Extended finite automata and decision problems for matrix semigroups

Özlem Salehi, Ahmet Celal Cem Say

Department of Computer Engineering, Boğaziçi University
İstanbul, Turkey

NCMA’18
Introduction

Aim: Make a connection between extended finite automata over matrix semigroups and decision problems for matrix semigroups
Let G be a group. *Extended finite automaton over G, (G-automaton, group automaton)* is defined as
Let G be a group. *Extended finite automaton over G, (G-automaton, group automaton)* is defined as

- **One-way finite state automaton equipped with a register**
Let G be a group. *Extended finite automaton over G, (G-automaton, group automaton)* is defined as

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G
Let G be a group. An extended finite automaton over G, denoted $(G\text{-}automaton, group\ automaton)$, is defined as:

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G
- Register is multiplied with an element of G at each step
Let G be a group. *Extended finite automaton over G, (G-automaton, group automaton)* is defined as

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G
- Register is multiplied with an element of G at each step
- An input string is accepted if the register is equal to the identity at the end of the computation
Let G be a group. *Extended finite automaton over G, (G-automaton, group automaton)* is defined as

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G
- Register is multiplied with an element of G at each step
- An input string is accepted if the register is equal to the identity at the end of the computation

Let M be a monoid. M-automaton is defined analogously.
Let S be a semigroup. We want to allow the register to be multiplied elements from S.
Let S be a semigroup. We want to allow the register to be multiplied elements from S.

We define S-automaton by letting 1 to be the identity element.
Let S be a semigroup. We want to allow the register to be multiplied elements from S.

We define S-automaton by letting 1 to be the identity element.

If S is not a monoid nor a group, then only the empty string can be accepted.
Let S be a matrix semigroup finitely generated by a generating set of square matrices F. The **membership problem** is to decide whether or not a given matrix Y belongs to the matrix semigroup S.

Salehi, Say

Extended finite automata and decision problems for matrix semigroups

NCMA’18
Let S be a matrix semigroup finitely generated by a generating set of square matrices F. The **membership problem** is to decide whether or not a given matrix Y belongs to the matrix semigroup S.

Given: $F = \{Y_1, Y_2, \ldots, Y_n\}$ and a matrix Y

Problem: Determine if there exist an integer $k \geq 1$ and $i_1, i_2, \ldots, i_k \in \{1, \ldots, n\}$ such that $Y_{i_1} Y_{i_2} \cdots Y_{i_k} = Y$.
When Y is restricted to be the identity matrix, the problem is called the **identity problem**.
When Y is restricted to be the identity matrix, the problem is called the **identity problem**.

Given: $F = \{Y_1, Y_2, \ldots, Y_n\}$

Problem: Determine if there exist an integer $k \geq 1$ and $i_1, i_2, \ldots, i_k \in \{1, \ldots, n\}$ such that $Y_{i_1} Y_{i_2} \cdots Y_{i_k} = I$.
Let G be a finitely generated group and let H be a subgroup of G. **Subgroup membership problem** or **generalized word problem** for H in G is to decide whether or not a given element $g \in G$ belongs to the subgroup H.
Let G be a finitely generated group and let H be a subgroup of G. Subgroup membership problem or generalized word problem for H in G is to decide whether or not a given element $g \in G$ belongs to the subgroup H.

Word problem for G is the membership problem for the trivial group generated by 1.
Let G be a finitely generated group and let H be a subgroup of G. **Subgroup membership problem** or **generalized word problem** for H in G is to decide whether or not a given element $g \in G$ belongs to the subgroup H.

Word problem for G is the membership problem for the trivial group generated by 1.

The subgroup membership problem can be seen as a special case of the (semigroup) membership problem.
Previous work

<table>
<thead>
<tr>
<th></th>
<th>Identity problem</th>
<th>Membership problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}^{2\times2}$</td>
<td>decidable</td>
<td>decidable</td>
</tr>
<tr>
<td>H</td>
<td>decidable</td>
<td>?</td>
</tr>
<tr>
<td>$SL(3, \mathbb{Z})$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$\mathbb{Z}^{3\times3}$</td>
<td>?</td>
<td>undecidable</td>
</tr>
<tr>
<td>$SL(4, \mathbb{Z})$</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
The emptiness problem and subgroup membership problem

Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.
Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

- Let g be an element from G. We should decide whether $g \in H$.
The emptiness problem and subgroup membership problem

Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

- Let g be an element from G. We should decide whether $g \in H$.
- Construct G-automaton V.

Salehi, Say
Extended finite automata and decision problems for matrix semigroups
NCMA’18
The emptiness problem and subgroup membership problem

Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

- Let g be an element from G. We should decide whether $g \in H$.
- Construct G-automaton V.
- We are going to show that $g \in H$ iff $L(V)$ is nonempty.
The emptiness problem and subgroup membership problem

Proof.

