Parsing Languages of P Colony Automata

Erzsébet Csuhaj-Varjú

Eötvös Loránd University, Budapest, Hungary

Kristóf Kántor, György Vaszil

University of Debrecen, Hungary

University of Debrecen Faculty of Informatics

Motivation, background, ...

Parallel architectures, networks, internet: A modification of the "classic", imperative programming/computing paradigm might be interesteing.

A "chemical style" approach to the notion of computation.

The goal is to free algorithms from the kind of sequentiality which is the consequence of the underlying (sequential) computational model.

"Chemistry" as a metaphor

- Information is stored in the structure and the properties of molecules
- Chemical reaction \rightarrow information processing

data	substances or molecules			
processing	chemical reaction			
algorithm	substances and their reaction laws			

In a more formal setting:

multiset as data structure

multiset transformation/processing as computation

"Chemical" models

- Gamma programming formalism (J.P. Banatre)
- Chemical abstract machine (G. Boudol)
- etc.
- Membrane systems, P systems (G. Paun)
 P colonies

P colonies

- A population of very simple cells/computing units in a shared environment:
 - Fixed number of objects (1, 2, 3,...) inside each cell
 - Simple rules (programs) for moving and changing the objects
- The objects are exchanged directly only between the cells and the environment

[Kelemen, Kelemenová, Paun 2004]

P colonies

Programs made of rules for rewriting + communication

The computation

- Start in an initial configuration: objects inside the cells
- Apply a maximal set of programs in parallel in the cells, halt if no program is applicable
- The **result** of the computation:
 - Numbers the multiplicity of certain objects found in the environment

The computation

Computational power

 Variants of P colonies can generate complex sets, most of the times any recursively enumerable set of numbers, sometimes less.

[Csuhaj-Varjú, Kelemen, Kelemenová, Paun, Vaszil 2006a] [Ciencielová, Csuhaj Varjú, Kelemenová, Vaszil 2009]

How to obtain strings – tape rules

The **application of** certain **rules** is associated with **"reading"** certain input **symbols**:

Reading an *s* with a **rewriting tape rule**

Reading an *s* with a **communication tape rule**

Generalized P colony automata

- A maximal set of programs is chosen, tape rules and non-tape rules together
- The chosen tape rules might "read" several different symbols:
 - A multiset is read in one computational step
 - A sequence of multisets is read during a computation

Computation and rules – small example

The accepted strings, the input mapping

If $f(aab) = \{00, 1\}, f(a) = \{1\}, \dots$ then $f(\{aab\}\{a\}) = \{00, 1\}\{1\}$, that is, 001 and 11 belong to the language

Parsing - Reconstructing the string generation/acceptance process

The reconstruction should be deterministic, like for CF grammars: LR(k) grammars, LL(k) grammars

• For P colony automata?

For example...

A	grammar:	
---	----------	--

S	->	aB bA	
А	->	a aS	bAA
В	->	b bS	aBB

	aabb#	aa	bb#
	S#	S ₁ aB ₃ aB ₁ S ₁ aB ₃ aB ₂	bB# bSB#
	aabb#	aab	Ъ#
s ₁	aB#	Š ₁ aB ₃ aB ₁ b	B#
a	abb#	S ₁ aB ₃ aB ₂ b	SB#
S ₁ a	B#	aab	b#
a	abb#	S ₁ aB ₃ aB ₁ bB ₁ S ₁ aB ₃ aB ₁ bB ₂	b# bS#
$S_1 a B_3$	aBB#	S ₁ aB ₃ aB ₂ bS ₂	DAB#
aa	bb#	aabb	#
S ₁ aB ₃ a	BB#	S ₁ aB ₃ aB ₁ bB ₁ b S ₁ aB ₃ aB ₁ bB ₂ b S ₁ aB ₃ aB ₂ bS ₂ b	# S# AB#
		aabb# S ₁ aB ₃ aB ₁ bB ₁ b#	

For example...

An LL(1) grammar: S -> aB
 B -> b | aBb

As we have seen

• {aⁿbⁿ/n>1} is an LL(1) language

But it is also clear:

 {aⁿbⁿ/n>1} u {aⁿcⁿ/n>1} is not an LL(k) language for any k

How to apply the idea in P colonies?

Informally:

The **next** *k* **symbols** of the not-yet-generated part of the **string** to be obtained **determines the cells and the programs** to be applied in the next computational step.

More formally

Let $\operatorname{FIRST}_k(U) = \{ \operatorname{pref}_k(u) \in \Sigma^* \mid u \in U \}$

Consider two computations from configuration c_s

 $c_s \stackrel{P_{c_s}}{\Longrightarrow} c_{s+1} \stackrel{P_{c_{s+1}}}{\Longrightarrow} \dots \stackrel{P_{c_{s+m}}}{\Longrightarrow} c_{s+m+1}$, and $c_s \stackrel{P'_{c_s}}{\Longrightarrow} c'_{s+1} \stackrel{P_{c'_{s+1}}}{\Longrightarrow} \dots \stackrel{P_{c'_{s+m'}}}{\Longrightarrow} c'_{s+m'+1}$ with **input** sequences:

 $u_{c_s}u_{c_{s+1}}\ldots u_{c_{s+m}}$ and $u'_{c_s}u_{c'_{s+1}}\ldots u_{c'_{s+m'}}$ $w \in f(u_{c_s})f(u_{c_{s+1}})\ldots f(u_{c_{s+m}})$ and $w' \in f(u'_{c_s})f(u_{c'_{s+1}})\ldots f(u_{c'_{s+m'}})$ The **genPCol automaton is LL(k)** if $P_{c_s} \neq P'_{c_s}$ implies $\operatorname{FIRST}_k(w) \cap \operatorname{FIRST}_k(w') = \emptyset.$

Example with 1 symbol lookahead

 $L(\Pi, f_{perm}) = L(\Pi, f_{TRANS}) = \{a\} \cup \{(ab)^n a (cd)^n | n \ge 1\} \cup \{(ab)^n a (fg)^n | n \ge 1\}$

Thus:

$L=\{a\} \cup \{(ab)^n a (cd)^n \mid n \ge 1\} \cup \{(ab)^n a (fg)^n \mid n \ge 1\}$ is an **LL(1) P colony automata** language, although it is **not** generated by any context-free **LL(***k***) grammar** for any *k*.

We can state:

There are CF languages in $\mathcal{L}_X(genPCol,LL(1))$, $X \in \{perm, TRANS\}$ which are not in $\mathcal{L}(CF,LL(k))$ for any $k \ge 1$.

Thank you.

- The work of E. Csuhaj-Varjú was supported in part by the National Research, Development and Innovation Office of Hungary, NKFIH, grant no. K 120558.
- The work of K. Kántor and Gy. Vaszil was supported in part by the National Research, Development and Innovation Office of Hungary, NKFIH, grant no. K 120558 and also by the construction EFOP-3.6.3-VEKOP-16-2017-00002, a project financed by the European Union, co-financed by the European Social Fund.