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1. Introduction

1. Introduction

In 1971 McNaughton and Papert introduced the

strictly locally testable and the locally testable languages.

These languages have received much attention in the literature
because of their elegance and simplicity.

A language L ⊆ Σ∗ is strictly k -testable iff

∃A,B,C ⊆ Σk : L ∩ Σ≥k = (A · Σ∗ ∩ Σ∗ · B) r (Σ+ · (Σ∗ r C) · Σ+).

L is strictly locally testable if it is strictly k -testable for some k ≥ 1.
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1. Introduction

For w = a1a2 . . . an ∈ Σn, 1 ≤ i ≤ n, and 1 ≤ k ≤ n − i + 1,

w [i , k ] = aiai+1 . . . ai+k−1,

that is, w [i , k ] is the factor of w of length k that starts with ai .

For k ≥ 1 and w ∈ Σ≥k ,

Pk (w) = w [1, k ] is the prefix of w of length k ,
Sk (w) = w [n − k + 1, k ] is the suffix of w of length k , and
Ik (w) = {w [i , k ] | 2 ≤ i ≤ |w | − k } are the infixes of w of length k .

A language L ⊆ Σ∗ is k -testable iff, for all u, v ∈ Σ≥k ,

if Pk (u) = Pk (v)∧Sk (u) = Sk (v)∧ Ik (u) = Ik (v), then (u ∈ L⇔ v ∈ L).

L is locally testable if it is locally k -testable for some k ≥ 1.

By LT(k) (SLT(k)) we denote the class of (strictly) k -testable
languages, and LT (SLT) is the class of (strictly) locally testable
languages.
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1. Introduction

A DFA can check membership of a word w , |w | ≥ k , in a (strictly)
k -testable language by scanning w from left to right, just remembering
the prefix, the inner factors, and the suffix of length k that it
encounters.

In the literature many devices have been studied that scan their inputs
in a more flexible way, e.g., two-head automata, where the heads scan
the input starting at the two ends of the word (Rosenberg 1967).

At NCMA 2017 we presented a generalization of the strictly locally
testable languages that corresponds to such a two-way scanning, the
two-sided strictly locally testable languages.

Here we further extend these considerations to the two-sided locally
testable languages.
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2. Definitions and Preliminaries

2. Definitions and Preliminaries

As the class SLT(k) is closed under intersection, using two windows of
size k to scan a given word simultaneously from left to right and from
right to left would just yield another strictly k -testable language. Hence,
the two factors scanned concurrently must be put into some relation.

Definition 1

Let k ≥ 1, let Σ be an alphabet, and let R ⊆ Σk × Σk be a symmetric
relation. By Σ≥k

R we denote the set of all words w ∈ Σ≥k that satisfy
the following condition:

∀i ∈ {1,2, . . . , |w | − k + 1}, (w [i , k ],w([|w |+ 2− k − i , k ]) ∈ R.

We call these words the R-symmetric words.
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2. Definitions and Preliminaries

Definition 2

A language L ⊆ Σ∗ is two-sided strictly k-testable if
∃A,B,C ⊆ Σk ∃ a symmetric relation R ⊆ Σk × Σk :

∀w ∈ L ∩ Σ≥k : Pk (w) ∈ A ∧ Sk (w) ∈ B ∧ Ik (w) ⊆ C ∧ w ∈ Σ≥k
R .

By L(A,B,C,R) we denote the set of all words of length at least k that
satisfy the conditions above. Hence, L = L(A,B,C,R) ∪ FL, where
FL ⊆ Σ≤k−1.

A language L ⊆ Σ∗ is two-sided strictly locally testable if it is two-sided
strictly k-testable for some k ≥ 1.

