Forbidden Patterns for Ordered Automata

Ondřej Klíma and Libor Polák

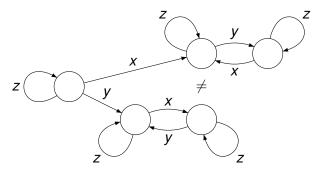
Department of Mathematics and Statistics Masaryk University, Brno Czech Republic

Košice, NCMA 2018

< □ > < 同 > < 回 > < 回 > < 回 >

Example

Cohen, Perrin and Pin (1993): a language L is expressible by the restriction of linear temporal logic obtained by considering only the operators "next" and "eventually" if and only if the minimal automaton of L does not contain the following pattern.



Our Aim

 We would like to develop a unified theory of forbidden patterns which would explain some general behaviour of these patterns and the classes defined by them and compare formalisms in numerous known applications.

同 ト イ ヨ ト イ ヨ ト

Our Aim

- We would like to develop a unified theory of forbidden patterns which would explain some general behaviour of these patterns and the classes defined by them and compare formalisms in numerous known applications.
- In particular, the considered classes of languages are closed with respect to natural operations.

伺 ト イ ヨ ト イ ヨ ト

Our Aim

- We would like to develop a unified theory of forbidden patterns which would explain some general behaviour of these patterns and the classes defined by them and compare formalisms in numerous known applications.
- In particular, the considered classes of languages are closed with respect to natural operations.
- We develop our theory in the framework of the theory of varieties of regular languages.

(More generally: positive varieties or C-varieties.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Notation and Terminology

- In this presentation, automata are finite and deterministic.
 We considered only regular languages.
- A semiautomaton is a deterministic automaton without initial and final states being specified.
- A (semi)automaton is always complete. If it is not the case, we talk about a partial (semi)automaton.

Notation and Terminology

- In this presentation, automata are finite and deterministic.
 We considered only regular languages.
- A semiautomaton is a deterministic automaton without initial and final states being specified.
- A (semi)automaton is always complete. If it is not the case, we talk about a partial (semi)automaton.
- More formally: A partial semiautomaton is a triple (Q, A, ·), where Q is a finite set of states, A is an alphabet and
 : Q × A → Q is a partial transition function.
- A homomorphism of a partial semiautomaton (P, A, ·) to a partial semiautomaton (Q, A, ·) is a mapping φ : P → Q such that: for each a ∈ A and p, q ∈ P satisfying p · a = q, we have φ(p) · a = φ(q).

・ロット (雪) (日) (日)

Varieties of Regular Languages

Definition

A variety of languages \mathcal{V} associates to every finite non-empty alphabet A a class $\mathcal{V}(A)$ of regular languages over A in such a way that

- 𝒱(𝔥) is closed under finite unions, finite intersections and complements (∅, 𝔥* ∈ 𝒱(𝑍)),
- $\mathcal{V}(A)$ is closed under quotients, i.e. $L \in \mathcal{V}(A), \ u, v \in A^*$ implies $u^{-1}Lv^{-1} = \{ w \in A^* \mid uwv \in L \} \in \mathcal{V}(A),$
- $\bullet \ \mathcal{V}$ is closed under preimages in morphisms, i.e.

 $f: B^* \to A^*, \ L \in \mathcal{V}(A)$ implies $f^{-1}(L) = \{ v \in B^* \mid f(v) \in L \} \in \mathcal{V}(B).$ C-Varieties of Ordered Semiautomata Forbidden Patterns Eilenberg Correspondence Ordered Semiautomata

Eilenberg Correspondence

- Eilenberg correspondence: one-to-one correspondence between varieties of regular languages and pseudovarieties of monoids.
- A pseudovariety of finite monoids is a class of finite monoids closed under submonoids, homomorphic images and products of finite families.

▲ @ ▶ ▲ ■ ▶ ▲

C-Varieties of Ordered Semiautomata Forbidden Patterns Eilenberg Correspondence Ordered Semiautomata

Eilenberg Correspondence

- Eilenberg correspondence: one-to-one correspondence between varieties of regular languages and pseudovarieties of monoids.
- A pseudovariety of finite monoids is a class of finite monoids closed under submonoids, homomorphic images and products of finite families.
- Well established modifications:
 - positive varieties (Pin) classes need not to be closed under complementation,
 - C-varieties (Straubing) classes are closed only under preimages in morphisms from a fixed family of morphism C,
 - positive *C*-varieties a common generalization.

