Extensions of D-posets of fuzzy events

Roman Frič, Košice

MÚ SAV, seminar

Roman Frič, Košice Extensions of D-posets of fuzzy events

Cieľom je v rámci teórie D-posetov popísať typické situácie (klasické i fuzzy), v ktorých sa kanonickým spôsobom rozširuje základné pole náhodných udalostí pridávaním nových. $\mathbf{A} \subseteq \sigma(\mathbf{A}) \subseteq \mathbf{M}_{\mathbf{A}}$,

 $\mathcal{X} \subseteq \sigma(\mathcal{X}), \ \mathcal{X} \subseteq \mathcal{M}(\mathsf{A}_{\sigma(\mathcal{X})})$

RIEČAN, B.: Analysis of fuzzy logic models. In: Intelligent Systems (ed. V.M. Koleshko), In Tech, Rijeka 2012, 219–244.

FRIČ, R.: On D-posets of fuzzy sets. Math. Slovaca **64** (2014), 545–554.

HAVLÍČKOVÁ, J.: Real functions and the extension of generalized probability measure. Tatra Mt. Math. Publ. **55** (1913), 85–94.

伺 ト イ ヨ ト イ ヨ ト

Let **A** be a field of subsets of a set X, let P(X) be the set of all subsets of X, let $\mathcal{P}(\mathbf{A})$ be the set of all probability measures on **A**, and let $p \in \mathcal{P}(\mathbf{A})$. For each $B \subseteq X$ put

$$p^*(B) = \inf\{\sum_{i=1}^{\infty} p(A_i); B \subseteq \bigcup_{i=1}^{\infty} A_i, A_i \in \mathbf{A}\}.$$

The resulting map $p^* : \mathbf{P}(X) \longrightarrow I$ is called **induced outer measure**. A set $M \subseteq X$ is said to be *p*-**measurable** whenever for each $B \subseteq X$ we have

$$p^*(B) = p^*(B \cap M) + p^*(B \cap M^c),$$

where $M^c = X \setminus M$. Denote \mathbf{M}_p the set of all *p*-measurable subsets of *X*.

Let **A** be a field of subsets of a set X and let p be a probability measure on **A**. Then

- (i) \mathbf{M}_p is a σ -field, $\mathbf{A} \subseteq \mathbf{M}_p$ and if $B \subseteq X$ and $p^*(B) = 0$, then $B \in \mathbf{M}_p$;
- (ii) Define $\overline{p}(B) = p^*(B)$, $B \in \mathbf{M}_p$. Then \overline{p} is a probability measure on \mathbf{M}_p and it is an extension of p over \mathbf{M}_p ;
- (iii) \mathbf{M}_p is the largest σ -field of subsets of X which contains **A** and on which p^* defines a probability measure;
- (iv) If $B \subseteq X$, then there exists $A \in \sigma(\mathbf{A}) \subseteq \mathbf{M}_p$ such that $B \subseteq A$ and $p^*(B) = \overline{p}(A)$.

Denote

$$\mathsf{M}_{\mathsf{A}} = \bigcap_{p \in \mathcal{P}(\mathsf{A})} \mathsf{M}_{p}.$$

Clearly, $M \subseteq X$ belongs to M_A iff it is *p*-measurable for all $p \in \mathcal{P}(A)$, $\sigma(A) \subseteq M_A$, and M_A is a σ -field of subsets of the set X.

It is known that in general we have $\sigma(\mathbf{A}) \neq \mathbf{M}_{\mathbf{A}}$.

Definition

Let **A** be a field of subsets of a set X. Elements of **M**_A are said to be **absolutely A-measurable sets**.

Definition

Let **A** be a field of subsets of a set X and let p be a probability measure on **A**. Let **B** be a field of subsets of a set X such that $\mathbf{A} \subseteq \mathbf{B}$ and let q be a probability measure on **B** such that p(A) = q(A) for all $A \in \mathbf{A}$. If

$$q(B) = \inf\{\sum_{i=1}^{\infty} p(A_i); B \subseteq \bigcup_{i=1}^{\infty} A_i, A_i \in \mathbf{A}\}$$

for all $B \in \mathbf{B}$, then q is said to be a **measurable extension** of p.

