(?) On the endomorphism kernel property

Emília Halušková

seminár Matematického ústavu SAV, Košice

16. 3. 2017

Outline

- Homomorphic approach
 - Example
- Endomorphism kernel property
 - Definition
 - Monounary results
 - Description of all finite
 - Description of all ones with injective operation
 - Description of some connected
 - Subalgebras with EKP
- Termination
 - Summary
 - Published EKP papers
 - Bubbles

J. Chvalina, O. Kopeček, M. Novotný: Homomorphic transformations - why and possible ways to how, Brno, 2012.

$$2f(x) - f(2x+1) + 1 = 0.$$

$$2f(x) - f(2x+1) + 1 = 0.$$

$$h(x) := 2x + 1$$

$$2f(x) - f(2x+1) + 1 = 0.$$

$$h(x) := 2x + 1$$

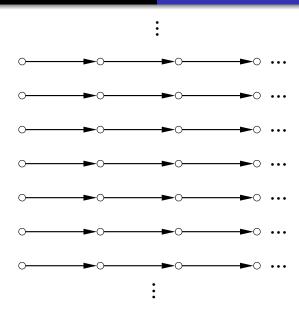
Find all homomorphisms from (\mathbb{Z}, h) into (\mathbb{Z}, h) .

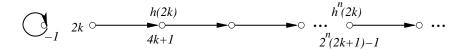
$$2f(x) - f(2x+1) + 1 = 0.$$

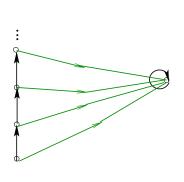
$$h(x) := 2x + 1$$

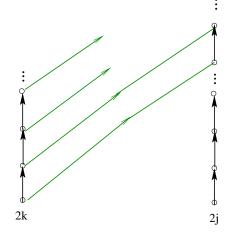
Find all homomorphisms from (\mathbb{Z}, h) into (\mathbb{Z}, h) .

Find all endomorphisms of (\mathbb{Z}, h) .









$$2f(x) - f(2x+1) + 1 = 0.$$

$$2f(x) - f(2x+1) + 1 = 0.$$

Solution:

$$2f(x) - f(2x+1) + 1 = 0.$$

Solution:

$$h(x) := 2x + 1$$

Choose f(2k) arbitrarily for every $k \in \mathbb{Z}$;

f(2k+1) are uniquely determined by the algebra (\mathbb{Z},h) .

$$2f(x) - f(x + 1) + 1 = 0.$$

$$2f(x) - f(x + 1) + 1 = 0.$$

$$h(x) := 2x + 1$$
$$g(x) := x + 1$$

$$2f(x) - f(x+1) + 1 = 0.$$

$$h(x) := 2x + 1$$

 $g(x) := x + 1$

Find all homomorphisms from (\mathbb{Z}, g) into (\mathbb{Z}, h) .

$$2f(x) - f(x+1) + 1 = 0.$$

$$h(x) := 2x + 1$$

$$g(x) := x + 1$$

Find all homomorphisms from (\mathbb{Z}, g) into (\mathbb{Z}, h) .

Solution:

$$2f(x) - f(x+1) + 1 = 0.$$

$$h(x) := 2x + 1$$

$$g(x) := x + 1$$

Find all homomorphisms from (\mathbb{Z}, g) into (\mathbb{Z}, h) .

Solution:

- exactly one:
$$f(x) = -1$$

$$2f(x) - f(2x+1) + 1 = 0.$$

$$2f(x) - f(2x+1) + 1 = 0.$$

Solution:

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

$$2f(x) - f(2x+1) + 1 = 0.$$

Solution:

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

How does f work on (\mathbb{Z}, h) ?

$$2f(x) - f(2x+1) + 1 = 0.$$

Solution:

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

How does f work on (\mathbb{Z}, h) ?

How does the algebra $(f(\mathbb{Z}), h)$ look like?

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

Let a = 0.

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

Let a = 0.

$$(f(\mathbb{Z}),h)$$

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

Let $a \neq 0$.

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

Let $a \neq 0$.

Take $n \in \mathbb{N}$, $k \in \mathbb{Z}$ such that

$$a=2^n(2k+1)$$

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

Let $a \neq 0$.

