CHARACTERIZATIONS OF LRR- LANGUAGES BY CORRECTNESS-PRESERVING COMPUTATIONS

František Mráz, Friedrich Otto, and Martin Plátek

Charles University, Prague, Czech Republic

NCMA 2018

Košice

August 21-22, 2018

A superclass of DCFL can be accepted by "well-behaved" restarting automata

the class of left-to-right regular languages (LRR)

- DCFL can be accepted deterministically by LR(1)-analyzers with lookahead of size 1
- LRR can be accepted deterministically by LR-analyzers with unlimited lookahead; example

 $\{a^nb^nc,a^nb^{2n}d\mid n\geq 0\}$

- deterministic
- no auxiliary symbols
- length-reducing

- deterministic
- no auxiliary symbols
- length-reducing
- Iocal changes

- deterministic
- no auxiliary symbols
- length-reducing
- Iocal changes
- monotone

- deterministic
- no auxiliary symbols
- Iength-reducing
- Iocal changes
- monotone
- correctness-preserving

- deterministic
- no auxiliary symbols
- length-reducing
- Iocal changes
- monotone
- correctness-preserving
- even more restrictions are possible

- deterministic
- no auxiliary symbols
- Iength-reducing
- Iocal changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only moreover, deleting at most two continuous factor in one step

- deterministic
- no auxiliary symbols
- Iength-reducing
- Iocal changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only moreover, deleting at most two continuous factor in one step
 - always reduce the input into a word of small size (limited by a constant) before accepting or rejecting

- deterministic
- no auxiliary symbols
- Iength-reducing
- Iocal changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only moreover, deleting at most two continuous factor in one step
 - always reduce the input into a word of small size (limited by a constant) before accepting or rejecting
 - expresses the structure for correct inputs

- deterministic
- no auxiliary symbols
- Iength-reducing
- Iocal changes
- monotone
- correctness-preserving
- even more restrictions are possible
 - deleting only moreover, deleting at most two continuous factor in one step
 - always reduce the input into a word of small size (limited by a constant) before accepting or rejecting
 - expresses the structure for correct inputs
 - shows a core for an error in rejected inputs

2 Main Results

 $\textit{\textit{M}} = (\textit{\textit{Q}}, \Sigma, \Gamma, \rhd, \lhd, \textit{\textit{q}}_{0}, \textit{\textit{k}}, \delta)$

• finite state control, set of states *Q*,

- $\textit{\textit{M}} = (\textit{\textit{Q}}, \textit{\Sigma}, \textit{\Gamma}, \vartriangleright, \lhd, \textit{q}_{0}, \textit{k}, \delta)$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,

$\textit{\textit{M}} = (\textit{\textit{Q}}, \textit{\Sigma}, \textit{\Gamma}, \vartriangleright, \lhd, \textit{q}_{0}, \textit{k}, \delta)$

- finite state control, set of states *Q*,
- read/write window of a fixed size k,
- tape = list of symbols delimited by sentinels ▷ and ⊲,

$\textit{\textit{M}} = (\textit{\textit{Q}}, \textit{\Sigma}, \textit{\Gamma}, \vartriangleright, \lhd, \textit{q}_{0}, \textit{k}, \delta)$

- finite state control, set of states *Q*,
- read/write window of a fixed size k,
- tape = list of symbols delimited by sentinels ▷ and ⊲,
- input alphabet Σ,

- $\textit{\textit{M}} = (\textit{\textit{Q}}, \textit{\Sigma}, \textit{\Gamma}, \vartriangleright, \lhd, \textit{q}_{0}, \textit{k}, \delta)$
 - finite state control, set of states *Q*,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,

- $\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\rhd}, \lhd, \boldsymbol{q}_0, \boldsymbol{k}, \boldsymbol{\delta})$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,
 - operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.

- $\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\rhd}, \lhd, \boldsymbol{q}_0, \boldsymbol{k}, \boldsymbol{\delta})$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,
 - operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.

- $\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\rhd}, \lhd, \boldsymbol{q}_0, \boldsymbol{k}, \boldsymbol{\delta})$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,
 - operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.

- $\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\rhd}, \lhd, \boldsymbol{q}_0, \boldsymbol{k}, \boldsymbol{\delta})$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,
 - operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.

