Causal Dynamics of Discrete Manifolds

P. Arrighi, C. Chouteau, S. Facchini, S. Martiel

NCMA 2018

Košice, August 2018

- Discrete/quantized versions of General Relativity
 - > discretized as simplicial complexes (Regge-calculus)
 - > or in the basis of spin networks graphs (Loop Quantum Gravity).
- Other discrete models in physics
 - Iattice-gas models
 - ≻ ...

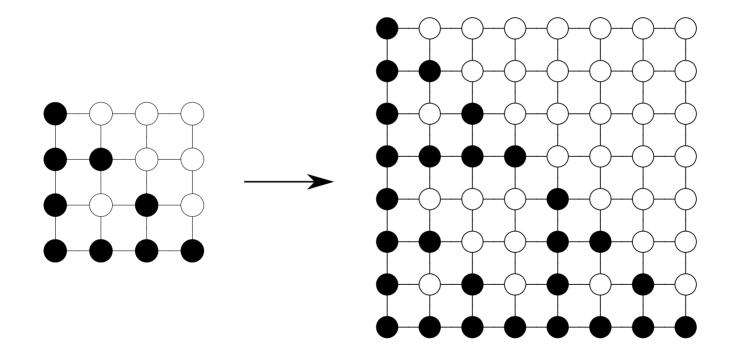
A generalized discrete space with a notion of "proximity": graph

which evolves in time, subject to two natural constraints:

- **causality**: the evolution does not propagate information too fast
- **homogeneity**: it acts everywhere the same (translation invariance)

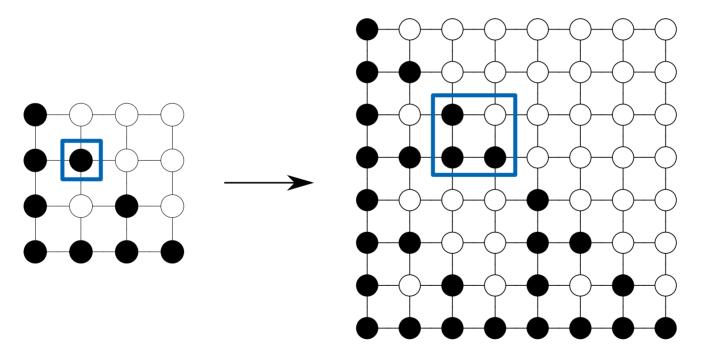
P. Arrighi, G. Dowek. Causal graph dynamics. Information and Computation, 223:78–93, 2013

Graph dynamics



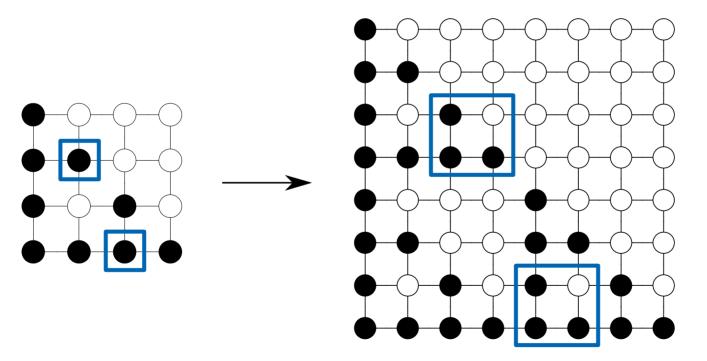
Graph dynamics

Causality

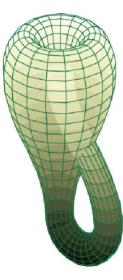


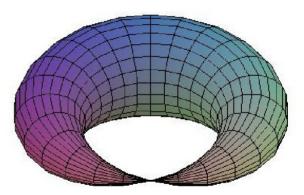
Graph dynamics

Causality + Homogeneity

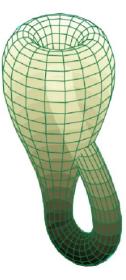


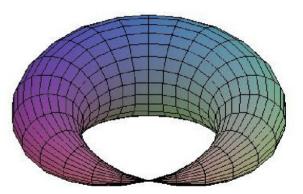
Physical models have geometrical content \rightarrow Simplicial Complexes