・ロット (雪) (日) (日)

Motivation by a Famous Example

Simon's characterization of piecewise testable languages: Piecewise testable languages correspond to \mathcal{J} -trivial monoids.

- We want to recognize the piecewise testability from the (minimal) automaton.
- In the original paper, Simon gave two conditions which can be checked in polynomial time as shown by Stern latter.
- What kind of classes of automata corresponds to varieties of languages?

< 同 > < 回 > < 回 >

Motivation by a Famous Example

Simon's characterization of piecewise testable languages: Piecewise testable languages correspond to \mathcal{J} -trivial monoids.

- We want to recognize the piecewise testability from the (minimal) automaton.
- In the original paper, Simon gave two conditions which can be checked in polynomial time as shown by Stern latter.
- What kind of classes of automata corresponds to varieties of languages?
- Matching operations:
 - quotients ... changing initial and final states
 - intersection of languages ... product of automata
 - union of languages ... product of automata
 - complement ... changing final states
 - preimage in a morphism f ... f-renaming of automata

< 回 > < 回 > < 回 > .

C-Varieties of Ordered Semiautomata Forbidden Patterns Eilenberg Correspondence Ordered Semiautomata

Varieties of Semiautomata

We add also operations on automata which does not extend the classes of recognizable languages, e.g., homomorphic images.

Definition

A variety of semiautomata \mathbb{V} associates to every non-empty finite alphabet A a class $\mathbb{V}(A)$ of semiautomata over alphabet A in such a way that

- a one-element semiautomaton over A is in V(A) and this class is closed under disjoint unions and direct products of pairs, subsemiautomata and homomorphic images,
- V is closed under renaming.

Eilenberg type correspondence was given by Chaubard, Pin and Straubing (semiautomata are called actions).

Partial Order on Minimal Automata

- The modification to C-varieties is straightforward.
 (It is not a purpose of the talk, it is explained in the paper).
- The modification to positive varieties uses

< ロ > < 同 > < 回 > < 回 > < 回 > <

Partial Order on Minimal Automata

- The modification to C-varieties is straightforward.
 (It is not a purpose of the talk, it is explained in the paper).
- The modification to positive varieties uses ordered structures (monoids, automata).
- We explain that the minimal automaton of a given language is implicitly ordered:
 - One can assign to each state *q* its *future* consisting of all words which are acceptable if *q* would be the initial state.
 - Different states have different futures (from the minimality).
 - Now, if we identify states with their futures, then the relation ⊆ is a partial order on the set of states.
 - It is compatible with every action by a single letter.
 - The final states form upward closed subset.

< ロ > < 同 > < 回 > < 回 >

Example

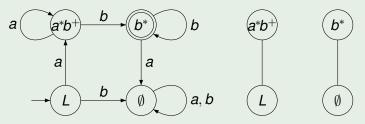
Example

- The language $L = a^+b^+$ is piecewise testable: $L = A^*aA^*bA^* \cap (A^*bA^*aA^*)^c$.
- The minimal automaton:

The partial order:

< □ > < 同 >

★ ∃ ► ★ ∃



• Non-final states do not form an upward closed subset.

500

C-Varieties of Ordered Semiautomata Forbidden Patterns Eilenberg Correspondence Ordered Semiautomata

The Notion of Ordered Semiautomata

Definition

An ordered semiautomaton is $\mathcal{A} = (Q, A, \cdot, \leq)$, where (Q, A, \cdot) is a semiautomaton, (Q, \leq) is an ordered set and for every pair of states $p \leq q$ and a letter $a \in A$ we have $p \cdot a \leq q \cdot a$.

The transition function can be extended to a mapping $\cdot : Q \times A^* \to Q$ in a usual way.

Definition

The ordred semiautomaton A recognizes a language L if there is a state $i \in Q$ and upward closed subset F of Q such that

 $L = \{ u \in A^* \mid i \cdot u \in F \} .$

There is a one-to-one correspondence between C-varieties of ordered semiautomata and positive C-varieties of languages.

