CHARACTERIZATIONS OF LRR-LANGUAGES
BY CORRECTNESS-PRESERVING COMPUTATIONS

František Mráz, Friedrich Otto, and Martin Plátek

Charles University, Prague, Czech Republic

NCMA 2018

Košice

August 21–22, 2018
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata
The main result

A **superclass** of DCFL can be accepted by “well-behaved” restarting automata

the class of left-to-right regular languages (**LRR**)

- **DCFL** can be accepted deterministically by LR(1)-analyzers with lookahead of size 1
- **LRR** can be accepted deterministically by LR-analyzers with unlimited lookahead; example

\[\{a^n b^n c, a^n b^{2n} d \mid n \geq 0\} \]
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
A superclass of DCFL can be accepted by “well-behaved” restarting automata:

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
- monotone
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
- monotone
- correctness-preserving
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
- monotone
- correctness-preserving
- even more restrictions are possible
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only – moreover, deleting at most two continuous factor in one step
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only – moreover, deleting at most two continuous factor in one step
 - always reduce the input into a word of small size (limited by a constant) before accepting or rejecting
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only – moreover, deleting at most two continuous factor in one step
 - always reduce the input into a word of small size (limited by a constant) before accepting or rejecting
 - expresses the structure for correct inputs
The main result

A superclass of DCFL can be accepted by “well-behaved” restarting automata

- deterministic
- no auxiliary symbols
- length-reducing
- local changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only – moreover, deleting at most two continuous factor in one step
 - always reduce the input into a word of small size (limited by a constant) before accepting or rejecting
 - expresses the structure for correct inputs
 - shows a core for an error in rejected inputs
1 Automata Models

2 Main Results

3 Strong Cyclic Form

4 Conclusions
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
- input alphabet \(\Sigma \).
Two-Way Restarting List Automaton

\(M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \)

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
- input alphabet \(\Sigma \),
- working alphabet \(\Gamma \), \(\Sigma \subseteq \Gamma \).
Two-Way Restarting List Automaton

$M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta)$

- finite state control, set of states Q,
- read/write window of a fixed size k,
- tape = list of symbols delimited by sentinels \triangleright and \triangleleft,
- input alphabet Σ,
- working alphabet Γ, $\Sigma \subseteq \Gamma$,
- operations: MVR, MVL, $W(v)$, $\text{SL}(v)$, Restart, Accept, Reject.
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
- input alphabet \(\Sigma \),
- working alphabet \(\Gamma \), \(\Sigma \subseteq \Gamma \),
- operations: \(\text{MVR, MVL, W (v), SL (v), Restart, Accept, Reject} \).
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
- input alphabet \(\Sigma \),
- working alphabet \(\Gamma, \Sigma \subseteq \Gamma \),
- operations: MVR, MVL, \(W(v) \), SL (v), Restart, Accept, Reject.
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
- input alphabet \(\Sigma \),
- working alphabet \(\Gamma \), \(\Sigma \subseteq \Gamma \),
- operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
- input alphabet \(\Sigma \),
- working alphabet \(\Gamma, \Sigma \subseteq \Gamma \),
- operations: MVR, MVL, W \((v) \), SL \((v) \), Restart, Accept, Reject.
Two-Way Restarting List Automaton

\[M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta) \]

- finite state control, set of states \(Q \),
- read/write window of a fixed size \(k \),
- tape = list of symbols delimited by sentinels \(\triangleright \) and \(\triangleleft \),
- input alphabet \(\Sigma \),
- working alphabet \(\Gamma, \Sigma \subseteq \Gamma \),
- operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.
Two-Way Restarting List Automaton

$M = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, q_0, k, \delta)$

- finite state control, set of states Q,
- read/write window of a fixed size k,
- tape = list of symbols delimited by sentinels \triangleright and \triangleleft,
- input alphabet Σ,
- working alphabet Γ, $\Sigma \subseteq \Gamma$,
- operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.
Accepted Languages

- A configuration of an RLA M: $\alpha q \beta$
 - q is the current state
 - $\alpha \beta \in \{\triangleright\} \cdot \Gamma^* \cdot \{\triangleleft\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
Accepted Languages

- A configuration of an RLA M: $\alpha q \beta$
 - q is the current state
 - $\alpha \beta \in \{\rhd \} \cdot \Gamma^* \cdot \{\lhd \}$ is the current contents of the tape
 - contents of the window = the first k symbols of β

- A restarting configuration: $q_0 \rhd w \lhd$, where $w \in \Gamma^*$
Accepted Languages

- a configuration of an RLA M: $\alpha q \beta$
 - q is the current state
 - $\alpha \beta \in \{\rhd\} \cdot \Gamma^* \cdot \{\lhd\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a restarting configuration: $q_0 \rhd w \lhd$, where $w \in \Gamma^*$
- an initial configuration: $q_0 \rhd w \lhd$, where $w \in \Sigma^*$
Accepted Languages

- a **configuration** of an RLA M: $\alpha q \beta$
 - q is the current state
 - $\alpha \beta \in \{\rhd\} \cdot \Gamma^* \cdot \{\lhd\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a **restarting configuration**: $q_0 \rhd w \lhd$, where $w \in \Gamma^*$
- an **initial configuration**: $q_0 \rhd w \lhd$, where $w \in \Sigma^*$
- the **input** language of M:

$$L(M) = \{w \in \Sigma^* \mid q_0 \rhd w \lhd \downarrow^*_M \text{ Accept}\}.$$
Accepted Languages

- A configuration of an RLA M: $\alpha q \beta$
 - q is the current state
 - $\alpha \beta \in \{\rangle \} \cdot \Gamma^* \cdot \{\langle \}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- A restarting configuration: $q_0 \triangleright w \triangleleft$, where $w \in \Gamma^*$
- An initial configuration: $q_0 \triangleright w \triangleleft$, where $w \in \Sigma^*$
- The input language of M:
 \[
 L(M) = \{ w \in \Sigma^* \mid q_0 \triangleright w \triangleleft \vdash_{M}^* \text{Accept} \}.
 \]