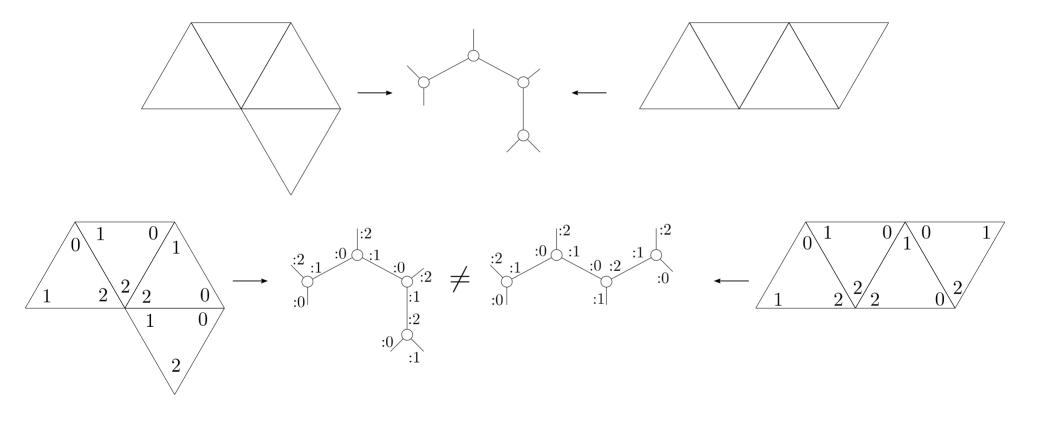
Physical models have geometrical content \rightarrow Simplicial Complexes



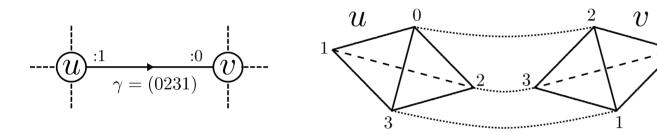


Encode complexes as graphs!

Complexes as graphs

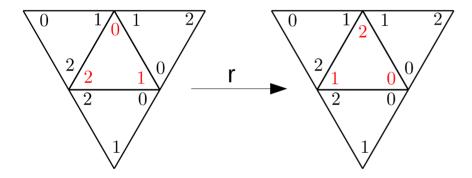


Complexes as graphs: dimension \geq 3



 $u: 0 \equiv v: \gamma(0) = v: 2$ $u: 2 \equiv v: \gamma(2) = v: 3$ $u: 3 \equiv v: \gamma(3) = v: 1$

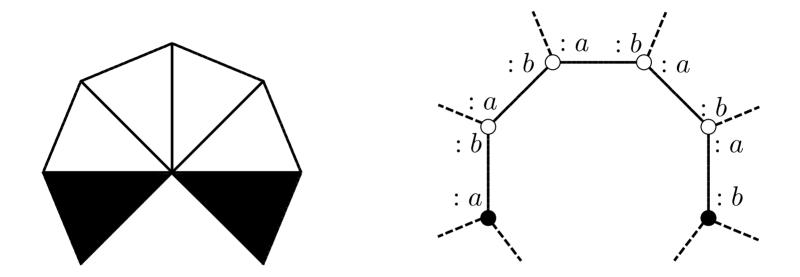
Complexes as graphs: Rotation Equivalence