- $\textit{\textit{M}} = (\textit{\textit{Q}}, \textit{\Sigma}, \textit{\Gamma}, \vartriangleright, \lhd, \textit{q}_{0}, \textit{k}, \delta)$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,
 - operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.

- $\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\rhd}, \lhd, \boldsymbol{q}_0, \boldsymbol{k}, \boldsymbol{\delta})$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,
 - operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.

- $\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\rhd}, \lhd, \boldsymbol{q}_0, \boldsymbol{k}, \boldsymbol{\delta})$
 - finite state control, set of states Q,
 - read/write window of a fixed size k,
 - tape = list of symbols delimited by sentinels ▷ and ⊲,
 - input alphabet Σ,
 - working alphabet Γ , $\Sigma \subseteq \Gamma$,
 - operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.

- a *configuration* of an RLA *M*: $\alpha q\beta$
 - q is the current state
 - $\alpha\beta \in \{\triangleright\} \cdot \Gamma^* \cdot \{\triangleleft\}$ is the current contents of the tape
 - contents of the window = the first *k* symbols of β

- a *configuration* of an RLA *M*: $\alpha q\beta$
 - q is the current state
 - $\alpha\beta \in \{\triangleright\} \cdot \Gamma^* \cdot \{\triangleleft\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a *restarting configuration*: $q_0 \triangleright w \triangleleft$, where $w \in \Gamma^*$

- a configuration of an RLA M: $\alpha q\beta$
 - q is the current state
 - $\alpha\beta \in \{\triangleright\} \cdot \Gamma^* \cdot \{\triangleleft\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a restarting configuration: $q_0 \triangleright w \triangleleft$, where $w \in \Gamma^*$
- an *initial configuration*: $q_0 \triangleright w \triangleleft$, where $w \in \Sigma^*$

- a configuration of an RLA M: $\alpha q\beta$
 - q is the current state
 - $\alpha\beta \in \{\triangleright\} \cdot \Gamma^* \cdot \{\triangleleft\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a restarting configuration: $q_0 \triangleright w \triangleleft$, where $w \in \Gamma^*$
- an *initial configuration*: $q_0 \triangleright w \triangleleft$, where $w \in \Sigma^*$
- the input language of M:

 $L(M) = \{ w \in \mathbf{\Sigma}^* \mid q_0 \rhd w \lhd \vdash_M^* \mathsf{Accept} \}.$

- a configuration of an RLA M: $\alpha q\beta$
 - q is the current state
 - $\alpha\beta \in \{\triangleright\} \cdot \Gamma^* \cdot \{\triangleleft\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a restarting configuration: $q_0 \triangleright w \triangleleft$, where $w \in \Gamma^*$
- an *initial configuration*: $q_0 \triangleright w \triangleleft$, where $w \in \Sigma^*$
- the input language of M:

 $L(M) = \{ w \in \Sigma^* \mid q_0 \rhd w \lhd \vdash_M^* \mathsf{Accept} \}.$

• the basic (characteristic) language of M:

 $L_{\mathrm{C}}(M) = \{ w \in \Gamma^* \mid q_0 \rhd w \lhd \vdash_M^* \mathsf{Accept} \}.$

- a *configuration* of an RLA *M*: $\alpha q\beta$
 - q is the current state
 - $\alpha\beta \in \{\triangleright\} \cdot \Gamma^* \cdot \{\triangleleft\}$ is the current contents of the tape
 - contents of the window = the first k symbols of β
- a restarting configuration: $q_0 \triangleright w \triangleleft$, where $w \in \Gamma^*$
- an *initial configuration*: $q_0 \triangleright w \triangleleft$, where $w \in \Sigma^*$
- the input language of M:

 $L(M) = \{ w \in \Sigma^* \mid q_0 \rhd w \lhd \vdash_M^* \mathsf{Accept} \}.$

• the basic (characteristic) language of M:

 $L_{\mathrm{C}}(M) = \{ w \in \Gamma^* \mid q_0 \rhd w \lhd \vdash_M^* \mathsf{Accept} \}.$

• obviously $L_{\mathbb{C}}(M) \cap \Sigma^* = L(M)$.