- The basic (characteristic) language of M:
 \[
 L_C(M) = \{ w \in \Gamma^* \mid q_0 \triangleright w \triangleleft \vdash_{M}^* \text{Accept} \}.
 \]
Accepted Languages

- a configuration of an RLA M: $\alpha q \beta$
 - q is the current state
 - $\alpha \beta \in \{\rangle \} \cdot \Gamma^* \cdot \{\langle \}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a restarting configuration: $q_0 \rangle w \langle$, where $w \in \Gamma^*$
- an initial configuration: $q_0 \rangle w \langle$, where $w \in \Sigma^*$
- the input language of M:

 \[L(M) = \{ w \in \Sigma^* \mid q_0 \rangle w \langle \vdash^*_M \text{Accept} \} . \]

- the basic (characteristic) language of M:

 \[L_C(M) = \{ w \in \Gamma^* \mid q_0 \rangle w \langle \vdash^*_M \text{Accept} \} . \]

- obviously $L_C(M) \cap \Sigma^* = L(M)$.
Cycles, Reductions
Error and Correctness Preserving Properties

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step

Fact 1 (Error Preserving Property for basic languages of RLAs).
Let M be an RLA. If $u \Rightarrow cM v$ and $u \not\in L_C(M)$, then $v \not\in L_C(M)$.

Fact 2 (Correctness Preserving Property for basic languages of det-RLAs).
Let M be a deterministic RLA. If $u \Rightarrow cM v$ and $u \in L_C(M)$, then $v \in L_C(M)$.
Cycles, Reductions
Error and Correctness Preserving Properties

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
notation:
- $q_0 \triangleright u \triangleleft \nabla^c_M q_0 \triangleright v \triangleleft$ denotes a cycle of M
- then we write $u \Rightarrow^c_M v$ – the cycle rewriting relation of M
Cycles, Reductions
Error and Correctness Preserving Properties

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
- notation:
 - $q_0 \triangleright u \triangleleft \xrightarrow{c} M q_0 \triangleright v \triangleleft$ denotes a cycle of M
 - then we write $u \Rightarrow^c_M v$ – the cycle rewriting relation of M

- if $u \Rightarrow^c_M v$ and $|u| > |v|$, then $u \Rightarrow^c_M v$ is called a reduction
Cycles, Reductions
Error and Correctness Preserving Properties

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
- notation:
 - \(q_0 \triangleright u \triangleleft \vdash^c_M q_0 \triangleright v \triangleleft \) denotes a cycle of \(M \)
 - then we write \(u \Rightarrow^c_M v \) – the cycle rewriting relation of \(M \)
 - if \(u \Rightarrow^c_M v \) and \(|u| > |v| \), then \(u \Rightarrow^c_M v \) is called a reduction

Fact 1

(Error Preserving Property for basic languages of RLAs).

Let \(M \) be an RLA. If \(u \Rightarrow^c_M v \) and \(u \notin L_C(M) \), then \(v \notin L_C(M) \).
Cycles, Reductions
Error and Correctness Preserving Properties

- A cycle is a part of a computation between a restarting configuration and the configuration after a restart step.
- A tail is a part of a computation after the last restarting configuration and a halting step (Accept or Reject).
- Notation:

 - $q_0 \triangleright u \triangleleft \vdash_M \triangleright q_0 \triangleright v \triangleleft$ denotes a cycle of M.
 - Then we write $u \Rightarrow_M v$ – the cycle rewriting relation of M.
 - If $u \Rightarrow_M v$ and $|u| > |v|$, then $u \Rightarrow_M v$ is called a reduction.

Fact 1

(Error Preserving Property for basic languages of RLAs).
Let M be an RLA. If $u \Rightarrow_M^{c*} v$ and $u \notin L_C(M)$, then $v \notin L_C(M)$.

Fact 2

(Correctness Preserving Property for basic languages of det-RLAs).
Let M be a deterministic RLA. If $u \Rightarrow_M^{c*} v$ and $u \in L_C(M)$, then $v \in L_C(M)$.
Refinements and Constraints on RLAs

- **Restricted SL-steps:**
 - A delete-left step (DL-step) = an SL-step which can only delete symbols
 - A contextual-left step (CL-step) = an DL-step which can delete at most two factors

- Notation for \(T \subseteq \{\text{MVR}, \text{MVL}, \text{W}, \text{SL}, \text{DL}, \text{CL}, \text{Restart}\} \): \(T \)-RLA denotes RLAs which can use operations from \(T \cup \{\text{Accept, Reject}\} \)
Let $C = C_k, C_{k+1}, \ldots, C_j$ be a subcomputation and let $C_w = \triangleright \alpha q \beta \triangleleft$ be a configuration from C. Then $D_r(C_w) = |\beta \triangleleft|$ is the right distance of C_w.

Monotonicity of rewritings: let C_1, \ldots, C_n be a maximal subsequence of C containing all configurations in which a rewriting occurs. C is monotone if $D_r(C_1) \geq D_r(C_2) \geq \cdots \geq D_r(C_n)$. M is monotone if all its computations are monotone. M is completely monotone if $D_r(C_\ell) \geq D_r(C_\ell+1)$ holds whenever configuration $C_\ell \triangleright M C_{\ell+1}$.

Fact 3 Each $\{MVR, SL, W\}$-automaton is completely monotone.
Refinements and Constraints on RLAs
Monotonicity and Complete Monotonicity

Let \(C = C_k, C_{k+1}, \ldots, C_j \) be a subcomputation and let \(C_w = \triangleright \alpha q \beta \triangleleft \) be a configuration from \(C \). Then \(D_r(C_w) = |\beta \triangleleft| \) is the right distance of \(C_w \).

Monotonicity of rewritings: let \(C_1, \ldots, C_n \) be a maximal subsequence of \(C \) containing all configurations in which a rewriting occurs. \(C \) is monotone if \(D_r(C_1) \geq D_r(C_2) \geq \cdots \geq D_r(C_n) \).