By 2SLT(k) (2SLT) we denote the class of two-sided strictly (k-)
testable languages. If the binary relation R is to be emphasized, then
we write the corresponding class as 2SLTR(k).
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2. Definitions and Preliminaries

Example 1

Let Σ = {a,b}, and let A = {a,b} = B = C.
The triple (A,B,C) defines the strictly 1-testable language
L = L(A,B,C) = Σ+.
Let R = {(a,b), (b,a)} ⊂ Σ× Σ and let L′ = L(A,B,C,R) be the
resulting two-sided strictly 1-testable language.
Then w ∈ Σ+ belongs to L′ iff, for all i = 1,2, . . . , |w |, the i-th letter
from the left differs from the i-th letter from the right.
Thus, L′ is not even regular, as L′ ∩ (a∗ · b∗) = {anbn | n ≥ 1 } holds.
Hence, L′ is in particular not locally testable.
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2. Definitions and Preliminaries

Definition 3

Let k ≥ 1, Σ an alphabet, and R ⊆ Σk × Σk a symmetric relation.
1 A language L ⊆ Σ∗ is k-R-testable, if L ∩ Σ≥k ⊆ Σ≥k

R , and the
following conditions are met for all x , y ∈ Σ≥k

R :

if Pk (x) = Pk (y) ∧ Sk (x) = Sk (y) ∧ Ik (x) = Ik (y),
then (x ∈ L ⇐⇒ y ∈ L).

2 A language L ⊆ Σ∗ is called two-sided k-testable if there exists a
symmetric relation R ⊆ Σk × Σk such that L is k-R-testable.

3 A language L ⊆ Σ∗ is called two-sided locally testable if it is
two-sided k-testable for some k ≥ 1.
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2. Definitions and Preliminaries

Example 2

The language L = {adnb,aenc | n ≥ 1 } ∈ 2SLT(2) r 2SLT(1).
However, this language is two-sided 1-testable.
For R = {(a,b), (b,a), (a, c), (c,a), (d ,d), (e,e)}, we have

Σ≥1
R = {w ∈ Σ≥1 | ∀i = 1, . . . , |w | : (w [i] = a iff w [|w |+ 1− i] ∈ {b, c})

and if w [i] ∈ {d ,e}, then w [i] = w [|w |+ 1− i] }.

Now L = {w ∈ Σ≥1
R | P1(w) = a ∧ ((I1(w) = {d} ∧ S1(w) = b)

∨(I1(w) = {e} ∧ S1(w) = c)) }.

Actually, L is the union of the two-sided strictly 1-testable languages

L1 = {adnb | n ≥ 1 } and L2 = {aenc | n ≥ 1 }.

M. Kutrib, F. Otto Two-sided locally testable languages NCMA 2018 10 / 27



2. Definitions and Preliminaries

Example 2

The language L = {adnb,aenc | n ≥ 1 } ∈ 2SLT(2) r 2SLT(1).
However, this language is two-sided 1-testable.
For R = {(a,b), (b,a), (a, c), (c,a), (d ,d), (e,e)}, we have

Σ≥1
R = {w ∈ Σ≥1 | ∀i = 1, . . . , |w | : (w [i] = a iff w [|w |+ 1− i] ∈ {b, c})

and if w [i] ∈ {d ,e}, then w [i] = w [|w |+ 1− i] }.

Now L = {w ∈ Σ≥1
R | P1(w) = a ∧ ((I1(w) = {d} ∧ S1(w) = b)

∨(I1(w) = {e} ∧ S1(w) = c)) }.

Actually, L is the union of the two-sided strictly 1-testable languages

L1 = {adnb | n ≥ 1 } and L2 = {aenc | n ≥ 1 }.

M. Kutrib, F. Otto Two-sided locally testable languages NCMA 2018 10 / 27



2. Definitions and Preliminaries

Example 2

The language L = {adnb,aenc | n ≥ 1 } ∈ 2SLT(2) r 2SLT(1).
However, this language is two-sided 1-testable.
For R = {(a,b), (b,a), (a, c), (c,a), (d ,d), (e,e)}, we have

Σ≥1
R = {w ∈ Σ≥1 | ∀i = 1, . . . , |w | : (w [i] = a iff w [|w |+ 1− i] ∈ {b, c})

and if w [i] ∈ {d ,e}, then w [i] = w [|w |+ 1− i] }.