\{h_1, \ldots, h_n\} generates H

Claim: $g \in H$ iff $L(V)$ is nonempty.
The emptiness problem and subgroup membership problem

Proof.

- \(\{h_1, \ldots, h_n\} \) generates \(H \)

\[q_1 \xrightarrow{a, g} q_2 \xrightarrow{a, h_i} \]
The emptiness problem and subgroup membership problem

Proof.

- \(\{h_1, \ldots, h_n\} \) generates \(H \)
- Claim: \(g \in H \) iff \(L(V) \) is nonempty.
The emptiness problem and subgroup membership problem

Proof.

- \(g \in H \implies g^{-1} \in H \)
Proof.

- $g \in H \implies g^{-1} \in H$
- $h_{i_1} h_{i_2} \cdots h_{i_k} = g^{-1}$ for some $k \geq 1$ and $i_1, i_2, \ldots, i_k \in \{1, \ldots, n\}$
The emptiness problem and subgroup membership problem

Proof.

- $g \in H \implies g^{-1} \in H$
- $h_{i_1} h_{i_2} \cdots h_{i_k} = g^{-1}$ for some $k \geq 1$ and $i_1, i_2, \ldots, i_k \in \{1, \ldots, n\}$
- $gg^{-1} = 1 \implies a^{k+1} \in L(V)$
The emptiness problem and subgroup membership problem

Proof.

- $g \in H \implies g^{-1} \in H$
- $h_{i_1} h_{i_2} \cdots h_{i_k} = g^{-1}$ for some $k \geq 1$ and $i_1, i_2, \ldots, i_k \in \{1, \ldots, n\}$
- $gg^{-1} = 1 \implies a^{k+1} \in L(V)$
- $L(V)$ is nonempty
Proof.

- Suppose $L(V)$ is nonempty
Proof.

- Suppose $L(V)$ is nonempty
- Acceptance condition: register is equal to identity
Proof.

- Suppose \(L(V) \) is nonempty
- Acceptance condition: register is equal to identity
- Register is initially multiplied by \(g \implies H \) contains \(g^{-1} \).
The emptiness problem and subgroup membership problem

Proof.

- Suppose $L(V)$ is nonempty
- Acceptance condition: register is equal to identity
- Register is initially multiplied by $g \implies H$ contains g^{-1}.
- $g^{-1} \in H \implies g \in H$
The emptiness problem and subgroup membership problem

Proof.

Suppose that the emptiness problem for G-automaton is decidable.
The emptiness problem and subgroup membership problem

Proof.

- Suppose that the emptiness problem for G-automaton is decidable.
- To check if $g \in H$,

\Rightarrow subgroup membership problem for H is decidable.
The emptiness problem and subgroup membership problem

Proof.

- Suppose that the emptiness problem for G-automaton is decidable.
- To check if $g \in H$,
 - Construct V
The emptiness problem and subgroup membership problem

Proof.

- Suppose that the emptiness problem for G-automaton is decidable.
- To check if $g \in H$,
 - Construct V
 - Check if $L(V)$ is nonempty
The emptiness problem and subgroup membership problem

Proof.

- Suppose that the emptiness problem for G-automaton is decidable.
- To check if $g \in H$,
 - Construct V
 - Check if $L(V)$ is nonempty

\implies subgroup membership problem for H is decidable.
Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.
Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times 2}$

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for $\mathbb{Z}^{2\times 2}$-automata is decidable.
Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times 2}$

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for $\mathbb{Z}^{2\times 2}$-automata is decidable
- Suppose that a $\mathbb{Z}^{2\times 2}$-automaton V is given.
Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times 2}$

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for $\mathbb{Z}^{2\times 2}$-automata is decidable.
- Suppose that a $\mathbb{Z}^{2\times 2}$-automaton V is given.
 - Remove edges labeled by a non-invertible matrix from V.
Decidability of the subgroup membership problem for $\mathbb{Z}^{2 \times 2}$

Theorem

Given a matrix Y from $\mathbb{Z}^{2 \times 2}$ and a subgroup H of $\mathbb{Z}^{2 \times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for $\mathbb{Z}^{2 \times 2}$-automata is decidable.
- Suppose that a $\mathbb{Z}^{2 \times 2}$-automaton V is given.
 - Remove edges labeled by a non-invertible matrix from V.
 - Matrices multiplied by the register are invertible and belong to $GL(2, \mathbb{Z})$.

Salehi, Say
Extended finite automata and decision problems for matrix semigroups
NCMA’18
14 / 23
Decidability of the subgroup membership problem for $\mathbb{Z}^{2 \times 2}$

Theorem

Given a matrix Y from $\mathbb{Z}^{2 \times 2}$ and a subgroup H of $\mathbb{Z}^{2 \times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for $\mathbb{Z}^{2 \times 2}$-automata is decidable.
- Suppose that a $\mathbb{Z}^{2 \times 2}$-automaton V is given.
 - Remove edges labeled by a non-invertible matrix from V.
 - Matrices multiplied by the register are invertible and belong to $GL(2, \mathbb{Z})$.
- V is a $GL(2, \mathbb{Z})$-automaton.
Decidability of the subgroup membership problem for $\mathbb{Z}^{2 \times 2}$

Lemma

Let G be a finitely generated group and let H be a subgroup of finite index. Any G-automaton can be converted into an H-automaton recognizing the same language.
Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times2}$

Lemma

Let G be a finitely generated group and let H be a subgroup of finite index. Any G-automaton can be converted into an H-automaton recognizing the same language.