\(M \) is monotone if all its computations are monotone.
Refinements and Constraints on RLAs
Monotonicity and Complete Monotonicity

- Let \(C = C_k, C_{k+1}, \ldots, C_j \) be a subcomputation and let \(C_w = \triangleright \alpha q \beta \triangleleft \) be a configuration from \(C \). Then \(D_r(C_w) = |\beta \triangleleft| \) is the right distance of \(C_w \).
- Monotonicity of rewritings: let \(C_1, \ldots, C_n \) be a maximal subsequence of \(C \) containing all configurations in which a rewriting occurs. \(C \) is monotone if \(D_r(C_1) \geq D_r(C_2) \geq \cdots \geq D_r(C_n) \). \(M \) is monotone if all its computations are monotone.
- \(M \) is completely monotone if \(D_r(C_\ell) \geq D_r(C_{\ell+1}) \) holds whenever configuration \(C_\ell \vdash_M C_{\ell+1} \).
Let $C = C_k, C_{k+1}, \ldots, C_j$ be a subcomputation and let $C_w = \triangleright \alpha q \beta \triangleleft$ be a configuration from C. Then $D_r(C_w) = |\beta| <|$ is the right distance of C_w.

Monotonicity of rewritings: let C_1, \ldots, C_n be a maximal subsequence of C containing all configurations in which a rewriting occurs. C is monotone if $D_r(C_1) \geq D_r(C_2) \geq \cdots \geq D_r(C_n)$. M is monotone if all its computations are monotone.

M is completely monotone if $D_r(C_\ell) \geq D_r(C_{\ell+1})$ holds whenever configuration $C_\ell \vdash_M C_{\ell+1}$.

Fact 3

Each $\{MVR, SL, W\}$-automaton is completely monotone.
Refinements and Constraints on RLAs
Monotonicity and Complete Monotonicity

- Let $C = C_k, C_{k+1}, \ldots, C_j$ be a subcomputation and let $C_w = \triangleright \alpha q \beta \triangleleft$ be a configuration from C. Then $D_r(C_w) = |\beta \triangleleft|$ is the right distance of C_w.

- Monotonicity of rewritings: let C_1, \ldots, C_n be a maximal subsequence of C containing all configurations in which a rewriting occurs. C is monotone if $D_r(C_1) \geq D_r(C_2) \geq \cdots \geq D_r(C_n)$. M is monotone if all its computations are monotone.

- M is completely monotone if $D_r(C_\ell) \geq D_r(C_{\ell+1})$ holds whenever configuration $C_\ell \vdash_M C_{\ell+1}$.

Fact 3

Each $\{MVR, SL, W\}$-automaton is completely monotone.

- A $\{MVR, SL, W\}$-automaton with a window of size $k \geq 2$ can be interpreted as a pushdown automaton with a k-lookahead and with a limited look under the top of the pushdown.

- A deterministic PDA can be simulated by a $\text{det-}\{MVR, SL, W\}$-automaton with a window of size 1.
An **RLWW-automaton** M is an RLA

1. No W-steps (rewritings only by SL-steps).
2. Exactly one SL-step in each cycle.
3. At most one SL-step in each tail computation.
An **RLWW-automaton** M is an RLA

1. No W-steps (rewritings only by SL-steps).
2. Exactly one SL-step in each cycle.
3. At most one SL-step in each tail computation.

For **RLWW**-automata, all cycle-rewritings are reductions.
RLWW-automata

- An **RLWW-automaton** M is an RLA
 1. No W-steps (rewritings only by SL-steps).
 2. Exactly one SL-step in each cycle.
 3. At most one SL-step in each tail computation.

- For **RLWW**-automata, all cycle-rewritings are reductions.

Different variants of **RLWW**-automata

<table>
<thead>
<tr>
<th>auxiliary symbols possible (\negWW)</th>
<th>SL-steps</th>
<th>DL-steps only</th>
<th>CL-steps only</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVL-steps ($RL\neg$)</td>
<td>RLWW</td>
<td>RLWWD</td>
<td>RLWWC</td>
</tr>
<tr>
<td>no MVL-steps, rewrite followed by restart ($R\neg$)</td>
<td>RWW</td>
<td>RWWD</td>
<td>RWWC</td>
</tr>
<tr>
<td>no auxiliary symbols (\negW)</td>
<td>MVL-steps ($RL\neg$)</td>
<td>RLW</td>
<td>RLWD</td>
</tr>
<tr>
<td>no MVL-steps, rewrite followed by restart ($R\neg$)</td>
<td>RW</td>
<td>RWD</td>
<td>RWC</td>
</tr>
</tbody>
</table>

- For each **RLW**-automaton M, $L(M) = L_C(M)$.

F. Mráz, F. Otto, M. Plátek (Prague) Characterizations of LRR-Languages NCMA 2018 9/24
Correctness Preserving Properties

(a) An RLA-automaton M satisfies the *Complete Weak Correctness Preserving Property (CWCPP) for its basic (input) language* if, for each accepting computation C_0, C_1, \ldots, C_n of M, $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, where u_j is the contents of the tape in configuration C_j $(0 \leq j \leq n)$.
Correctness Preserving Properties

(a) An RLA-automaton M satisfies the \textit{Complete Weak Correctness Preserving Property (CWCPP)} for its basic (input) language if, for each accepting computation C_0, C_1, \ldots, C_n of M, $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, where u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).

(b) An RLA-automaton M satisfies the \textit{Complete Strong Correctness Preserving Property (CSCPP)} for its basic (input) language if, for each computation C_0, C_1, \ldots, C_n of M, we have that $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, if $u_i \in L_C(M)$ ($u_i \in L(M)$) for some i. Here u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).
Correctness Preserving Properties

(a) An RLA-automaton M satisfies the Complete Weak Correctness Preserving Property (CWCPP) for its basic (input) language if, for each accepting computation C_0, C_1, \ldots, C_n of M, $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, where u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).

(b) An RLA-automaton M satisfies the Complete Strong Correctness Preserving Property (CSCPP) for its basic (input) language if, for each computation C_0, C_1, \ldots, C_n of M, we have that $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, if $u_i \in L_C(M)$ ($u_i \in L(M)$) for some i. Here u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).

- Complete \equiv each and every operation of the automaton M considered preserves the property of the tape contents to belong to the language $L_C(M)$ ($L(M)$).
Correctness Preserving Properties

(a) An RLA-automaton M satisfies the **Complete Weak Correctness Preserving Property (CWCPP)** for its basic (input) language if, for each accepting computation C_0, C_1, \ldots, C_n of M, $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, where u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).