 a cycle = a part of a computation between a restarting configuration and the configuration after a restart step

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
- notation:
 - $q_0 \triangleright u \lhd \vdash^c_M q_0 \triangleright v \lhd$ denotes a cycle of M
 - then we write $u \Rightarrow_{M}^{c} v$ the cycle rewriting relation of M

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
- notation:
 - $q_0 \triangleright u \lhd \vdash^c_M q_0 \triangleright v \lhd$ denotes a cycle of M
 - then we write $u \Rightarrow_{M}^{c} v$ the cycle rewriting relation of M
- if $u \Rightarrow_M^c v$ and |u| > |v|, then $u \Rightarrow_M^c v$ is called a *reduction*

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
- notation:
 - $q_0 \triangleright u \triangleleft \vdash_M^c q_0 \triangleright v \triangleleft$ denotes a cycle of *M*
 - then we write $u \Rightarrow_M^c v$ the cycle rewriting relation of M
- if $u \Rightarrow_M^c v$ and |u| > |v|, then $u \Rightarrow_M^c v$ is called a *reduction*

Fact 1

(Error Preserving Property for basic languages of RLAs). Let *M* be an RLA. If $u \Rightarrow_{C^*}^{C^*} v$ and $u \notin L_C(M)$, then $v \notin L_C(M)$.
Cycles, Reductions Error and Correctness Preserving Properties

- a cycle = a part of a computation between a restarting configuration and the configuration after a restart step
- a tail = a part of a computation after the last restarting configuration and a halting step (Accept or Reject)
- notation:
 - $q_0 \triangleright u \triangleleft \vdash_M^c q_0 \triangleright v \triangleleft$ denotes a cycle of *M*
 - then we write $u \Rightarrow_{M}^{c} v$ the cycle rewriting relation of M
- if $u \Rightarrow_M^c v$ and |u| > |v|, then $u \Rightarrow_M^c v$ is called a *reduction*

Fact 1

(Error Preserving Property for basic languages of RLAs). Let *M* be an RLA. If $u \Rightarrow_{C}^{e_{N}} v$ and $u \notin L_{C}(M)$, then $v \notin L_{C}(M)$.

Fact 2

(Correctness Preserving Property for basic languages of det-RLAs). Let M be a deterministic RLA. If $u \Rightarrow_M^{c^*} v$ and $u \in L_C(M)$, then $v \in L_C(M)$.

Refinements and Constraints on RLAs

- Restricted SL-steps:
 - A delete-left step (DL-step) = an SL-step which can only delete symbols
 - A contextual-left step (CL-step) = an DL-step which can delete at most two factors
- Notation for *T* ⊆ {MVR, MVL, W, SL, DL, CL, Restart}: *T*-RLA denotes RLAs which can use operations from *T* ∪ {Accept, Reject}

Refinements and Constraints on RLAs Monotonicity and Complete Monotonicity

• Let $C = C_k, C_{k+1}, ..., C_j$ be a subcomputation and let $C_w = \triangleright \alpha q \beta \triangleleft$ be a configuration from *C*. Then $D_r(C_w) = |\beta \triangleleft|$ is the *right distance* of C_w .

Refinements and Constraints on RLAs Monotonicity and Complete Monotonicity

- Let C = C_k, C_{k+1},..., C_j be a subcomputation and let C_w = ▷αqβ⊲ be a configuration from C. Then D_r(C_w) = |β ⊲ | is the *right distance* of C_w.
- Monotonicity of rewritings: let C_1, \ldots, C_n be a maximal subsequence of *C* containing all configurations in which a rewriting occurs.
 - *C* is monotone if $D_r(C_1) \ge D_r(C_2) \ge \cdots \ge D_r(C_n)$.
 - *M* is monotone if all its computations are monotone.

Refinements and Constraints on RLAs Monotonicity and Complete Monotonicity

- Let C = C_k, C_{k+1},..., C_j be a subcomputation and let C_w = ▷αqβ⊲ be a configuration from C. Then D_r(C_w) = |β ⊲ | is the *right distance* of C_w.
- Monotonicity of rewritings: let C_1, \ldots, C_n be a maximal subsequence of C containing all configurations in which a rewriting occurs. C is monotone if $D_r(C_1) \ge D_r(C_2) \ge \cdots \ge D_r(C_n)$.
 - *M* is monotone if all its computations are monotone.
- *M* is completely monotone if $D_r(C_{\ell}) \ge D_r(C_{\ell+1})$ holds whenever configuration $C_{\ell} \vdash_M C_{\ell+1}$.

