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● Discrete/quantized versions of General Relativity
 
➢ discretized as simplicial complexes (Regge-calculus)
➢ or in the basis of spin networks graphs (Loop Quantum Gravity).

● Other discrete models in physics

➢ lattice-gas models
➢ ...

Motivation



  

A generalized discrete space with a notion of “proximity”: graph

which evolves in time, subject to two natural constraints:

● causality: the evolution does not propagate information too fast

● homogeneity: it acts everywhere the same (translation invariance)

Graph dynamics

P. Arrighi, G. Dowek. Causal graph dynamics. Information and Computation, 223:78–93, 2013



  

Graph dynamics



  

Graph dynamics

Causality



  

Graph dynamics

Causality + Homogeneity



  

Motivation

Physical models have geometrical content → Simplicial Complexes



  

Motivation

Physical models have geometrical content → Simplicial Complexes

Encode complexes as graphs!



  

Complexes as graphs



  

Complexes as graphs: dimension ≥ 3 



  

Complexes as graphs: Rotation Equivalence

Oriented simplicial complexes
correspond to the equivalence classes

r



  

Graph distance vs Geometrical distance

geometrical distance = 1 graph distance = 5



  

Graph distance vs Geometrical distance

geometrical distance = 1 graph distance = 5

From the dynamical point of view:

● ignore geometrical distance → Causal Dynamics Complexes (CDC)
● take geom. dist. into account → CDC + further restrictions



  

Graph distance vs Geometrical distance

Definition (equivalent faces) 
Two k-faces F at vertex u and F’ at vertex u’ are said to be equivalent if and only if they 
are related by a hinge, i.e. if and only if there exists is a path (u
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Torsion 
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Torsion 

“torsion”



  

To handle these problems we restrict to bounded-star complexes

● The star of a vertex u is the subgraph induced by u and its geometrical neighbors. It is 
denoted Star(G, u)

● A complex is bounded-star if all stars are bounded.

Bounded-star complexes 



  

To handle these problems we restrict to bounded-star complexes

● The star of a vertex u is the subgraph induced by u and its geometrical neighbors. It is 
denoted Star(G, u)

● A complex is bounded-star if all stars are bounded.

➔ Graph distance is linearly bounded by Geometric distance

➔ Finite procedure to rule out torsioned complexes

Bounded-star complexes 



  

Causal Graphs Dynamics (CGD)

F

ff f

global evolution
local rule



  

Causal Graphs Dynamics: Local Rule

A function f : D
r
 → G is called a local rule if there exists some bound b such that:

• For all disk D and v  V (f (D))  v  V (D).{1, ..., b}.∈ E(G) ⇒ v ⊆ V (D).{1, ..., b}. ⊆ V (D).{1, ..., b}.

• For all graph G and disks D
1
 , D

2
  G, f (D⊂ G, f (D

1
) and f (D

2
) are consistent

Then, the global evolution is:

F(G) = ⋃
v
 f(G

v
r)

where G
v
r is the disk centered on v of radius r.



  

CDC = CGD + Rotation Commuting (NO geom. dist.)

Proposition

F is rotation commuting if and only if there exists f strongly rotation commuting

Proposition

It is decidable whether f is strong-rotation-commuting

Causal Dynamics of Complexes (CDC)



  

Discrete Manifolds

How to single out Discrete Manifolds from all the graph-encoded complexes?



  

In the continuous:
➢ every point of a manifold has a neighborhood homeomorphic to a ball.

In the discrete
➢ first, we need to express homeomorphisms, combinatorially.

This will be done by sequences of Pachner moves:

● Vertex rotations
● Bistellar moves
● Graph-local (inverse) shelling

Discrete Manifolds



  

Bistellar moves



  

Bistellar moves



  

(inverse) shelling



  

(inverse) shelling

Graph-local

standard



  

(inverse) shelling

Graph-local

standard



  

Standard (inverse) shelling = Bistellar moves + graph-local shelling



  

Theorem in Combinatorial Topology [Pachner, Lickorish]

Two simplicial complexes are homeomorphic iff the are related by a sequence of 
standard shellings.

Proposition

Two simplicial complexes are homeomorphic iff the are related by a sequence of 
graph-local Pachner moves

Definition

A graph G is a discrete manifold if for each vertex u, there are Pachner moves 
sending Star(G, u) to the standard ball.

Discrete Manifolds



  

CDDM = CDC +

● Bounded-star preserving

● Torsion-free preserving

● Discrete-manifold preserving

Causal Dynamics of Discrete Manifolds



  

CDDM = CDC +

● Bounded-star preserving → decidable

● Torsion-free preserving

● Discrete-manifold preserving

Causal Dynamics of Discrete Manifolds



  

CDDM = CDC +

● Bounded-star preserving → decidable

● Torsion-free preserving → decidable

● Discrete-manifold preserving

Causal Dynamics of Discrete Manifolds



  

CDDM = CDC +

● Bounded-star preserving → decidable

● Torsion-free preserving → decidable

● Discrete-manifold preserving → decidable for n < 4

Causal Dynamics of Discrete Manifolds



  

Thank you

for your attention
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