(b) An RLA-automaton M satisfies the **Complete Strong Correctness Preserving Property (CSCPP)** for its basic (input) language if, for each computation C_0, C_1, \ldots, C_n of M, we have that $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, if $u_i \in L_C(M)$ ($u_i \in L(M)$) for some i. Here u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).

- Complete \equiv each and every operation of the automaton M considered preserves the property of the tape contents to belong to the language $L_C(M)$ ($L(M)$).
- No intermediate information is stored on the tape.
Correctness Preserving Properties

(a) An RLA-automaton M satisfies the **Complete Weak Correctness Preserving Property (CWCPP)** for its basic (input) language if, for each accepting computation C_0, C_1, \ldots, C_n of M, $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, where u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).

(b) An RLA-automaton M satisfies the **Complete Strong Correctness Preserving Property (CSCCPP)** for its basic (input) language if, for each computation C_0, C_1, \ldots, C_n of M, we have that $u_j \in L_C(M)$ ($u_j \in L(M)$) for all $j = 0, 1, \ldots, n$, if $u_i \in L_C(M)$ ($u_i \in L(M)$) for some i. Here u_j is the contents of the tape in configuration C_j ($0 \leq j \leq n$).

- Complete \equiv each and every operation of the automaton M considered preserves the property of the tape contents to belong to the language $L_C(M)$ ($L(M)$).
- No intermediate information is stored on the tape.
- Complete Weak and Strong Correctness Preserving Properties do not depend on the operation of restart.
Example

$L = \{a^n b^n c, a^n b^{2n} d \mid n \geq 0\}$ is accepted by a monotone RWW-automaton M; on input $a^m b^n x$, where $m, n \geq 2$ and $x \in \{c, d\}$:
Example

$L = \{ a^n b^n c, a^n b^{2n} d \mid n \geq 0 \}$ is accepted by a monotone RWW-automaton M; on input $a^m b^n x$, where $m, n \geq 2$ and $x \in \{ c, d \}$:

* either
 * performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \triangleright_M^c q_0 \triangleright a^{m-1} C b^{n-1} x \triangleleft$, where C is an auxiliary symbol (guessing that $x = c$);
 * repeatedly performs CL-steps rewriting aCb into C
 * accepts on $\triangleright Cc \triangleleft$
Example

$L = \{ a^n b^n c, a^n b^{2n} d \mid n \geq 0 \}$
is accepted by a monotone RWW-automaton M; on input $a^m b^n x$, where $m, n \geq 2$ and $x \in \{c, d\}$:

- either
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash^c_M q_0 \triangleright a^{m-1} C b^{n-1} x \triangleleft$, where C is an auxiliary symbol (guessing that $x = c$);
 - repeatedly performs CL-steps rewriting aCb into C
 - accepts on $\triangleright Cc \triangleleft$

- or
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash^c_M q_0 \triangleright a^{m-1} D b^{n-2} x \triangleleft$, where D is an auxiliary symbol (guessing that $x = d$);
 - repeatedly performs CL-steps rewriting $aDbb$ into D
 - accepts on $\triangleright Dd \triangleleft$
Example

\[L = \{ a^n b^n c, a^n b^{2n} d \mid n \geq 0 \} \]
is accepted by a monotone RWW-automaton \(M \); on input \(a^m b^n x \), where \(m, n \geq 2 \) and \(x \in \{ c, d \} \):

- either
 - performs the cycle \(q_0 \xrightarrow{a^m b^n x} q_0 \xleftarrow{C} a^{m-1} C b^{n-1} x \)
 - repeatedly performs CL-steps rewriting \(aC \) into \(C \)
 - accepts on \(\triangleright Cc \)

- or
 - performs the cycle \(q_0 \xrightarrow{a^m b^n x} q_0 \xleftarrow{D} a^{m-1} D b^{n-2} x \)
 - repeatedly performs CL-steps rewriting \(aDb \) into \(D \)
 - accepts on \(\triangleright Dd \)

In an accepting computation of \(M \), all but the initial configuration contain an occurrence of an auxiliary symbol \(\Rightarrow \) does not satisfy the Complete Weak Correctness Preserving Property for its input language.
Example

$L = \{ a^nb^n c, a^nb^{2n} d \mid n \geq 0 \}$
is accepted by a monotone RWW-automaton M; on input $a^m b^n x$, where $m, n \geq 2$ and $x \in \{ c, d \}$:

- either
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_c^M q_0 \triangleright a^{m-1} C b^{n-1} x \triangleleft$, where C is an auxiliary symbol (guessing that $x = c$);
 - repeatedly performs CL-steps rewriting aCb into C
 - accepts on $\triangleright C c \triangleleft$

- or
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_c^M q_0 \triangleright a^{m-1} D b^{n-2} x \triangleleft$, where D is an auxiliary symbol (guessing that $x = d$);
 - repeatedly performs CL-steps rewriting $aDb b$ into D
 - accepts on $\triangleright D d \triangleleft$

In an accepting computation of M, all but the initial configuration contain an occurrence of an auxiliary symbol \Rightarrow does not satisfy the Complete Weak Correctness Preserving Property for its input language.

The automaton is monotone.
Example

\[L = \{ a^n b^n c, a^n b^{2n} d \mid n \geq 0 \} \]
is accepted by a deterministic monotone RLW-automaton \(M' \); on input \(a^m b^n x \), where \(m, n \geq 2 \) and \(x \in \{ c, d \} \):

- Scans the given input completely and accepts or rejects words of length 1.
Example

\[L = \{ a^n b^n c, a^n b^{2n} d \mid n \geq 0 \} \]

is accepted by a deterministic monotone RLW-automaton \(M' \); on input \(a^m b^n x \), where \(m, n \geq 2 \) and \(x \in \{ c, d \} \):

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a \(c \), it deletes \(ab \) and restarts;
 if the last letter is a \(d \), it deletes \(abb \) and restarts.
Example

\[L = \{ a^n b^n c, a^n b^{2n} d \mid n \geq 0 \} \]

is accepted by a deterministic monotone \textit{RLW-automaton} \(M' \); on input \(a^m b^n x \), where \(m, n \geq 2 \) and \(x \in \{ c, d \} \):

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a \(c \), it deletes \(ab \) and restarts; if the last letter is a \(d \), it deletes \(abb \) and restarts.
- The automaton is monotone.
$L = \{a^n b^n c, a^n b^{2n} d \mid n \geq 0\}$ is accepted by a deterministic monotone RLW-automaton M'; on input $a^m b^n x$, where $m, n \geq 2$ and $x \in \{c, d\}$:

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a c, it deletes ab and restarts; if the last letter is a d, it deletes abb and restarts.