Lemma

Any F_2-automaton can be converted into a pushdown automaton recognizing the same language.
Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times2}$

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times2}$ and a subgroup H of $\mathbb{Z}^{2\times2}$, it is decidable whether Y belongs to H.

Proof.

- A pushdown automaton recognizing $L(V)$ can be constructed
 - F_2 has finite index in $GL(2, \mathbb{Z})$
 - F_2-automaton recognizing $L(V)$ can be constructed
 - F_2-automaton can be converted to a pushdown automaton

- Emptiness problem for pda is decidable \implies Emptiness problem for $\mathbb{Z}^{2\times2}$-automata is decidable
The emptiness problem and identity problem

Theorem

Let S be a semigroup. The identity problem for S is decidable if the emptiness problem for S-automaton is decidable.
The emptiness problem and identity problem

Theorem

Let S be a semigroup. The identity problem for S is decidable if the emptiness problem for S-automaton is decidable.

Proof.

- Construct an S-automaton V such that $1 \in S$ iff $L(V)$ is nonempty.
Undecidability of the emptiness problem for $\mathbb{Z}^{4\times 4}$-automata

Fact

Given a semigroup S generated by eight 4×4 integer matrices, determining whether the identity matrix belongs to S is undecidable. [KNP17]
Undecidability of the emptiness problem for $\mathbb{Z}^{4 \times 4}$-automata

Fact

Given a semigroup S generated by eight 4×4 integer matrices, determining whether the identity matrix belongs to S is undecidable. [KNP17]

Corollary

Let S be a subsemigroup of $\mathbb{Z}^{4 \times 4}$ generated by eight matrices. The emptiness problem for S-automaton is undecidable.
Fact

Given a semigroup S generated by eight 4×4 integer matrices, determining whether the identity matrix belongs to S is undecidable. [KNP17]

Corollary

Let S be a subsemigroup of $\mathbb{Z}^{4\times4}$ generated by eight matrices. The emptiness problem for S-automaton is undecidable.

Proof.

We know that the identity problem for S is undecidable. By the above theorem the result follows.
Theorem

Let H be a finitely generated subgroup of G. If the universe problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.
Theorem

Let H be a finitely generated subgroup of G. If the universe problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

- Construct G-automaton V such that $g \in H$ iff $L(V) = \Sigma^*$.
Theorem

Let S be a finitely generated semigroup. If the universe problem for S-automata is decidable, then the identity problem for S is decidable.
Theorem

Let S be a finitely generated semigroup. If the universe problem for S-automata is decidable, then the identity problem for S is decidable.

Proof.

- Construct an S-automaton V such that $1 \in S$ iff $L(V) = \Sigma^*$
Remark

Converses are not true:
Remark

Converses are not true:

- Universe problem for \mathbb{F}_2-automaton is undecidable
Remark

Converses are not true:

- Universe problem for F_2-automaton is undecidable
 - For a given pushdown automaton, an F_2-automaton recognizing the same language can be constructed
Remark

Converses are not true:

- Universe problem for F_2-automaton is undecidable
 - For a given pushdown automaton, an F_2-automaton recognizing the same language can be constructed
 - Universe problem for pushdown automata is undecidable
Remark

Converses are not true:

- **Universe problem for** F_2-automaton is undecidable
 - For a given pushdown automaton, an F_2-automaton recognizing the same language can be constructed
 - Universe problem for pushdown automata is undecidable

- F_2 is a subgroup of $SL(2, \mathbb{Z})$ and the membership and identity problems for $SL(2, \mathbb{Z})$ are decidable
Conclusion

We make a connection between the decidability of the subgroup membership and identity problems and the universe and emptiness problems for extended finite automata.
Conclusion

We make a connection between the decidability of the subgroup membership and identity problems and the universe and emptiness problems for extended finite automata

- Emptiness problem for S-automata
 - Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times2}$
 - Undecidability of the emptiness problem for $\mathbb{Z}^{4\times4}$-automata

- Universe problem for S-automata
Conclusion

We make a connection between the decidability of the subgroup membership and identity problems and the universe and emptiness problems for extended finite automata

- Emptiness problem for S-automata
 - Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times2}$
 - Undecidability of the emptiness problem for $\mathbb{Z}^{4\times4}$-automata
- Universe problem for S-automata

Identity and membership problems for 3×3 integer matrix groups are open.
Thank You!