Satisfying Configurations Forbidden Patterns

Satisfying Configurations

Definition

- A configuration K = (G, k, I) consists of a partial semiautomaton G = (V, X, ·) and a pair of states k, I ∈ V.
- Let a partial semiautomaton G = (V, X, ·) and an ordered semiautomaton A = (Q, A, ·, ≤) be given. We say that a mappings φ : V → Q and g : X → A* are compatible if, for every m ∈ V and x ∈ X such that m · x is defined in G, we have φ(m) · g(x) = φ(m · x).
- We say that an ordered semiautomaton A = (Q, A, ·, ≤) satisfies the configuration K = (G, k, l) if, for every pair of compatible mappings φ : V → Q and g : X → A* we have that φ(k) ≤ φ(l).

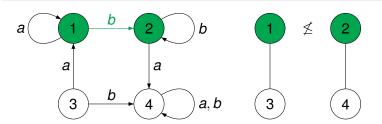
э

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Example

Example

A regular language is a positive piecewise testable if and only if its minimal ordered (semi)automaton satisfies the following configuration: x



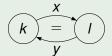
 $L = a^+b^+$ is not a positive piecewise testable language.

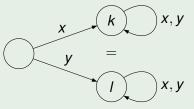
Comments

- In the paper, a more general case of the definitions is considered, namely *g*'s are taken only from a class of substitutions which is a part of the configuration.
- In the unordered case, we have φ(k) = φ(l) instead of φ(k) ≤ φ(l).

Example

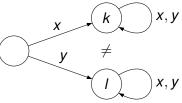
The configurations for two Simon's conditions are the following:





Forbidden Patterns I

- In the paper, we survey numerous known examples of forbidden patterns.
- The first type of forbidden patterns (in the unordered case): one only replaces = by ≠ in a configuration and it is required to avoid the pattern.
- In the literature, the patterns are often viewed as subautomata, which leads to inaccuracies.

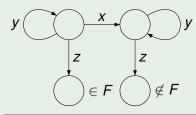


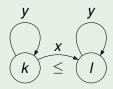
Forbidden Patterns II

- The second type of forbidden patterns: a pattern is enriched by a condition that a certain state is final and another one is non-final. (The corresponding class of languages is not closed under complements.)
- Under a special assumption we were able to give the equivalent configuration/pattern using ordered automata.

Example (The level 1/2 in the dot-depth)

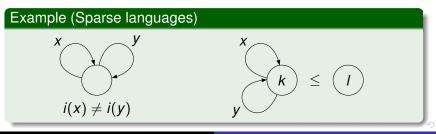
The forbidden pattern and the configuration.





Forbidden Patterns III

- The third type of forbidden patterns: other special conditions are required.
- Example: sparse languages (those of polynomial density).
- Here words which are substituted for *x* and *y* need to have a different first letters.
- The sparse languages form a positive *C*-variety for a special *C*, therefore the configuration works only with special substitutions.



Basic Properties of Configurations

We denote by $\mathbb{K}(A)$ the class of all ordered semiautomata over *A* satisfying the configuration \mathcal{K} .

Proposition

Let $\mathcal{K} = (\mathcal{G}, k, l)$ be an arbitrary configuration and let A be a non-empty finite set. Then the following hold.

- $\mathbb{K}(A)$ contains the one-element semiautomaton.
- If *G* is connected, then K(A) is closed with respect to disjoint unions.
- $\mathbb{K}(A)$ is closed with respect to subsemiautomata.
- $\mathbb{K}(A)$ is closed with respect to products of pairs.
- K is closed with respect to renaming.

Problem: homomorphic images.

< □ > < 同 > < 回 > < 回 > < 回 >

Basic Result

Theorem

Let $\mathcal{K} = (\mathcal{G}, k, l)$ be a configuration such that \mathcal{G} is connected, balanced and simple partial semiautomaton. Then the class of all ordered semiautomata satisfying \mathcal{K} forms a variety of ordered semiautomata.

In the paper, you can also find:

- a more general version of the theorem for *C*-varieties of ordered semiautomata.
- the survey on known examples: reversible languages (two variants), locally *R*-trivial semigroups, low levels in the concatenation hierarchies, sparse languages.

< ロ > < 同 > < 回 > < 回 > < 回 >

Thank you.

Ondřej Klíma and Libor Polák Forbidden Patterns for Ordered Automata

20/20

Ð.

・ロト ・聞ト ・ヨト ・ヨト