Refinements and Constraints on RLAs Monotonicity and Complete Monotonicity

- Let C = C_k, C_{k+1},..., C_j be a subcomputation and let C_w = ▷αqβ⊲ be a configuration from C. Then D_r(C_w) = |β ⊲ | is the *right distance* of C_w.
- Monotonicity of rewritings: let C_1, \ldots, C_n be a maximal subsequence of *C* containing all configurations in which a rewriting occurs.
 - *C* is monotone if $D_r(C_1) \ge D_r(C_2) \ge \cdots \ge D_r(C_n)$.
 - *M* is monotone if all its computations are monotone.
- *M* is completely monotone if $D_r(C_{\ell}) \ge D_r(C_{\ell+1})$ holds whenever configuration $C_{\ell} \vdash_M C_{\ell+1}$.

Fact 3

Each {MVR,SL,W}-automaton is completely monotone.

Refinements and Constraints on RLAs Monotonicity and Complete Monotonicity

- Let $C = C_k, C_{k+1}, ..., C_j$ be a subcomputation and let $C_w = \triangleright \alpha q \beta \triangleleft$ be a configuration from *C*. Then $D_r(C_w) = |\beta \triangleleft|$ is the *right distance* of C_w .
- Monotonicity of rewritings: let C_1, \ldots, C_n be a maximal subsequence of *C* containing all configurations in which a rewriting occurs.
 - *C* is monotone if $D_r(C_1) \ge D_r(C_2) \ge \cdots \ge D_r(C_n)$.
 - *M* is monotone if all its computations are monotone.
- *M* is completely monotone if $D_r(C_{\ell}) \ge D_r(C_{\ell+1})$ holds whenever configuration $C_{\ell} \vdash_M C_{\ell+1}$.

Fact 3

Each {MVR,SL,W}-automaton is completely monotone.

- A {MVR,SL,W}-automaton with a window of size k ≥ 2 can be interpreted as a pushdown automaton with a k-lookahead and with a limited look under the top of the pushdown.
- A deterministic PDA can be simulated by a det-{MVR,SL,W}automaton with a window of size 1.

RLWW-automata

- An RLWW-automaton M is an RLA
 - No W-steps (rewritings only by SL-steps).
 - Exactly one SL-step in each cycle.
 - At most one SL-step in each tail computation.

RLWW-automata

- An RLWW-automaton M is an RLA
 - No W-steps (rewritings only by SL-steps).
 - Exactly one SL-step in each cycle.
 - At most one SL-step in each tail computation.
- For RLWW-automata, all cycle-rewritings are reductions.

RLWW-automata

- An RLWW-automaton M is an RLA
 - No W-steps (rewritings only by SL-steps).
 - 2 Exactly one SL-step in each cycle.
 - At most one SL-step in each tail computation.
- For RLWW-automata, all cycle-rewritings are reductions.
- Different variants of RLWW-automata

		SL-steps	DL-steps only	CL-steps only
auxiliary symbols possible (-WW)	MVL-steps (RL–)	RLWW	RLWWD	RLWWC
	no MVL-steps, rewrite fol- lowed by restart (R-)	RWW	RWWD	RWWC
no auxiliary symbols (–W)	MVL-steps (RL–)	RLW	RLWD	RLWC
	no MVL-steps, rewrite fol- lowed by restart (R-)	RW	RWD	RWC

• For each RLW-automaton M, $L(M) = L_C(M)$.

(a) An RLA-automaton *M* satisfies the *Complete Weak Correctness Preserving Property (CWCPP) for its basic (input) language* if, for each accepting computation C_0, C_1, \ldots, C_n of $M, u_j \in L_C(M)$ $(u_j \in L(M))$ for all $j = 0, 1, \ldots, n$, where u_j is the contents of the tape in configuration C_j $(0 \le j \le n)$.