Let q be a measurable extension of $p \in \mathcal{P}(\mathbf{A})$ on \mathbf{A} over $\mathbf{M}_{\mathbf{A}}$. Clearly, for all $M \in \mathbf{M}_{\mathbf{A}}$ we have $q(M) = p^*(M)$. Denote **ID** the category having (reduced) D-posets of fuzzy sets as objects and having sequentially continuous D-homomorphisms (preserving constants, order, and the difference) as morphisms. Objects of **ID** are subobjects of the powers I^X .

Essentially, there are two types of extensions. First, we can add functions and then we speak of an ID-**extension**. Second, we can extend the domain of functions and such extensions have stochastic applications

Let $\mathcal{X} \subseteq I^X$ be a D-poset of fuzzy sets. Denote $\mathcal{S}(\mathcal{X})$ the set of all sequentially continuous D-homomorphisms of \mathcal{X} into I; the elements of $\mathcal{S}(\mathcal{X})$ are called **states**. In what follows, each $x \in X$ will be considered as the **evaluation state** on \mathcal{X} : x(u) = u(x), $u \in \mathcal{X}$. If $X = \mathcal{S}(\mathcal{X})$, then \mathcal{X} is said to be **sober**. Let Y be a set of states such that $X \subseteq Y \subseteq \mathcal{S}(\mathcal{X})$. For $u \in \mathcal{X}$, put $ev_Y(u) = \{y(u); y \in Y\} \in I^Y$ and denote by ev_Y the corresponding map of \mathcal{X} into I^Y . Put $\mathcal{X}_Y = \{ev_Y(u); u \in \mathcal{X}\}$.

Lemma

 (i) X_Y is a D-poset of fuzzy sets (with respect to the D-poset structure inherited from I^Y).

(ii) evy is an isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $\mathcal{X} \subseteq I^X$ be a D-poset of fuzzy sets and let Y be a set of states such that $X \subseteq Y \subseteq \mathcal{S}(\mathcal{X})$. Then \mathcal{X}_Y is said to be a **domain extension** of \mathcal{X} . If $Y = \mathcal{S}(\mathcal{X})$, then \mathcal{X}_Y is said to be the **sobrification** of \mathcal{X} .

For $\mathcal{X} \subseteq I^{\mathcal{X}}$ and $Y = \mathcal{S}(\mathcal{X})$, the sobrification \mathcal{X}_{Y} of \mathcal{X} will be denoted by \mathcal{X}^{*} . Denote **SID** the (full) subcategory of **ID** consisting of sober D-posets of fuzzy sets.

Theorem

The subcategory **SID** of **ID** is epireflective in **ID**.

Let us recall the notion of an **epireflection**. Let **B** be a full subcategory of a category **A**. Let X be an object of **A**. An object r(X) of **B** is called a **reflection** of X in **B**, or a **B**-reflection, if there exists a morphism $e_X : X \longrightarrow r(X)$ such that for each morphism $f: X \longrightarrow Y$, Y in **B**, there exists a unique morphism $r(f): r(X) \longrightarrow Y$ such that $r(f) \circ e_X = f$. The functor assigning to each object of **A** its reflection in **B**, is called a reflector. If each object of **A** has a **B**-reflection, then **B** is said to be reflective in **A**. A reflective subcategory is called **epireflective** if the canonical morphism $e_X : X \longrightarrow r(X)$ is an epimorphism for every X; in this case we speak of an epireflector and epireflection.