- The automaton is monotone.
- The (accepting) computations of M' are much more transparent than those of the RWW-automaton M.
Example

$L = \{a^n b^n c, a^n b^{2n} d \mid n \geq 0\}$
is accepted by a deterministic monotone \textit{RLW}-automaton M'; on input $a^m b^n x$, where $m, n \geq 2$ and $x \in \{c, d\}$:

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a c, it deletes ab and restarts; if the last letter is a d, it deletes abb and restarts.

- The automaton is monotone.
- The (accepting) computations of M' are much more transparent than those of the \textit{RWW}-automaton M.
- The \textit{det-RLW}-automaton M' satisfies the Complete Strong Correctness Preserving Property for its input language.
Complete Correctness Preserving Properties for RLWW-Automata

- Each RLW-automaton can be turned into an RLW-automaton that satisfies the Complete Weak Correctness Preserving Property for its input language.
 - Take care of tails – do not rewrite in tails.
- Each deterministic RLW-automaton can be turned into a deterministic RLW-automaton that satisfies the Complete Strong Correctness Preserving Property for its input language.
Complete Correctness Preserving Properties for RLWW-Automata

- Each RLW-automaton can be turned into an RLW-automaton that satisfies the Complete Weak Correctness Preserving Property for its input language.
 - Take care of tails – do not rewrite in tails.

- Each deterministic RLW-automaton can be turned into a deterministic RLW-automaton that satisfies the Complete Strong Correctness Preserving Property for its input language.
Characterization of LRR

- Already known:
 (a) [Jančar, Mráz, Plátek, Vogel, ’99]
 \[\text{DCFL} = \mathcal{L}(\text{det-mon-RWC}) \subseteq \mathcal{L}(\text{det-mon-RLWC}) \]

- New:
 \[\text{Theorem 4} \]
 For each det-mon-RLWW-automaton \(M_a\), there exists a det-mon-RLWC-automaton \(M_b\) such that \(L(M_a) = L(M_b)\).

 \[\text{Proof:} \]
 \(L = L(M_a)\) belongs to the class LRR [ˇCulík II, Cohen, ’73] there exists a deterministic sequential right-to-left transducer \(G\) such that \(L_1 = G(L)\) is a deterministic context-free language.
 We construct a \(\{MVR, MVL, W, CL, \text{Restart}\}\)-automaton \(M_2\) such that \(M_2\) accepts on input \(w\) iff \(G(w) \in L_1\) iff \(w \in L\).
 We simulate \(M_2\) by a det-mon-RLWC-automaton \(M_3\).
Characterization of LRR

Already known:

(a) [Jančar, Mráz, Plátek, Vogel, ’99]
\[\text{DCFL} = \mathcal{L}(\text{det-mon-RWC}) \subsetneq \mathcal{L}(\text{det-mon-RLWC}) \]

(b) [Otto, ’09] \[\text{LRR} = \mathcal{L}(\text{det-mon-RLWW}) = \mathcal{L}(\text{det-mon-RLWD}) \]

New:
Characterization of LRR

- Already known:
 (a) [Jančar, Mráz, Plátek, Vogel, ’99] \(\text{DCFL} = \mathcal{L}(\text{det-mon-RWC}) \subsetneq \mathcal{L}(\text{det-mon-RLWC}) \)
 (b) [Otto,’09] \(\text{LRR} = \mathcal{L}(\text{det-mon-RLWW}) = \mathcal{L}(\text{det-mon-RLWD}) \)

- New:

Theorem 4

For each det-mon-RLWW-automaton \(M_a \), there exists a det-mon-RLWC-automaton \(M_b \) such that \(L(M_a) = L(M_b) \).

Proof:
Main Results

Characterization of LRR

- Already known:
 1. [Jančar, Mráz, Plátek, Vogel, ’99] \(DCFL = \mathcal{L}(\text{det-mon-RWC}) \subseteq \mathcal{L}(\text{det-mon-RLWC}) \)
 2. [Otto,’09] \(\text{LRR} = \mathcal{L}(\text{det-mon-RLWW}) = \mathcal{L}(\text{det-mon-RLWD}) \)

- New:

Theorem 4

For each det-mon-RLWW-automaton \(M_a \), there exists a det-mon-RLWC-automaton \(M_b \) such that \(L(M_a) = L(M_b) \).

Proof:

- \(L = L(M_a) \) belongs to the class LRR
Main Results

Characterization of LRR

- Already known:
 (a) [Jančar, Mráz, Plátek, Vogel, ’99]
 \[\text{DCFL} = \mathcal{L} \text{(det-mon-RWC)} \subsetneq \mathcal{L} \text{(det-mon-RLWC)} \]
 (b) [Otto,’09] \[\text{LRR} = \mathcal{L} \text{(det-mon-RLWW)} = \mathcal{L} \text{(det-mon-RLWD)} \]

- New:

Theorem 4

For each det-mon-RLWW-automaton \(M_a \), there exists a det-mon-RLWC-automaton \(M_b \) such that \(L(M_a) = L(M_b) \).

Proof:

- \(L = L(M_a) \) belongs to the class LRR
- [Čulík II, Cohen, ’73] there exists a deterministic sequential right-to-left transducer \(G \) such that \(L_1 = G(L) \) is a deterministic context-free language.
Characterization of LRR

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, ’99]
 \[\text{DCFL} = \mathcal{L}(\text{det-mon-RWC}) \subseteq \mathcal{L}(\text{det-mon-RLWC}) \]
 - (b) [Otto,’09] \(\text{LRR} = \mathcal{L}(\text{det-mon-RLWW}) = \mathcal{L}(\text{det-mon-RLWD}) \)

- New:

Theorem 4

For each det-mon-RLWW-automaton \(M_a \), there exists a det-mon-RLWC-automaton \(M_b \) such that \(L(M_a) = L(M_b) \).