Now L = {w ∈ Σ≥1
R | P1(w) = a ∧ ((I1(w) = {d} ∧ S1(w) = b)

∨(I1(w) = {e} ∧ S1(w) = c)) }.

Actually, L is the union of the two-sided strictly 1-testable languages

L1 = {adnb | n ≥ 1 } and L2 = {aenc | n ≥ 1 }.

M. Kutrib, F. Otto Two-sided locally testable languages NCMA 2018 10 / 27



2. Definitions and Preliminaries

In [NCMA 2017] we have shown that SLT(k) ( 2SLT(k)

and that 2SLT(k) ( 2SLT(k + 1) for all k ≥ 1.

Also it is known that LT(k) ( LT(k + 1).

For all k ≥ 1, let Lk be the finite language Lk = {ak ,ak+1}.

Lemma 4

For all k ≥ 1, Lk+1 ∈ LT(k + 1) r 2LT(k).

Corollary 5

1 The (two-sided) k-testable languages form an infinite ascending
hierarchy with respect to the parameter k.

2 For all k ≥ 1, LT(k) ( 2LT(k), but 2LT(k) = SLT(k) for unary
languages.
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3. Closure Properties

3. Closure Properties

Let k ≥ 1, Σ an alphabet, and R ⊆ Σk × Σk a symmetric relation.
For all words u, v ∈ Σk and all subsets C ⊆ Σk , we define

LR(u, v ,C) = {w ∈ Σ≥k
R | Pk (w) = u,Sk (w) = v , and Ik (w) = C },

and for a k -R-testable language L ⊆ Σ∗, we define

triple(L) = { (u, v ,C) | u, v ∈ Σk and C ⊆ Σk s.t. LR(u, v ,C) ∩ L 6= ∅ }.

If (u, v ,C) ∈ triple(L), then there is a word w ∈ Σ≥k
R with Pk (w) = u,

Sk (w) = v , Ik (w) = C that belongs to L and to LR(u, v ,C).
Since L is k -R-testable, all words w ′ ∈ Σ≥k

R with Pk (w ′) = u,
Sk (w ′) = v , Ik (w ′) = C belong to L as well.
We conclude that LR(u, v ,C) ⊆ L if (u, v ,C) ∈ triple(L).
Thus,

L = FL ∪
⋃

(u,v ,C)∈triple(L)

LR(u, v ,C),

where FL = {w ∈ L | |w | ≤ k − 1 }.
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3. Closure Properties

Lemma 6

Let k ≥ 1, let Σ be an alphabet, and let R ⊆ Σk × Σk be a symmetric
relation. If L =

⋃m
i=1 LR(ui , vi ,Ci), then L belongs to 2LTR(k).

If L ⊆ Σ∗ is a two-sided strictly k -testable language, then there exist a
symmetric binary relation R on Σk , sets A,B,C ⊆ Σk , and a finite
subset F ⊆ Σ≤k−1 such that

L = F ∪ {w ∈ Σ≥k
R | Pk (w) ∈ A,Sk (w) ∈ B, and Ik (w) ⊆ C }.

Hence, L can be written as

L = F ∪
⋃

u∈A,v∈B,C′⊆C

LR(u, v ,C′),

which implies that L is k -R-testable.

Corollary 1

For all k ≥ 1, 2SLT(k) ⊆ 2LT(k) and 2SLT ⊆ 2LT.
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3. Closure Properties

Now we turn to the Boolean operations union and intersection and a
variant of the operation of complementation.
Let k ≥ 1, Σ an alphabet, and R ⊆ Σk × Σk a symmetric relation.
For a k -R-testable language L ⊆ Σ∗, the R-complement is the set

Lc
R = (Σ≤k−1 ∩ Lc) ∪ (Σ≥k

R ∩ Lc).

It is easily seen that Lc = Lc
R ∪ (Σ≥k r Σ≥k

R ), that is, the complement Lc

of L differs from the R-complement Lc
R by the words of length at least k

that are not R-symmetric.

