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Self-Verifying Finite Automata

Definition (Self-Verifying Finite Automaton)

@ nondeterministic automaton M over an alphabet X

e states: accepting, rejecting, neutral
(”yes”, " nO”, nl donxt knOW”)

o L,(M)= strings with an accepting computation
L,(M)= strings with a rejecting computation
1. L(M)UL,(M)=X*and
2. L(M)NL(M)=2

o the language accepted by SVFA M is L,(M)

Example ( L= (a+ b)*a(a+ b)> )

ab NFA for L ab NFA for complement of L

a ab ab
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Self-Verifying Finite Automata

Definition (Self-Verifying Finite Automaton)

@ nondeterministic automaton M over an alphabet X

e states: accepting, rejecting, neutral

("yes", "no", "ldon't know")

o L,(M)= strings with an accepting computation
L,(M)= strings with a rejecting computation
1. L,(M)UL(M)=x* and
2. LM)NL(M)=2

o the language accepted by SVFA M is L,(M)

Example ( L= (a+ b)*a(a+ b)? )

SVFAfor L
ab NFAfor L a,b NFA for complement of L
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Self-Verifying Finite Automata Accept Regular Languages

Every DFA can be viewed as an SVFA:

@ make all final states of the DFA accepting, and
make all non-final states rejecting

If L is accepted by an n-state SVFA, then
o L is accepted by an n-state NFA (make accepting states final)

@ L€ is accepted by an n-state NFA (make rejecting states final)

In this paper:

@ all DFAs are complete

@ all NFAs have a unique initial state
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Why Self-Verifying Finite Automata?

Motivation and History

o Duri¥, Hromkovi¢, Rolim, Schnitger (STACS 1997)
Hromkovig, Schnitger (Inform. Comput. 2001)
- defined the model in connection with Las Vegas automata
- complexity of Las Vegas automata problems (Ji DCFS 2004)

@ Assent, Seibert (RAIRO-ITA 2007)
- simulation of SVFAs by DFAs

e Jirdskovd, Pighizzini (LATA 2009, Inform. Comput. 2011)
- optimal simulation by DFAs

@ Why operations on SVFAs? (To come to Baikal:-)
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Known Results: NFA-to-DFA Conversion

@ upper bound 2" (subset construction: Rabin, Scott 1959)

@ binary witnesses meeting the upper bound 2":

Lupanov 1963

Yershov 1962

Meyer, Fischer 1971

On the Bounds for State-Set Size in the Proofs of b mn
Equivalence Between Deterministic, Nondeter- NN
ministic, and Two-Way Finite Automata

FRANK R, MOORE, s, \ l
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Known Results: SVFA-to-DFA Conversion: Upper Bound

@ upper bound 2" reduced to O(2"/4/n) in [Assent, Seibert 07]
o further reduced to g(n) ~ 3"/3 in [Jirdskova, Pighizzini 2009]:

e we can assign a graph G(A) to an SVFA A
o each reachable subset is a clique in G(A)
e Sand T are equivalent iff SU T is a clique in G(A)

Moon, Moser 1960 Jiraskovd, Pighizzini 09

The maximum number of cliques: Every n-state SVFA
e if n mod 3 = 0; can be simulated
f(n)=<4-37/31-1  if nmod 3 =1; by a g(n)-state DFA,

poalisl W mmed 2oz | O

g(n)=1+4+1f(n-1)

o’
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SVFA-to-DFA Conversion: Optimality of the Simulation

Jirdskovd, Pighizzini (LATA 2009)

The upper bound g(n) is optimal, and it is met,
depending on n mod 3, by the following automata:
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Lower Bounds Methods

Well known: To prove that a DFA is minimal, show that

- all its states are reachable, and
- no two distinct states are equivalent.

Well known(?): To prove that an NFA is minimal, describe

a fooling set for the accepted language.

In this paper:

For a language L, we define a notion of an sv-fooling set,
and we prove that its size provides a lower bound

on the number of states in every SVFA for L.
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The Complexity of Regular Operations on DFAs

Noxasan Asaaexnr wayx CECF
i 51005

Maslov 1970 e

Mmivlt.;uumnn'),wq-;é ecan T(A) n T(B) mpecTanidht 5 aBTOMATAX AubBcm

1 1 cocTosmmsnmu coorsercTheno (m = 1. n = 1), To Sbpeiiotngs)
1) 7(4) U T (B) npejeTasuMO B ARTOMATE C I - 1L COCTOANHASH, 1) Union: m.n
2) T(N)-T(B exctanimo b apromate ¢ (m — 1)-2" 4 2"~' cocron -
““ml“ (£ Z 3)( ) upex . ( -2t 2) Concatenation : (m-1).2"+ 2"~%
=3),
3) Star: 4§»z"‘— 1

3
3) T(A)" npejcravumMo B aBTOMuTe 7 .2 — § cocvosiuaMn (m = 2).

Lower bounds:

HaMit noCTPOSKI LpKMEPE! aDTOMTOB Baj addanuroy 3= {0, 1}, ma ko-
TOPHIX 3TH OICHKW JAOCTHTAKTCH.