Proof:

- \(L = L(M_a) \) belongs to the class LRR
- [Čulík II, Cohen, ’73] there exists a deterministic sequential right-to-left transducer \(G \) such that \(L_1 = G(L) \) is a deterministic context-free language.
- We construct a \{MVR, MVL, W, CL, Restart\}-automaton \(M_2 \) such that \(M_2 \) accepts on input \(w \) iff \(G(w) \in L_1 \) iff \(w \in L \).
Characterization of LRR

- Already known:

 (a) [Jančar, Mráz, Plátek, Vogel, ’99] DCFL = \(L(\text{det-mon-RWC}) \subset L(\text{det-mon-RLWC}) \)

 (b) [Otto,’09] \(LRR = L(\text{det-mon-RLWW}) = L(\text{det-mon-RLWD}) \)

- New:

Theorem 4

For each det-mon-RLWW-automaton \(M_a \), there exists a det-mon-RLWC-automaton \(M_b \) such that \(L(M_a) = L(M_b) \).

Proof:

- \(L = L(M_a) \) belongs to the class LRR
- [Čulík II, Cohen, ’73] there exists a deterministic sequential right-to-left transducer \(G \) such that \(L_1 = G(L) \) is a deterministic context-free language.
- We construct a \(\{\text{MVR, MVL, W, CL, Restart}\} \)-automaton \(M_2 \) such that \(M_2 \) accepts on input \(w \) iff \(G(w) \in L_1 \) iff \(w \in L \).
- We simulate \(M_2 \) by a det-mon-RLWC-automaton \(M_3 \).
Main Results

Characterization of LRR

- $L = L(M_a)$ belongs to the class LRR
- [Čulík II, Cohen, ’73] there exists a deterministic sequential right-to-left transducer G such that $L_1 = G(L)$ is a deterministic context-free language.

\[
\begin{array}{cccc}
 a_1 & \ldots & a_{n-1} & a_n \\
 a_1 & \ldots & a_{n-1} & a_n, p_n \\
 a_1 & \ldots & a_{n-1}, p_{n-1} & a_n, p_n \\
 a_1, p_1 & \ldots & a_{n-1}, p_{n-1} & a_n, p_n \\
\end{array}
\]

$w = G(w)$

- it can be simulated by a \{MVR, MVL, W\}-RLA
- $L_1 = G(L)$ is from DCFL \Rightarrow it is accepted by a det-mon-RWC-automaton M_1 – operations \{MVR, CL, Restart\}
- an \{MVR, MVL, W, CL, Restart\}-automaton M_2 can simulate the composition of G and M_1
Characterization of LRR

The \(\{\text{MVR, MVL, W, CL, Restart}\} \)-automaton \(M_2 \) can be simulated by a det-mon-RLWC-automaton \(M_3 \).
Main Results

Characterization of LRR

- the \{MVR, MVL, W, CL, Restart\}-automaton M_2 can be simulated by a det-mon-RLWC-automaton M_3.
 - M_3 behaves like M_2, but without rewrites of the form $a \rightarrow (a, p_a)$
the \{MVR, MVL, W, CL, Restart\}-automaton M_2 can be simulated by a det-mon-RLWC-automaton M_3.

- M_3 behaves like M_2, but without rewrites of the form $a \rightarrow (a, p_a)$
- It scans tape from right to left and simulates the transducer G in its finite-state control and remembers the output of G just for the letters inside the window of M_1
the \{MVR, MVL, W, CL, Restart\}-automaton M_2 can be simulated by a det-mon-RLWC-automaton M_3.

- M_3 behaves like M_2, but without rewrites of the form $a \rightarrow (a, p_a)$
- It scans tape from right to left and simulates the transducer G in its finite-state control and remembers the output of G just for the letters inside the window of M_1
- The first step of M_1 on $G(w)$ can be simulated,
Characterization of LRR

the \{MVR, MVL, W, CL, Restart\}-automaton \(M_2\) can be simulated by a det-mon-RLWC-automaton \(M_3\).

- \(M_3\) behaves like \(M_2\), but without rewrites of the form \(a \rightarrow (a, p_a)\)
- It scans tape from right to left and simulates the transducer \(G\) in its finite-state control and remembers the output of \(G\) just for the letters inside the window of \(M_1\)
- The first step of \(M_1\) on \(G(w)\) can be simulated,
- but if \(M_1\) perform a MVR-step, it must reconstruct the contents of the window
the \{MVR, MVL, W, CL, Restart\}-automaton M_2 can be simulated by a det-mon-RLWC-automaton M_3.

- M_3 behaves like M_2, but without rewrites of the form $a \rightarrow (a, p_a)$
- It scans tape from right to left and simulates the transducer G in its finite-state control and remembers the output of G just for the letters inside the window of M_1
- The first step of M_1 on $G(w)$ can be simulated,
- but if M_1 perform a MVR-step, it must reconstruct the contents of the window
- for that a mirrored version of a theorem [Aho, Hopcroft, Ullman,’69] can be used
Main Results

Characterization of LRR

- the \{MVR, MVL, W, CL, Restart\}-automaton \(M_2\) can be simulated by a det-mon-RLWC-automaton \(M_3\).

