-algebra. If the operator σ satisfies the following properties:
 - $\sigma(x \odot y) = \sigma(x) \odot \sigma(y)$,
 - $\sigma(x \to y) = \sigma(x) \to \sigma(y)$,

for $x, y \in A$. Then σ is called a *state-morphism* operator on A and (A, σ) is a *state-morphism* BL-algebra.

- "Turunen's example" is a state-morphism BL-algebra, the 7-element example is not.
- Every linearly ordered strong state BL-algebra is a state-morphism BL-algebra.

States

• Let (A, σ) be a state BL-algebra, and let s be a state on A. Then $s_{\sigma}(x) := s(\sigma(x))$ for x in A is a state on A.

States

- Let (A, σ) be a state BL-algebra, and let s be a state on A. Then $s_{\sigma}(x) := s(\sigma(x))$ for x in A is a state on A.
- σ -compatible state, if $\sigma(x) = \sigma(y)$ then s(x) = s(y), for a state s.

States

- Let (A, σ) be a state BL-algebra, and let s be a state on A. Then $s_{\sigma}(x) := s(\sigma(x))$ for x in A is a state on A.
- σ -compatible state, if $\sigma(x) = \sigma(y)$ then s(x) = s(y), for a state s.
- **Theorem:** Let (A, σ) be a state BL-algebra. Then there is a bijective correspondence between the σ -compatible states on A and the states on $\sigma(A)$.

Special classes

• **Def:** Let (A, σ) be a state BL-algebra (or a state-morphism BL-algebra). A nonempty set $F \subseteq A$ is called a *state-filter* (or a *state-morphism filter*) of A if F is a filter of A such that if $x \in F$, then $\sigma(x) \in F$.

Special classes

- **Def:** Let (A, σ) be a state BL-algebra (or a state-morphism BL-algebra). A nonempty set $F \subseteq A$ is called a *state-filter* (or a *state-morphism filter*) of A if F is a filter of A such that if $x \in F$, then $\sigma(x) \in F$.
- Let (A, σ) be a state-morphism BL-algebra. Then $\sigma(Rad(A)) = Rad(\sigma(A))$.

Special classes

- **Def:** Let (A, σ) be a state BL-algebra (or a state-morphism BL-algebra). A nonempty set $F \subseteq A$ is called a *state-filter* (or a *state-morphism filter*) of A if F is a filter of A such that if $x \in F$, then $\sigma(x) \in F$.
- Let (A, σ) be a state-morphism BL-algebra. Then $\sigma(Rad(A)) = Rad(\sigma(A))$.
- For state BL-algebras we have $Rad(\sigma(A)) \subseteq \sigma(Rad(A)).$

• Recall: A BL-algebra A is called *simple* if A has two filters.

- Recall: A BL-algebra A is called *simple* if A has two filters.
- **Def:** A state BL-algebra (A, σ) is called *simple* if $\sigma(A)$ is simple. We denote by SSBL the class of all simple state BL-algebras.

- Recall: A BL-algebra A is called *simple* if A has two filters.
- **Def:** A state BL-algebra (A, σ) is called *simple* if $\sigma(A)$ is simple. We denote by SSBL the class of all simple state BL-algebras.
- (A, σ) a state BL-algebra. If A is simple as BL-algebra then (A, σ) is a simple state BL-algebra.

- Recall: A BL-algebra A is called *simple* if A has two filters.
- **Def:** A state BL-algebra (A, σ) is called *simple* if $\sigma(A)$ is simple. We denote by SSBL the class of all simple state BL-algebras.
- (A, σ) a state BL-algebra. If A is simple as BL-algebra then (A, σ) is a simple state BL-algebra.
- Thm: Let (A, σ) be a state-morphism BL-algebra. The following are equivalent:
 - $(1) (A, \sigma) \in SSBL;$
 - (2) $\ker(\sigma)$ is a maximal filter of A.

• Recall: A is semisimple if $Rad(A) = \{1\}$.

- Recall: A is semisimple if $Rad(A) = \{1\}$.
- **Def:** A state BL-algebra (A, σ) is called *semisimple* if $Rad(\sigma(A)) = \{1\}$. We denote by SSSBL the class of all semisimple state BL-algebras.

- Recall: A is semisimple if $Rad(A) = \{1\}$.
- **Def:** A state BL-algebra (A, σ) is called *semisimple* if $Rad(\sigma(A)) = \{1\}$. We denote by SSSBL the class of all semisimple state BL-algebras.
- (A, σ) a state BL-algebra. If A is a semisimple BL-algebra then (A, σ) is a semisimple state BL-algebra.