4. OGhepguncnue: A nMeer cocTOARAR {Si...,Sm-i) H TCpEXOLU
Sl =38, SA=02Sy, mpu iz=m—1, SO W . o — 3ARANIHTEABDOC
cocromnne; B mweer cocromuma  (Pe, ..., P..) # uopexoas P10 =P.
Py, PO=P;, npn i7=n—1, Po_y — BAKININTETHHOC COCTOAHMNE.
Ipoussenciuue: B MMeer coCTOAHIA {Po...,Pas} 1 mepexopn
Pod =P, Py =Py, PA=P apn i<n—2, P 0=P., PO=
Piyy mput 155 n 1, Proy — S2KILOIDTETBHOE COCTONHUO; ABTOMAT A rakoit
Ke, KAK JUIA 00'beInEeHIA.

3. Hrepanna: A maeer coctomnit {S,.. 1S, -1} # mepexomt .-
— 8p, S = Sepy upu { 7= m — 1, $:0 = S, S0 = Sy mpu i > 0, s — 80
KIOTHT2NIHHOR COCTONHAL,

Mo A i B cTpOEM COOTBETCTBYIONINC ABTOMATHL, KaK B (%, %), u BaXO[HUM 1t¢
06X0AnMOe UMCI0 TOCTEKHMBIX M PAJIHIABIX COCTOSIHMUI, 9T0 H JIOKaumBacT
surManiocrs (1), 3)

2)




General Formulation of the Problem

Maslov 1970

Munnmanon

Qbmas r T‘nY\l(:lHih jamad Takoro poga: myerTcs coobitan 7' (A:) i<
'&; l‘), II])('/[L.'V'HBRMHP B aRToMarax (1, ¢ iy COCTOSIAHAME COOTHRTCTBEHNIO, ‘}
ik — MecTHAA oinepayssa f HAL COOMTHAME, COXPAMSIOLAA IPECTARHMOCTN
B ONCYHBLIX aBTOMATax. Kaxum Moker ﬁ‘JTb MARCHMATIBHO® WHCIHO COCTOMITIH
MEEIMaIbHOro antomata, upeacranamomero f(T(A), ..., T(Ad)), mpu aan
HEIX 1,7

"Given languages L(A;) (1 <i < k)

accepted by automata A; with n; states

and a k-ary regular operation f,

what is the maximal number of states

in the minimal automaton for f(L(A1), ..., L(Ax)),
considered as a function of n;s?”

In this paper:
- automata are self-verifying
- f: boolean op., reversal, star, left and right qoutients, product
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Intersection on Self-Verifying Automata

Intersection:
KﬂL:{W|W€KandW€L}l

Known results for intersection:

DFA: mn binary [Maslov 1970]
NFA: mn binary [Holzer Kutrib 2003]

Our result for intersection on self-verifying automata:
SVFA: mn |X]|>2

Proof idea for the upper bound:

- construct a product automaton, in which
accepting: (p, g) where both p and g are accepting;
rejecting: (p, q) where p or q is rejecting. []
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Complementation, Union, Difference, Symmetric Diffrence

Complementation:
Le=%Y*\1L ’

Known results for complementation:

DFA: n  unary [folklore]
NFA: 2" binary [Birget 1993, Ji 2005]

An observation for self-verifying automata:

SVFA n (interchange acc and rej states)

v

Union and difference on self-verifying automata:

SVFA: mn KUL=(KSnLE)e
K\L=KnLE

Galina Jirdskova Operations on Self-Verifying Finite Automata



Complementation, Union, Difference, Symmetric Diffrence

Complementation:
Le=%Y*\1L ’

Known results for complementation:

DFA: n  unary [folklore]
NFA: 2" binary [Birget 1993, Ji 2005]

Symmetric difference on SVFAs: Worst-case example
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Reversal on Self-Verifying Automata

Reversal:
LR = {wR | w € L}, where wF is the mirror image of w

Known results for the reversal operation:

DFA: 2" binary [Leiss 1981]
NFA: n+1 binary [Holzer, Kutrib 2003]

Our result for reversal:

SVFA: 2n+1 [X|>2

©©

<

Proof idea for the upper bound:

n-state SVFA for L =

n-state NFA for L and n-state NFA for L =
n-state NFA for LR and n-state NFA for (LF)c =
(2n + 1)-state SVFA for LR O
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Star on Self-Verifying Automata

Star:
L*={wup---ux | k>0and u; € L for all i} J

Known results for the star operation:

DFA: 3/4-2" binary [Maslov 1970]
NFA: n+1 unary  [Holzer, Kutrib 2003]

Our results for star on self-verifying automata:

1. SVFA: 3/4.2" |£|>3/4.2"
2. SVFA: >2""1 for a quaternary alphabet

@v@ Proof idea for the lower bound:

- start with Maslov's DFA with Q = {1,...,n};
- define a new symbol cs for each S C Q;
- describe an sv-fooling set for its star. O
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Applications
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Applications |
Want to do something useful??? As a wo ?

do shopping make a dinner
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Applications |l
The work at my office
i —— . FET N NS

@ going into a fairy tail

s
= Ma-ma ’:‘@- F @ going into a world with
f;‘v‘/] X o truth
s i o beauty
: o infinity
g Ma-ma ﬁ%‘éﬁ
Ma T i
Mava & Opl Nevertheless:
= g | .
: @ Las Vegas computations

@ unambiguous automata

Wl —
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Summary and Open Problems

The complexity of operations on self-verifying finite automata:

complement n n 2"
intersection mn mn mn

union mn mn m+n+1
difference mn mn ?
symmetric difference | mn mn ?

reversal 2" 2n+1 n—+1

star 3/4-2" 3/4-2" n+1

left quotient 2" —1 2" —1 n—+1
right quotient n g(n) n
concatenation (m—1/2)-2" ©(3™3.2") m+n
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Thank You for Your Attention
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