- \(M_3\) behaves like \(M_2\), but without rewrites of the form \(a \rightarrow (a, p_a)\)
- It scans tape from right to left and simulates the transducer \(G\) in its finite-state control and remembers the output of \(G\) just for the letters inside the window of \(M_1\)
- The first step of \(M_1\) on \(G(w)\) can be simulated,
- but if \(M_1\) perform a MVR-step, it must reconstruct the contents of the window
- for that a mirrored version of a theorem [Aho, Hopcroft, Ullman,’69] can be used
 - for each (one-way) deterministic finite-state automaton \(A\) there exists a two-way deterministic finite-state automaton \(B\) such that if \(A\) arrives at some position \(i\) of its input \(x\) in a state \(q_i\), then \(B\) starting at the same position in state \(q_i\), finishes at position \(i - 1\) in the state \(q_{i-1}\)
Characterization of LRR

- The \{MVR, MVL, W, CL, Restart\}-automaton M_2 can be simulated by a det-mon-RLWC-automaton M_3.
 - M_3 behaves like M_2, but without rewrites of the form $a \rightarrow (a, p_a)$
 - It scans tape from right to left and simulates the transducer G in its finite-state control and remembers the output of G just for the letters inside the window of M_1
 - The first step of M_1 on $G(w)$ can be simulated,
 - but if M_1 perform a MVR-step, it must reconstruct the contents of the window
 - for that a mirrored version of a theorem [Aho, Hopcroft, Ullman,’69] can be used
 - for each (one-way) deterministic finite-state automaton A there exists a two-way deterministic finite-state automaton B such that if A arrives at some position i of its input x in a state q_i, then B starting at the same position in state q_i, finishes at position $i - 1$ in the state q_{i-1}
 - The first cycle of M_1 on $G(w)$ can be simulated; the resulting contents of the tape x is such that $G(x) \in L_1$ iff $G(w) \in L_1$ hence $x \in L$ iff $w \in L$.
Corollary 5

Each det-mon-RLWC-automaton can be turned into det-mon-\{MVR, MVL, CL\}-automaton satisfying the Complete Strong Correctness Preserving Property for its input language.

Proof:

- Each deterministic RLWC-automaton satisfies the Complete Strong Correctness Preserving Property for its input language.
- An RLWC-automaton can use MVR-, CL- and Restart-steps only
- Simulate each Restart-step by MVL-steps!
Corollary 5

Each det-mon-RLWC-automaton can be turned into det-mon-\{MVR, MVL, CL\}-automaton satisfying the Complete Strong Correctness Preserving Property for its input language.

Proof:
- Each deterministic RLWC-automaton satisfies the Complete Strong Correctness Preserving Property for its input language.
- An RLWC-automaton can use MVR-, CL- and Restart-steps only.
- Simulate each Restart-step by MVL-steps!

Proposition 1

For each det-mon-\{MVR, MVL, SL\}-automaton M_a, there exists a det-mon-RLWW-automaton M_b such that $L(M_a) = L(M_b)$.

Proof:
Corollary 5

Each det-mon-RLWC-automaton can be turned into det-mon-\{MVR, MVL, CL\}-automaton satisfying the Complete Strong Correctness Preserving Property for its input language.

Proof:
- Each deterministic RLWC-automaton satisfies the Complete Strong Correctness Preserving Property for its input language.
- An RLWC-automaton can use MVR-, CL- and Restart-steps only
- Simulate each Restart-step by MVL-steps!

Proposition 1

For each det-mon-\{MVR, MVL, SL\}-automaton M_a, there exists a det-mon-RLWW-automaton M_b such that $L(M_a) = L(M_b)$.

Proof:
- M_b must restart after simulating an SL-step of M_a
- Use the monotonicity! It encodes the state of M_a after an SL-step on its tape – together with the rightmost symbol of the rewritten part
- The next cycle of M_b starts by finding the rightmost tape field encoding also a state
Characterisation of LRR by Automata With Complete Strong Correctness Preserving Property

cscpp- denotes the Complete Strong Correctness Preserving Property.

Corollary 6

\[
\begin{align*}
\text{LRR} & \quad \subseteq (\text{det-mon-RLWW}) \\
& \quad \subseteq (\text{det-mon-\{MVR,MVL,SL \}}) \\
& \quad \subseteq (\text{det-mon-cscpp-RLWC}) \\
& \quad \subseteq (\text{det-mon-cscpp-\{MVR,MVL,SL \}}) \\
& \quad \subseteq (\text{det-mon-cscpp-\{MVR,MVL,CL \}}).
\end{align*}
\]
an RLA is in \textit{weak cyclic form} if before \textit{accepting} it always shortens its tape contents so that it fits in its window.
an RLA is in *weak cyclic form* if before accepting it always shortens its tape contents so that it fits in its window

an RLA is in *strong cyclic form* if before accepting or rejecting it always shortens its tape contents so that it fits in its window
an RLA is in \textit{weak cyclic form} if before accepting it always shortens its tape contents so that it fits in its window

an RLA is in \textit{strong cyclic form} if before accepting or rejecting it always shortens its tape contents so that it fits in its window

\begin{theorem}
For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{\text{scf}})$ and, for all $u \Rightarrow^c_M v$, also $u \Rightarrow^c_{M_{\text{scf}}} v$.
\end{theorem}
For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{scf})$ and, for all $u \Rightarrow^c_M v$, also $u \Rightarrow^c_{M_{scf}} v$.

- The set of words accepted by M in a tail computation is regular – it can be accepted by a finite state automaton A_+.
For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{scf})$ and, for all $u \Rightarrow^c_M v$, also $u \Rightarrow^c_{M_{scf}} v$.

- The set of words accepted by M in a tail computation is regular – it can be accepted by a finite state automaton A_+.
- The set of words rejected by M in a tail computation is regular – it can accepted by a finite state automaton A_-.

There exists a constant c such that for each word z from $L(A_+) \cup L(A_-)$ of length at least c, there is a factorization $z = uvw$ such that $|vw| \leq c$, $|v| \geq 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$.
For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{scf})$ and, for all $u \Rightarrow^{c}_{M} v$, also $u \Rightarrow^{c}_{M_{scf}} v$.

- The set of words accepted by M in a tail computation is regular – it can be accepted by a finite state automaton A_+.
- The set of words rejected by M in a tail computation is regular – it can accepted by a finite state automaton A_-.
- There exists a constant c such that for each word z from $L(A_+) \cup L(A_-)$ of length at least c, there is a factorization $z = uvw$ such that $|vw| \leq c$, $|v| \geq 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$.
For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{scf})$ and, for all $u \Rightarrow^c_M v$, also $u \Rightarrow^c_{M_{scf}} v$.

- The set of words accepted by M in a tail computation is regular – it can be accepted by a finite state automaton A_+.
- The set of words rejected by M in a tail computation is regular – it can be accepted by a finite state automaton A_-.
- There exists a constant c such that for each word z from $L(A_+) \cup L(A_-)$ of length at least c, there is a factorization $z = uvw$ such that $|vw| \leq c$, $|v| \geq 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$.