- (a) An RLA-automaton *M* satisfies the *Complete Weak Correctness Preserving Property (CWCPP) for its basic (input) language* if, for each accepting computation C_0, C_1, \ldots, C_n of $M, u_j \in L_C(M)$ $(u_j \in L(M))$ for all $j = 0, 1, \ldots, n$, where u_j is the contents of the tape in configuration C_j $(0 \le j \le n)$.
- (b) An RLA-automaton *M* satisfies the *Complete Strong Correctness Preserving Property (CSCPP) for its basic (input) language* if, for each computation C₀, C₁,..., C_n of *M*, we have that u_j ∈ L_C(*M*) (u_j ∈ L(M)) for all j = 0, 1,..., n, if u_i ∈ L_C(M) (u_i ∈ L(M)) for some i. Here u_i is the contents of the tape in configuration C_i (0 ≤ j ≤ n).

- (a) An RLA-automaton *M* satisfies the *Complete Weak Correctness Preserving Property (CWCPP) for its basic (input) language* if, for each accepting computation C₀, C₁,..., C_n of *M*, u_j ∈ L_C(*M*) (u_j ∈ L(*M*)) for all j = 0, 1,..., n, where u_j is the contents of the tape in configuration C_j (0 ≤ j ≤ n).
- (b) An RLA-automaton *M* satisfies the *Complete Strong Correctness Preserving Property (CSCPP) for its basic (input) language* if, for each computation C₀, C₁,..., C_n of *M*, we have that u_j ∈ L_C(*M*) (u_j ∈ L(*M*)) for all j = 0, 1,..., n, if u_i ∈ L_C(*M*) (u_i ∈ L(*M*)) for some *i*. Here u_i is the contents of the tape in configuration C_i (0 ≤ j ≤ n).
 - Complete \equiv each and every operation of the automaton *M* considered preserves the property of the tape contents to belong to the language $L_{C}(M)$ (L(M)).

- (a) An RLA-automaton *M* satisfies the *Complete Weak Correctness Preserving Property (CWCPP) for its basic (input) language* if, for each accepting computation C₀, C₁,..., C_n of *M*, u_j ∈ L_C(*M*) (u_j ∈ L(M)) for all j = 0, 1,..., n, where u_j is the contents of the tape in configuration C_i (0 ≤ j ≤ n).
- (b) An RLA-automaton *M* satisfies the *Complete Strong Correctness Preserving Property (CSCPP) for its basic (input) language* if, for each computation C₀, C₁,..., C_n of *M*, we have that u_j ∈ L_C(*M*) (u_j ∈ L(*M*)) for all j = 0, 1,..., n, if u_i ∈ L_C(*M*) (u_i ∈ L(*M*)) for some *i*. Here u_i is the contents of the tape in configuration C_i (0 ≤ j ≤ n).
 - Complete \equiv each and every operation of the automaton *M* considered preserves the property of the tape contents to belong to the language $L_{C}(M)$ (*L*(*M*)).
 - No intermediate information is stored on the tape.

- (a) An RLA-automaton *M* satisfies the *Complete Weak Correctness Preserving Property (CWCPP) for its basic (input) language* if, for each accepting computation C₀, C₁,..., C_n of *M*, u_j ∈ L_C(*M*) (u_j ∈ L(M)) for all j = 0, 1,..., n, where u_j is the contents of the tape in configuration C_i (0 ≤ j ≤ n).
- (b) An RLA-automaton *M* satisfies the *Complete Strong Correctness Preserving Property (CSCPP) for its basic (input) language* if, for each computation C₀, C₁,..., C_n of *M*, we have that u_j ∈ L_C(*M*) (u_j ∈ L(*M*)) for all j = 0, 1,..., n, if u_i ∈ L_C(*M*) (u_i ∈ L(*M*)) for some *i*. Here u_i is the contents of the tape in configuration C_i (0 ≤ j ≤ n).
 - Complete \equiv each and every operation of the automaton *M* considered preserves the property of the tape contents to belong to the language $L_{C}(M)$ (*L*(*M*)).
 - No intermediate information is stored on the tape.
 - Complete Weak and Strong Correctness Preserving Properties do not depend on the operation of restart.