Proposition 7

Let k ≥ 1, let Σ be an alphabet, and let R ⊆ Σk × Σk be a symmetric
relation. Then the family 2LTR(k) is closed under the Boolean
operations intersection and union and under the operation of
R-complementation.
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3. Closure Properties

Proof of Prop. 7.
Let L,L1,L2 ⊆ Σ∗ be k -R-testable languages.
The union L1 ∪ L2 is represented by

FL1 ∪ FL2 ∪
⋃

(u,v ,C)∈(triple(L1)∪ triple(L2))

LR(u, v ,C).

By Lemma 6 it follows that L1 ∪ L2 ∈ 2LTR(k).

Similarly, the intersection L1 ∩ L2 is represented by
(FL1 ∩ FL2) ∪

⋃
(u,v ,C)∈(triple(L1)∩ triple(L2))

LR(u, v ,C),

which shows that L1 ∩ L2 ∈ 2LTR(k).
Finally, for the R-complement Lc

R we have

Lc
R =

(
Σ≤k−1 ∪ Σ≥k

R

)
rL = (Σ≤k−1rFL)∪

 ⋃
(u,v ,C)6∈triple(L)

LR(u, v ,C)

 .

Since the number of triples (u, v ,C) that do not belong to triple(L) is
finite, Lemma 6 shows that Lc

R ∈ 2LTR(k). 2
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3. Closure Properties

Proposition 8

For all k ≥ 1, the families 2LT(k) and 2LT are closed under intersection
and R-complementation.

To establish closure under intersection, we observed that
Σ≥k

R1∩R2
= Σ≥k

R1
∩ Σ≥k

R2
for any k ≥ 1 and any two binary relations R1,R2

on Σk . A similar argument does not hold for union, as Σ≥k
R1
∪ Σ≥k

R2
is in

general a proper subset of Σ≥k
R1∪R2

.

Example 3.

Let Σ = {a,b}, k = 1, R1 = {(a,a)} and R2 = {(b,b)}.
Then Σ≥1

R1
= a+ and Σ≥1

R2
= b+.

However, R1 ∪ R2 = {(a,a), (b,b)} and

Σ≥1
R1∪R2

= {w ∈ Σ+ | ∀i = 1,2, . . . , |w | : w [i] = w [|w |+ 1− i] },

which also contains the word w = abba /∈ Σ≥1
R1
∪ Σ≥1

R2
.
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3. Closure Properties

Proposition 9

For all k ≥ 1, the families 2LT(k) and 2LT are not closed under union.

Proof.
Let k = 1, Σ = {a,b, c}, R1 = {(a,a), (b, c), (c,b)} and
L1 = {w ∈ Σ≥1

R1
| P1(w),S1(w) ∈ {a,b, c}, I1(w) ⊆ {a,b, c} }

= {w ∈ {a,b, c}∗ | ∀i = 1, . . . , |w | : (w [i] = a⇒ w [|w |+ 1− i] = a)

∧(w [i] = b ⇒ w [|w |+ 1− i] = c)

∧(w [i] = c ⇒ w [|w |+ 1− i] = b) }.
Further, let R2 = {(a,a), (b,b), (c, c)} and

L2 = {w ∈ Σ≥1
R2
| P1(w),S1(w) ∈ {a,b, c}, I1(w) ⊆ {a,b, c} }

= {w ∈ {a,b, c}∗ | ∀i = 1, . . . , |w | : w [i] = w [|w |+ 1− i] }.
Clearly, L1 ∈ 2LTR1(1) and L2 ∈ 2LTR2(1) and, hence,
L1,L2 ∈ 2LT(1) ⊆ 2LT.
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3. Closure Properties

Proof of Prop. 9 (cont.)
Assume L1 ∪ L2 ∈ 2LT. Then there are k ≥ 1 and a symmetric binary
relation R on {a,b, c}k such that L1 ∪ L2 ∈ 2LTR(k).