- Recall: A is semisimple if $Rad(A) = \{1\}$.
- **Def:** A state BL-algebra (A, σ) is called *semisimple* if $Rad(\sigma(A)) = \{1\}$. We denote by SSSBL the class of all semisimple state BL-algebras.
- (A, σ) a state BL-algebra. If A is a semisimple BL-algebra then (A, σ) is a semisimple state BL-algebra.
- Thm: Let (A, σ) be a state-morphism BL-algebra. The following are equivalent:
 - $(1) (A, \sigma) \in SSSBL;$
 - (2) $Rad(A) \subseteq \ker(\sigma)$.

Subclasses - perfect

• Recall: A BL-algebra is called *perfect* if $x \in Rad(A)$ or $x \in Rad(A)^-$, for any $x \in A$, where $Rad(A)^- = \{x^- : x \in Rad(A)\}.$

Subclasses - perfect

- Recall: A BL-algebra is called *perfect* if $x \in Rad(A)$ or $x \in Rad(A)^-$, for any $x \in A$, where $Rad(A)^- = \{x^- : x \in Rad(A)\}.$
- Thm: Let (A, σ) be a state BL-algebra. The following are equivalent:
 - (1) A is perfect;
 - (2) $(\forall x \in A, \sigma(x) \in Rad(A) \text{ implies } x \in Rad(A))$ and $\sigma(A)$ is perfect.

• **Def:** Let (A, σ) be a state BL-algebra. σ is called radical-faithful if, for every $x \in A$, $\sigma(x) \in Rad(A)$ implies $x \in Rad(A)$.

- **Def:** Let (A, σ) be a state BL-algebra. σ is called radical-faithful if, for every $x \in A$, $\sigma(x) \in Rad(A)$ implies $x \in Rad(A)$.
- Recall: A BL-algebra is called *local* if it has a unique maximal filter.

- **Def:** Let (A, σ) be a state BL-algebra. σ is called radical-faithful if, for every $x \in A$, $\sigma(x) \in Rad(A)$ implies $x \in Rad(A)$.
- Recall: A BL-algebra is called *local* if it has a unique maximal filter.
- Thm: Let (A, σ) be a radical-faithful state-morphism BL-algebra. The following are equivalent:
 - (1) A is a local BL-algebra;
 - (2) $\sigma(A)$ is a local BL-algebra.

- Thm: Let (A, σ) be a state-morphism BL-algebra. The following are equivalent:
 - $(1) (A, \sigma) \in SSBL;$
 - (2) A is a local BL-algebra and

$$\ker(\sigma) = Rad(A)$$
.

- Thm: Let (A, σ) be a state-morphism BL-algebra. The following are equivalent:
 - $(1) (A, \sigma) \in SSBL;$
 - (2) A is a local BL-algebra and $\ker(\sigma) = Rad(A)$.
- Let B be a subalgebra of a BL-algebra A and let σ be a state operator of A. If $\sigma(B) \subseteq B$, then $\sigma(B)$ is a subalgebra of B.

References

- CEGT R. Cignoli, F. Esteva, L. Godo, A. Torrens, *Basic Fuzzy Logic is the logic of continuous t-norms and their residua*, Soft Computing **4** (2000), 106–112.
- DiDv A. Di Nola, A. Dvurečenskij, *State-morphism MV-algebras*, Ann. Pure Appl. Logic, DOI: 10.1016/j.apal.2009.05.003.
- DvRa A. Dvurečenskij, J. Rachůnek, *On Riečan and Bosbach states for bounded non-commutative Rl-monoids*, Math. Slovaca **56** (2006), 487–500.
- FlMo T. Flaminio, F. Montagna, *MV-algebras with* internal states and probabilistic fuzzy logic, Inter. J. Approx. Reasoning **50** (2009), 138–152.

References - II

- Haj P. Hájek, *Metamathematics of Fuzzy Logic*, Trends in Logic - Studia Logica Library, Volume 4, Kluwer Academic Publishers, Dordrecht, 1998.
- RaSa J. Rachůnek, D. Šalounová, *State operators on GMV-algebras*, submitted.
 - Tur E. Turunen, S. Sessa, *Local BL algebras*, Multiple Valued Logic **6** (2001), 229–249.