Oriented simplicial complexes correspond to the equivalence classes

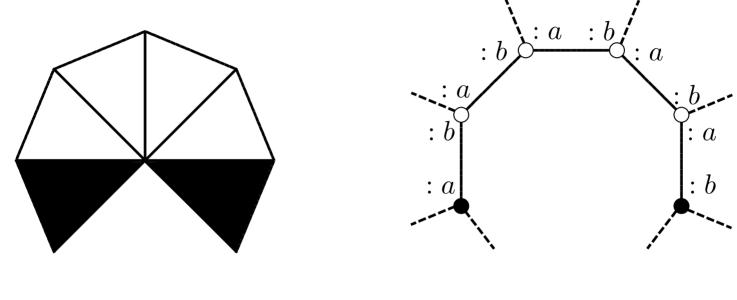
Graph distance vs Geometrical distance



geometrical distance = 1

graph distance = 5

Graph distance vs Geometrical distance



geometrical distance = 1

graph distance = 5

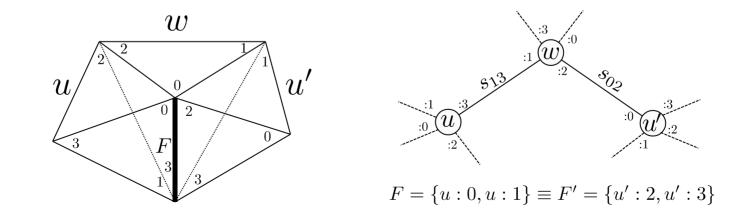
From the **dynamical** point of view:

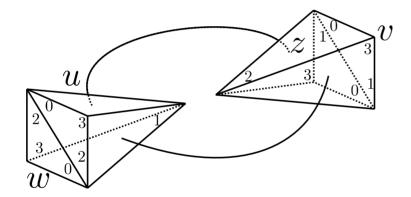
- ignore geometrical distance \rightarrow Causal Dynamics Complexes (CDC)
- take geom. dist. into account → CDC + further restrictions

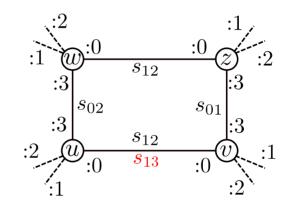
Definition (equivalent faces)

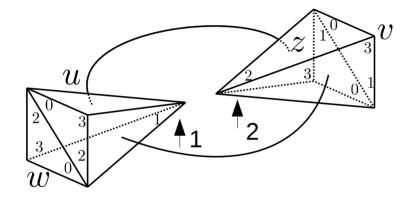
Two k-faces F at vertex u and F' at vertex u' are said to be equivalent if and only if they are related by a hinge, i.e. if and only if there exists is a path $(u_i : p_i, \gamma_{i+1}, u_{i+1}: q_{i+1}) \in E(G)$ with i = 0...m, $u_0 = u$, $u_{m+1} = u'$, such that: $p_i, q_i \notin (\prod_{i=1}^i \gamma_i)(F)$ and $F' = (\prod_{i=1}^m \gamma_i)(F)$

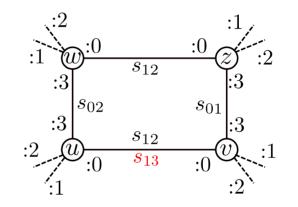
where
$$p_i = p_0$$
, ..., p_m , whereas $q_i = q_1$, ..., q_{m+1} .