Take $n \in \mathbb{N}, k \in \mathbb{Z}$ such that

$$a=2^n(2k+1)$$

Then
$$f(0) = a - 1 = h^n(2k)$$
,
 $f(2) = 3a - 1 = h^n(2(3k + 1))$.

$$f(x) = ax + a - 1, \ a \in \mathbb{Z}$$

Let $a \neq 0$.

Take $n \in \mathbb{N}$, $k \in \mathbb{Z}$ such that

$$a=2^n(2k+1)$$

Then
$$f(0) = a - 1 = h^n(2k)$$
,
 $f(2) = 3a - 1 = h^n(2(3k + 1))$.

Further, $(f(\mathbb{Z}), h)$

$$\bigcirc_{-1}^{h^{n}(2(k+t(2k+1)))} \circ \longrightarrow \circ \cdots$$

$$a = {}^{+} 1$$
 \vdots
 $6 \circ {}^{-} \circ {}^{-$

$$a = {}^{+} 2$$
 \vdots
 $6 \circ - - \circ - \circ \circ \cdots$
 $4 \circ - - \circ \circ \cdots$
 $2 \circ - - \circ \circ \cdots$
 $2 \circ - - \circ \circ \cdots$
 $-2 \circ - - \circ \circ \cdots$
 $-4 \circ - - \circ \circ \cdots$
 \vdots

$$a = {}^{+} 4$$
 \vdots
 $6 \circ {}^{-} \circ {}^$

 ${\cal A}$ algebra

 $\operatorname{{\it End}}{\cal A}$ set of all endomorphisms of ${\cal A}$

 $\textit{Con}\mathcal{A}$ set of all congruences of \mathcal{A}

 \mathcal{A} algebra

EndA set of all endomorphisms of A ConA set of all congruences of A

We have

$$\{Ker\varphi, \varphi \in End\mathcal{A}\} \subseteq Con\mathcal{A}$$

 ${\cal A}$ algebra

 $\mathit{End}\mathcal{A}$ set of all endomorphisms of \mathcal{A}

 $\mathit{Con}\mathcal{A}$ set of all congruences of \mathcal{A}

 \mathcal{A} has EKP if

$$\{\mathit{Ker}\varphi, \varphi \in \mathit{End}\mathcal{A}\} = \mathit{Con}\mathcal{A}$$

 \mathcal{A} algebra

 $\mathit{End}\mathcal{A}$ set of all endomorphisms of \mathcal{A}

 $\mathit{Con}\mathcal{A}$ set of all congruences of \mathcal{A}

 \mathcal{A} has EKP if

$$\{Ker\varphi, \varphi \in End\mathcal{A}\} = Con\mathcal{A}$$

Lemma

A has EKP iff

every homomorphic image of A is isomorphic to a subalgebra of A.

$$A = (A, f), f : A \rightarrow A$$

$$A = (A, f), f : A \rightarrow A$$

EXAMPLE:

if $f \in \{id_A, const\}$ then A has EKP

$$A = (A, f), f : A \rightarrow A$$

EXAMPLE:

Description of all finite

Let A be finite.

Theorem (2015)

A has EKP iff

if $f \notin \{id_A, const\}$, then A contains exactly 1 nontrivial component B = (B, f) and B satisfies that

- a) f(c) = c for some $c \in B$,
- b) if $B f^{-1}(c) \neq \emptyset$, then the set $B f^{-1}(c)$ is a chain of \mathcal{B} .

Description for *f* injective

Let *f* be injective.

$\mathsf{Theorem}$

A has EKP iff

- a) Every component of A has a cycle.
- b) For arbitrary $k, l, m \in \mathbb{N}$ such that l divides $k, l \neq k$ the following conditions are satisfied:
 - b1) If A possesses m cycles of length k, then A possesses ℵ₀ cycles of length l.
 - b2) If κ is an infinite cardinal number and $\mathcal A$ possesses κ cycles of length k, then $\mathcal A$ possesses κ cycles of length l.

Description of some connected

Let \mathcal{A} be connected with a cycle $\{c\}$ and $f^{-1}(c)$ be finite.