Let $\mathcal{X} \subseteq I^X$ be a D-poset of fuzzy sets and let $\mathcal{Y} \subseteq I^X$ be an ID-extension of \mathcal{X} . Recall that if each state on \mathcal{X} can be extended to a state on \mathcal{Y} , i.e. $(\forall s \in \mathcal{S}(\mathcal{X}))(\exists t \in \mathcal{S}(\mathcal{Y}))[t|\mathcal{X} = s]$, then \mathcal{X} is said to be $\mathcal{S}(\mathcal{X})$ -**embedded** in \mathcal{Y} . Let $\mathcal{X} \subseteq I^X$ be a D-poset of fuzzy sets and let $\mathcal{Y} \subseteq I^X$ be an ID-extension of \mathcal{X} . Let t be a state on \mathcal{Y} and let $t|\mathcal{X}$ be the restriction of t to \mathcal{X} . Since $t|\mathcal{X} \in \mathcal{S}(\mathcal{X})$, the restriction yields a **restriction map** r of $\mathcal{S}(\mathcal{Y})$ into $\mathcal{S}(\mathcal{X})$ sending t to $r(t) = t|\mathcal{X}$.

Definition

Let $\mathcal{X} \subseteq I^X$ be a D-poset of fuzzy sets and let $\mathcal{Y} \subseteq I^X$ be an ID-extension of \mathcal{X} . If the restriction map $r : \mathcal{S}(\mathcal{Y}) \longrightarrow \mathcal{S}(\mathcal{X})$ is one-to-one and onto, then \mathcal{Y} is said to be a **state** extension of \mathcal{X} . A state extension \mathcal{Y} of \mathcal{X} is said to be **maximal** if there is no proper state extension $\mathcal{Z} \subset I^X$ of \mathcal{Y} . Let \mathcal{C} be a class of state extensions of \mathcal{X} and let $\mathcal{Y} \in \mathcal{C}$. If there is no proper extension of \mathcal{X} in \mathcal{C} , then \mathcal{Y} is said to be **maximal in** \mathcal{C} . If \mathcal{Y} is a state extension of \mathcal{X} and \mathcal{Y} is an ID-extension of each state extension \mathcal{Z} of \mathcal{X} , then \mathcal{Y} is said to be the **absolute state extension** of \mathcal{X} . If $\mathcal{Y} \in \mathcal{C}$ and \mathcal{Y} is an ID-extension of each state extension \mathcal{Z} of \mathcal{X} in \mathcal{C} , then \mathcal{V} is said to be the **absolute state extension** of \mathcal{X} in \mathcal{C} .

Example

For $X = \{0, 1\}$, let $\mathcal{X} \subset I^X$ be the σ -field of all subsets of X. The set $\mathcal{S}(\mathcal{X})$ of all states of \mathcal{X} is the same as the set of all probability measures on the σ -field in question. Each $s \in \mathcal{S}(\mathcal{X})$ can be visualized as an element a_s of the closed unit interval [0, 1], where the number a_s is equal to the corresponding probability of the singleton {0} and $(1 - a_s)$ is equal to the corresponding probability of the singleton $\{1\}$; we identify s and the corresponding number a_s and, consequently, we identify $\mathcal{S}(\mathcal{X})$ and [0,1]. Further, the sobrification \mathcal{X}^* can be visualized as the D-poset $\mathcal{X}_{\mathcal{S}(\mathcal{X})} \subseteq I^{[0,1]}$ consisting of the following four functions: constant functions $0_{[0,1]}$ and $1_{[0,1]}$, functions x and $1 - x, x \in [0,1]$.

Example

Consider \mathcal{X} and its sobrification $\mathcal{X}^* \subseteq I^{[0,1]}$ in the previous example. Let **B** be the σ -field of all Borel measurable subsets of [0,1] and let $\mathcal{M}(\mathbf{B})$ be the set of all **B**-measurable functions with values in I. Then $\mathcal{M}(\mathbf{B})$ can be considered as an ID-extension of \mathcal{X}^* . Clearly, \mathcal{X}^* is $\mathcal{S}(\mathcal{X}^*)$ -embedded in $\mathcal{S}(\mathcal{M}(\mathbf{B}))$. On the other hand, the restriction map r of $\mathcal{S}(\mathcal{M}(\mathbf{B}))$ into $\mathcal{S}(\mathcal{X}^*)$ is far from being none-to-one. Hence $\mathcal{M}(\mathbf{B})$ fails to be a state extension of \mathcal{X}^* .