We consider the word v1 = akbkakckak . Since v1 ∈ L1, the relation R
contains the pairs (ak−ibi , c iak−i), (c iak−i ,ak−ibi), (bk−iai ,aick−i),
and (aick−i ,bk−iai) for all 0 ≤ i ≤ k .
Since v2 = akckakckak ∈ L2, the relation R also contains the pairs
(ak−ic i , c iak−i) and (c iak−i ,ak−ic i) for all 0 ≤ i ≤ k .
Thus, also the word w = akbkakckakckakckak belongs to {a,b, c}≥k

R .
Since Pk (w) = Pk (v1), Sk (w) = Sk (v1), and Ik (w) = Ik (v1),
the word w belongs to the k -R-testable language L1 ∪ L2.
However, as w /∈ L1 and w /∈ L2, this is a contradiction.
Hence, neither 2LT(k) nor 2LT is closed under union. 2
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4. Expressive Capacity

4. Expressive Capacity

A language L ⊆ Σ∗ is even linear (ELIN) if it is generated by a grammar
G = (V ,Σ,S,P) s.t. all productions in P are of the form (A→ uBv) or
(A→ w), where A,B ∈ V and u, v ,w ∈ Σ∗ satisfying |u| = |v | [AP64].

Theorem 10

The family 2LT is properly included in ELIN.

Proof.
For each L ∈ 2LT, there are k ≥ 1 and a symmetric binary relation R
on Σk such that L ∈ 2LTR(k). Hence, L can be represented as
L = F ∪

⋃
(u,v ,C)∈triple(L) LR(u, v ,C), where F ⊆ Σ≤k−1 and

LR(u, v ,C) = {w ∈ Σ≥k
R | Pk (w) = u,Sk (w) = v , and Ik (w) = C }.

Since the set triple(L) is finite and ELIN is closed under union, it is
sufficient to construct even linear grammars for the sets LR(u, v ,C).
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4. Expressive Capacity

Proof of Theorem 10 (cont.)

To this end, let G = (V ,Σ,S,P), where
V = {S} ∪ {T Q

[x ,y ] | Q ⊆ Σk , x , y ∈ Σk } is the set of nonterminals, Σ is
the set of terminals, S is the start symbol, and P contains the following
productions, where x1, x2, . . . , xk , y1, y2, . . . , yk ,p,q ∈ Σ:

• S → T ∅[u,v ] if (u, v) ∈ R,

• T Q
[x1x2···xk ,y1y2···yk ]

→ x1T Q∪{x2···xk p,qy1y2···yk−1}
[x2···xk p,qy1y2···yk−1]

yk

if (x2 · · · xkp,qy1y2 · · · yk−1) ∈ R and x2 · · · xkp,qy1y2 · · · yk−1 ∈ C,

• T Q
[x ,y ] → x if x = y and Q = C,

• T Q
[x1x2···xk ,y1y2···yk ]

→ x1x2 · · · xkyk

if x1x2 · · · xkyk = x1y1y2 · · · yk and Q = C.

Then L(G) = LR(u, v ,C). 2
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4. Expressive Capacity

Example 4.

Let k = 1, Σ = {a,b}, and R = {(a,a), (b,b)} ⊂ Σ× Σ.
Then Σ≥1

R = Lpal ∩ Σ+. So, Lpal is a (strictly) 1-testable language.

As Lpal is neither deterministic context-free nor a Church-Rosser
language [JL2007], while the regular language (aa)∗ is not two-sided
locally testable, we obtain the following incomparability result.

Corollary 11

For all k ≥ 1, 2LT and 2LT(k) are incomparable to the families of
regular, deterministic linear, deterministic context-free, and
Church-Rosser languages. There exist a binary alphabet Σ and a
symmetric relation R ⊆ Σk × Σk such that 2LTR(k) is incomparable to
the families of regular, deterministic linear, deterministic context-free,
and Church-Rosser languages.
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4. Expressive Capacity

Let 2SLTR(k) denote the family of two-sided strictly k -testable
languages that are based on the symmetric relation R.