Theorem

A has EKP iff

if $A \setminus f^{-1}(c) \neq \emptyset$, then $A \setminus f^{-1}(c)$ is a chain of A.

Description of some connected

Let \mathcal{A} be countable with a cycle $\{c\}$ and $f^2(a) = c$ for every $a \in \mathcal{A}$. Put

$$D=f^{-1}(c)\setminus\{c\},$$

 $R = \{a \in D : f^{-1}(a) \text{ is nonempty and finite } \},$

$$P = \{a \in D : f^{-1}(a) \text{ is infinite } \}.$$

Assume that *D* is infinite.

Theorem

A has EKP iff

if P is finite, then $||R|| \le 1$.

Suppose that A = (A, f) has EKP.

Suppose that A = (A, f) has EKP.

Lemma

If A is not connected and B = (B, f) is a component of A, then the algebra $(A \setminus B, f)$ has EKP.

Suppose that A = (A, f) has EKP.

Suppose that A = (A, f) has EKP.

Lemma

Let $\lambda \in \mathit{Ord} \cup \{\infty\}$.

If $B = \{a \in A : s(a) \ge \lambda\}$, then the algebra (B, f) has EKP.

Suppose that A = (A, f) has EKP.

Lemma

```
Let \lambda \in Ord \cup \{\infty\}.
If B = \{a \in A : s(a) \ge \lambda\}, then the algebra (B, f) has EKP.
```

Remark: If $\lambda \in \mathbb{N}$, then $B = f^{\lambda}(A)$.

Suppose that A = (A, f) has EKP. Let every component of A contain a cycle.

Suppose that A = (A, f) has EKP. Let every component of A contain a cycle.

 $\delta(a)$ distance of $a \in A$ from a cycle of ${\mathcal A}$

Lemma

Let $k \in \mathbb{N}_0$.

If $B = \{a \in A : \delta(a) \le k\}$, then the algebra (B, f) has EKP.

• Finite monounary algebras with EKP are very simple and they are closed with respect to subalgebras.

- Finite monounary algebras with EKP are very simple and they are closed with respect to subalgebras.
- Infinite monounary algebras with EKP are more complicated. Several classes of them are described.

- Finite monounary algebras with EKP are very simple and they are closed with respect to subalgebras.
- Infinite monounary algebras with EKP are more complicated. Several classes of them are described.
- Severy monounary algebra with EKP contains "well defined" subalgebras with EKP.

- 1 T.S. Blyth, J. Fang and H. J. Silva: *EKP in finite distributive lattices and de Morgan algebras*, Communications in Algebra, 32 (6), (2004), 2225-2242.
- 2 T.S. Blyth, H. J. Silva: *SEKP in Ockham algebras*, Communications in Algebra, 36 (5), (2004), 1682-1694.
- 3 T.S. Blyth, J. Fang and L.-B. Wang: SEKP in distributive double p-algebras, Sci. Math. Jpn. 76 (2), (2013), 227-234.
- 4 G. Fang and J. Fang: *SEKP in distributive p-algebras*, Southeast Asian Bull. of Math. 37, (2013), 491-497.
- 5 J. Fang, Z.-J. Sun: *Semilattices with the SEKP*, Algebra Univ. 70 (4), (2013), 393-401.
- 6 H. Gaitán, Y.J. Cortés: *EKP in finite Stone algebras*, JP J. of Algebra, Number Theory and Appl., 14(1), (2009), 51-64.

- 7 J. Guričan: EKP for modular p-algebras and Stone lattices of order n, JP J. of Algebra, Number Theory and Appl., 25(1), (2012), 69-90.
- 8 J. Guričan: *A note on EKP*, JP J. of Algebra, Number Theory and Appl., 33 (2), (2014), 133-139.
- 9 J. Guričan: *SEKP for Brouwerian algebras*, JP J. of Algebra, Number Theory and Appl., 36(3), (2015), 241-258.
- 10 J. Guričan, M. Ploščica: SEKP for modular p-algebras and for distributive lattices, Algebra Univ., 75 (2), (2016), 243-255.

Summary Published EKP papers Bubbles