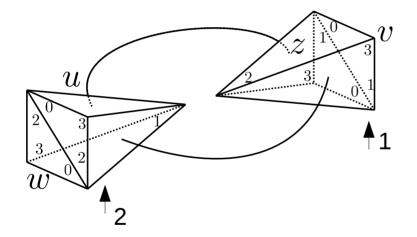


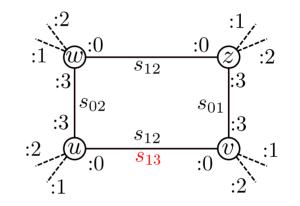


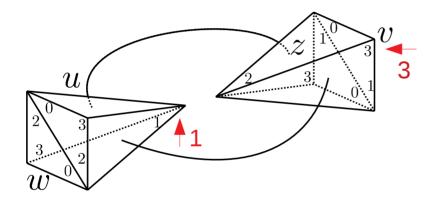


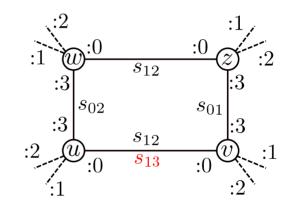


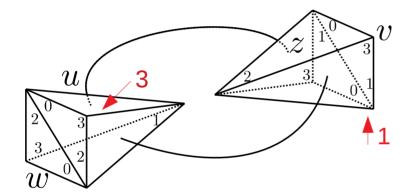


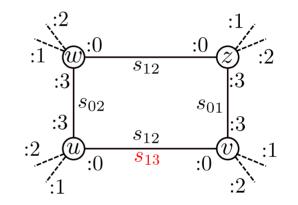


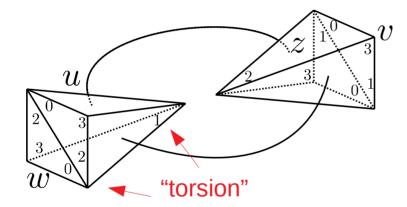


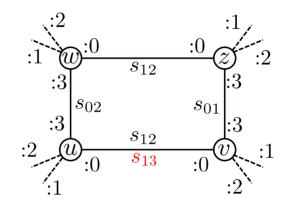












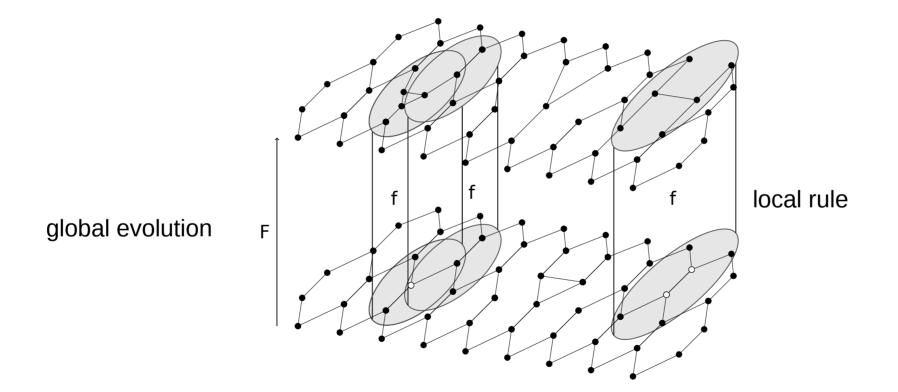
To handle these problems we restrict to *bounded-star* complexes

- The *star* of a vertex *u* is the subgraph induced by *u* and its geometrical neighbors. It is denoted Star(G, u)
- A complex is *bounded-star* if all stars are bounded.

To handle these problems we restrict to *bounded-star* complexes

- The *star* of a vertex *u* is the subgraph induced by *u* and its geometrical neighbors. It is denoted Star(G, u)
- A complex is *bounded-star* if all stars are bounded.
- → Graph distance is linearly bounded by Geometric distance
- → Finite procedure to rule out torsioned complexes

Causal Graphs Dynamics (CGD)



A function $f: D_r \rightarrow G$ is called a **local rule** if there exists some bound *b* such that:

- For all disk D and $v \in V(f(D)) \Rightarrow v \subseteq V(D).\{1, ..., b\}.$
- For all graph G and disks D_1 , $D_2 \subset G$, f (D_1) and f (D_2) are consistent

Then, the global evolution is:

$$F(G) = \bigcup_{v} f(G_{v})$$

where G_v^r is the disk centered on v of radius r.

Causal Dynamics of Complexes (CDC)

CDC = CGD + Rotation Commuting (NO geom. dist.)

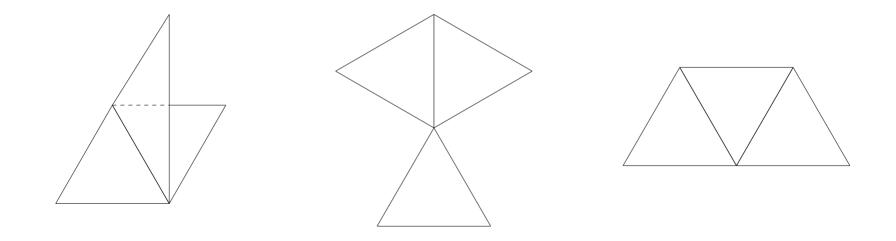
Proposition

F is rotation commuting if and only if there exists *f* strongly rotation commuting

Proposition

It is decidable whether *f* is strong-rotation-commuting

How to single out *Discrete Manifolds* from all the graph-encoded complexes?