Theorem 12

For each k ≥ 1 and each symmetric relation R ⊆ Σk × Σk , the family
2LTR(k) is the closure of the family 2SLTR(k) under union,
intersection, and R-complementation.

Proof.
By Proposition 7, 2LTR(k) is closed under the operations considered.
Since 2SLTR(k) ⊆ 2LTR(k), it is sufficient to show that every language
from 2LTR(k) can be represented as a combination of languages from
2SLTR(k) using the operations mentioned.

Recall that each language L ∈ 2LTR(k) has a representation of the
form L = FL ∪

⋃
(u,v ,C)∈triple(L) LR(u, v ,C), where

LR(u, v ,C) = {w ∈ Σ≥k
R | Pk (w) = u,Sk (w) = v , and Ik (w) = C }.
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4. Expressive Capacity

Proof of Theorem 12 (cont.)

Since triple(L) is a finite set, it remains to be shown that any language
LR(u, v ,C) with (u, v ,C) ∈ triple(L) can be represented as a
combination of languages from 2SLTR(k) using the above operations.

Starting with L({u}, {v},C,R) ∈ 2STLR(k), we obtain the inclusion
LR(u, v ,C) ⊆ L({u}, {v},C,R). The problem to cope with is that there
may be words w in the latter language such that Ik (w) ( C.

These words can be filtered out by building the intersection of the
R-complements of all languages L({u}, {v},C′,R), where the
intersection is taken over all proper subsets C′ of C.

So, we have the representation
LR(u, v ,C) = L({u}, {v},C,R) ∩

⋂
C′⊂C

Lc
R({u}, {v},C′,R).

Thus, each language L ∈ 2LTR(k) is a finite combination of two-sided
strictly k -testable languages with respect to the relation R. 2
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4. Expressive Capacity

Since 2LT(k) and 2LT are not closed under union, a similar
characterization does not exist.

However, for every language L from these families, there are an integer
k ≥ 1 and a symmetric relation R ⊆ Σk × Σk such that L ∈ 2LTR(k).
Hence, L has a representation as a combination of two-sided strictly
k -testable languages and, thus, belongs to the closure of 2SLTR(k)
with respect to the operations above.

By R-Boolean closure we mean the closure under the operations of
union, intersection, and R-complementation.

Corollary 13

1 The family 2LT (2LT(k)) is properly included in the R-Boolean
closure of 2SLT (2SLT(k)).

2 The R-Boolean closure of 2LT (2LT(k)) coincides with the
R-Boolean closure of 2SLT (2SLT(k)).
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4. Expressive Capacity

It has been observed in [NCMA2017] that there are regular languages
that are two-sided strictly testable, but not (one-sided) strictly testable.
A corresponding result holds for k -testability.

Theorem 14

For all k ≥ 2, LT(k) ( 2LT(k) ∩ REG.

A corresponding result does not hold for k = 1.

Theorem 15

2LT(1) ∩ REG = LT(1).
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5. Conclusion

5. Conclusion

We have extended 2SLT to 2LT and shown that the latter are obtained
as the R-Boolean closure of the former.
Further, we have established some closure and non-closure properties
for 2LT and it can be shown that two-sided k -testable languages are
learnable in the limit from positive data.

Some problems that remain open for future work include the following.

Inside the Boolean closure: How about the union closure of 2SLT(k)?

Separation by regular languages: For all k ≥ 2, LT(k) ( 2LT(k)∩REG.
Can we can separate LT from 2LT by a regular language?

Decidability: It can be shown that emptiness, finiteness, containment
of a given regular set, and equality to a given regular set are decidable
for two-sided locally testable languages. Also inclusion and
equivalence are decidable for k -R-testable languages, but it remains
open whether these problems are decidable for 2LT(k) and for 2LT.
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5. Conclusion

Thank you for your attention!

M. Kutrib, F. Otto Two-sided locally testable languages NCMA 2018 27 / 27


	1. Introduction
	2. Definitions and Preliminaries
	3. Closure Properties
	4. Expressive Capacity
	5. Conclusion