1. M_{scf} accepts or rejects all “short” words.
For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{scf})$ and, for all $u \Rightarrow_M^c v$, also $u \Rightarrow_{M_{scf}}^c v$.

- The set of words accepted by M in a tail computation is regular – it can be accepted by a finite state automaton A_+.
- The set of words rejected by M in a tail computation is regular – it can accepted by a finite state automaton A_-.
- There exists a constant c such that for each word z from $L(A_+) \cup L(A_-)$ of length at least c, there is a factorization $z = uvw$ such that $|vw| \leq c$, $|v| \geq 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$.

1. M_{scf} accepts or rejects all “short” words
2. On “long” words if tests whether A_+ or A_- would accept it; if yes, it cuts out v from the tape suffix and restarts.
Strong Cyclic Form

For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{scf})$ and, for all $u \Rightarrow^c_M v$, also $u \Rightarrow^c_{M_{scf}} v$.

- The set of words accepted by M in a tail computation is regular – it can be accepted by a finite state automaton A_+.
- The set of words rejected by M in a tail computation is regular – it can accepted by a finite state automaton A_-.
- There exists a constant c such that for each word z from $L(A_+) \cup L(A_-)$ of length at least c, there is a factorization $z = uvw$ such that $|vw| \leq c$, $|v| \geq 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$

1. M_{scf} accepts or rejects all “short” words
2. On “long” words if tests whether A_+ or A_- would accepted it; if yes, it cuts out v from the tape suffix and restarts.

- Monotonicity is preserved.
For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{scf})$ and, for all $u \Rightarrow^c_M v$, also $u \Rightarrow^c_{M_{scf}} v$.

- The set of words accepted by M in a tail computation is regular – it can be accepted by a finite state automaton A_+.
- The set of words rejected by M in a tail computation is regular – it can be accepted by a finite state automaton A_-.
- There exists a constant c such that for each word z from $L(A_+) \cup L(A_-)$ of length at least c, there is a factorization $z = uvw$ such that $|vw| \leq c$, $|v| \geq 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$
 1. M_{scf} accepts or rejects all “short” words
 2. On “long” words if tests whether A_+ or A_- would accept it; if yes, it cuts out v from the tape suffix and restarts.
 3. Otherwise, it simulates the next cycle of M.
- Monotonicity is preserved.
Conclusions

RLWW-automata

Corollary 8

For all \(Y \in \{\lambda, \text{scf, scf-cscpp}\} \), the following holds:

\[
\mathcal{L}(\text{det-mon-RLWW}) = \mathcal{L}(\text{det-mon-Y-RLW}) = \mathcal{L}(\text{det-mon-Y-RLWD}) = \mathcal{L}(\text{det-mon-Y-RLWC}) = \text{LRR}.
\]

- RLWC-, RLWD-, and RLW-automata can always be modified to satisfy the Complete Weak Correctness Preserving Property for input and basic languages.
- **Deterministic** RLWC-, RLWD-, and RLW-automata can always be modified to satisfy the Complete **Strong** Correctness Preserving Property for input and basic languages.
- General – nondeterministic – RLWW-automata can be modified to satisfy CSCPP only for basic languages.
Corollary 9

For all $X \in \{\{\text{MVR, MVL, SL}\}, \{\text{MVR, MVL, DL}\}, \{\text{MVR, MVL, CL}\}\}$ and all $Y \in \{\lambda, \text{scf, scf-cscpp}\}$, the following holds:

$$\mathcal{L}(\text{det-mon-Y-X}) = \text{LRR}.$$

- No Restart-steps
- the language class LRR is robust – characterized by automata both with and without Complete Strong Correctness Preserving Property
Conclusions

Why?

- **det-mon-**\textit{RLWC}-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:

Further research:
Conclusions

Why?

- **det-mon-RLWC**-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.

Further research:

To study **det-mon-RLWC**-automata in strong cyclic form having minimal look-ahead window and minimal reductions for a given LRR-language.
Conclusions

Why?

- **det-mon-** _RLWC_ -automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - **det-mon-cscpp-scf-** {**MVR**, **MVL**, **CL**}-automata have this ability, too.

Further research:

To study **det-mon-** _RLWC_ -automata in strong cyclic form having minimal look-ahead window and minimal reductions for a given LRR-language.
Conclusions

Why?

- **det-mon-\textit{RLWC}-automata** in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - **det-mon-cscpp-scf-\{MVR, MVL, CL\}-automata** have this ability, too.
- **det-mon-\textit{RLWC}-automata** in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.

Further research:
Conclusions

Why?

- **det-mon-**RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - **det-mon-cscpp-scf-\{MVR, MVL, CL\}-automata have this ability, too.**
- **det-mon-**RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.
 - Again, this also holds for
 - **det-mon-cscpp-scf-\{MVR, MVL, CL\}-automata.**

Further research:

- To study **det-mon-**RLWC-automata in strong cyclic form having minimal look-ahead window and minimal reductions for a given LRR-language.

F. Mráz, F. Otto, M. Plátek (Prague) Characterizations of LRR-Languages NCMA 2018 23/24
Conclusions

Why?

- **det-mon-** _RLWC_ -automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - **det-mon-cscpp-scf-** \{MVR, MVL, CL\} -automata have this ability, too.
- **det-mon-** _RLWC_ -automata in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.
 - Again, this also holds for **det-mon-cscpp-scf-** \{MVR, MVL, CL\} -automata.
 - Localization of syntactical errors and for syntactic error recovery.

Further research:
Conclusions

Why?

- **det-mon-RLWC**-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - **det-mon-cscpp-scf-**\{MVR, MVL, CL\}-automata have this ability, too.
- **det-mon-RLWC**-automata in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.
 - Again, this also holds for **det-mon-cscpp-scf-**\{MVR, MVL, CL\}-automata.
 - Localization of syntactical errors and for syntactic error recovery.

Further research:

- To study **det-mon-RLWC**-automata in strong cyclic form having minimal look-ahead window and minimal reductions for a given LRR-language.
Thank you for your attention!