In the continuous:

every point of a manifold has a neighborhood homeomorphic to a ball.

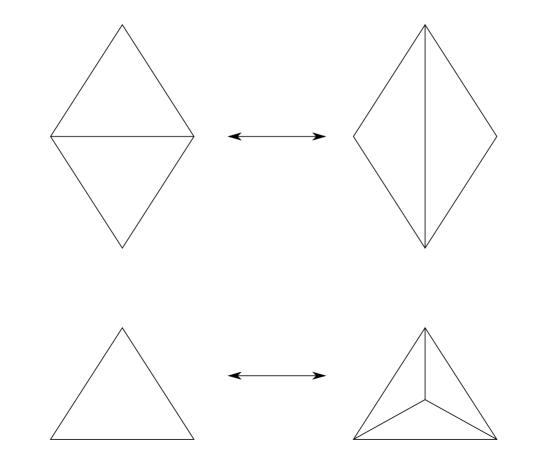
In the discrete

First, we need to express homeomorphisms, combinatorially.

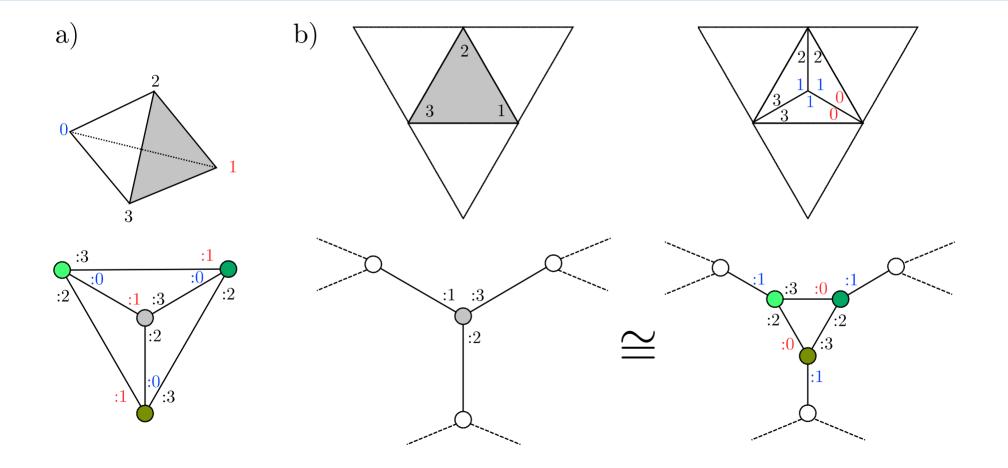
This will be done by sequences of **Pachner moves**:

- Vertex rotations
- Bistellar moves
- Graph-local (inverse) shelling

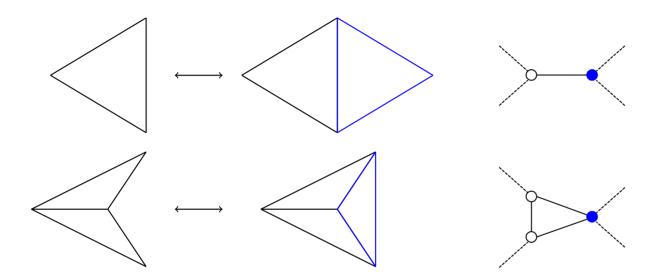
Bistellar moves



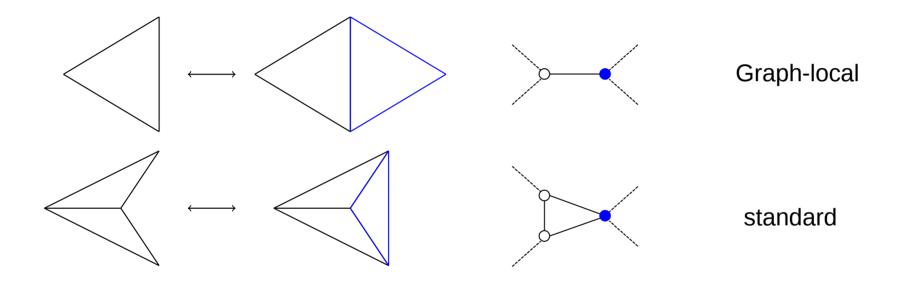
Bistellar moves



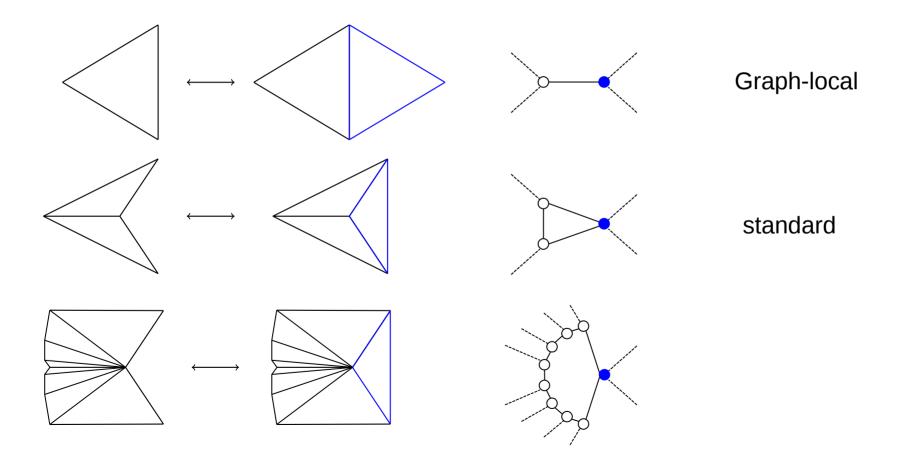
(inverse) shelling



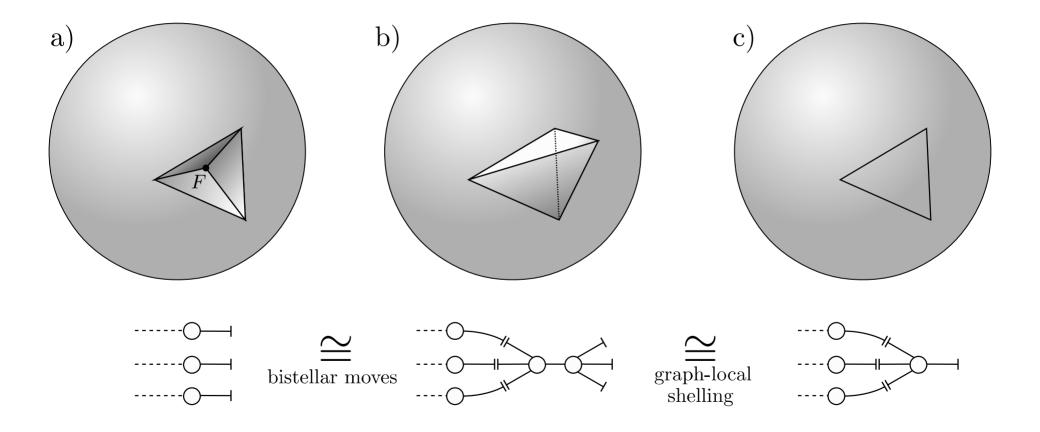
(inverse) shelling



(inverse) shelling



Standard (inverse) shelling = Bistellar moves + graph-local shelling



Theorem in Combinatorial Topology [Pachner, Lickorish]

Two simplicial complexes are homeomorphic iff the are related by a sequence of standard shellings.

Proposition

Two simplicial complexes are homeomorphic iff the are related by a sequence of graph-local Pachner moves

Definition

A graph G is a **discrete manifold** if for each vertex u, there are Pachner moves sending Star(G, u) to the standard ball.

- Bounded-star preserving
- Torsion-free preserving
- Discrete-manifold preserving

- Bounded-star preserving → **decidable**
- Torsion-free preserving
- Discrete-manifold preserving

- Bounded-star preserving → decidable
- Torsion-free preserving → **decidable**
- Discrete-manifold preserving

- Bounded-star preserving → decidable
- Torsion-free preserving → decidable
- Discrete-manifold preserving → decidable for n < 4

Thank you

for your attention