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- either
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_M^c q_0 \triangleright a^{m-1} C b^{n-1} x \triangleleft$, where *C* is an auxiliary symbol (guessing that x = c);
 - repeatedly performs CL-steps rewriting aCb into C
 - accepts on ⊳Cc⊲

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- either
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_M^c q_0 \triangleright a^{m-1} C b^{n-1} x \triangleleft$, where *C* is an auxiliary symbol (guessing that x = c);
 - repeatedly performs CL-steps rewriting aCb into C
 - accepts on ⊳Cc⊲
- or
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_M^c q_0 \triangleright a^{m-1} D b^{n-2} x \triangleleft$, where *D* is an auxiliary symbol (guessing that x = d);
 - repeatedly performs CL-steps rewriting aDbb into D
 - accepts on ⊳Dd⊲

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- either
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_M^c q_0 \triangleright a^{m-1} C b^{n-1} x \triangleleft$, where *C* is an auxiliary symbol (guessing that x = c);
 - repeatedly performs CL-steps rewriting aCb into C
 - accepts on ⊳Cc⊲
- or
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_M^c q_0 \triangleright a^{m-1} D b^{n-2} x \triangleleft$, where *D* is an auxiliary symbol (guessing that x = d);
 - repeatedly performs CL-steps rewriting aDbb into D
 - accepts on ⊳Dd⊲
- In an accepting computation of *M*, all but the initial configuration contain an occurrence of an auxiliary symbol ⇒ does not satisfy the Complete Weak Correctness Preserving Property for its input language.

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- either
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_M^c q_0 \triangleright a^{m-1} C b^{n-1} x \triangleleft$, where *C* is an auxiliary symbol (guessing that x = c);
 - repeatedly performs CL-steps rewriting aCb into C
 - accepts on ⊳Cc⊲
- or
 - performs the cycle $q_0 \triangleright a^m b^n x \triangleleft \vdash_M^c q_0 \triangleright a^{m-1} D b^{n-2} x \triangleleft$, where *D* is an auxiliary symbol (guessing that x = d);
 - repeatedly performs CL-steps rewriting aDbb into D
 - accepts on ⊳Dd⊲
- In an accepting computation of *M*, all but the initial configuration contain an occurrence of an auxiliary symbol ⇒ does not satisfy the Complete Weak Correctness Preserving Property for its input language.
- The automaton is monotone.

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

is accepted by a deterministic monotone RLW-automaton M'; on input $a^m b^n x$, where $m, n \ge 2$ and $x \in \{c, d\}$:

• Scans the given input completely and accepts or rejects words of length 1.

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a *c*, it deletes *ab* and restarts; if the last letter is a *d*, it deletes *abb* and restarts.

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a *c*, it deletes *ab* and restarts; if the last letter is a *d*, it deletes *abb* and restarts.
- The automaton is monotone.

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a *c*, it deletes *ab* and restarts; if the last letter is a *d*, it deletes *abb* and restarts.
- The automaton is monotone.
- The (accepting) computations of *M*' are much more transparent than those of the RWW-automaton *M*.

 $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$

- Scans the given input completely and accepts or rejects words of length 1.
- If the last letter is a *c*, it deletes *ab* and restarts; if the last letter is a *d*, it deletes *abb* and restarts.
- The automaton is monotone.
- The (accepting) computations of *M*' are much more transparent than those of the RWW-automaton *M*.
- The det-RLW-automaton *M*' satisfies the Complete Strong Correctness Preserving Property for its input language.

Complete Correctness Preserving Properties for RLWW-Automata

- Each RLW-automaton can be turned into an RLW-automaton that satisfies the Complete Weak Correctness Preserving Property for its input language.
 - Take care of tails do not rewrite in tails.
- Each deterministic RLW-automaton can be turned into a deterministic RLW-automaton that satisfies the Complete Strong Correctness Preserving Property for its input language.

Complete Correctness Preserving Properties for RLWW-Automata

- Each RLW-automaton can be turned into an RLW-automaton that satisfies the Complete Weak Correctness Preserving Property for its input language.
 - Take care of tails do not rewrite in tails.
- Each deterministic RLW-automaton can be turned into a deterministic RLW-automaton that satisfies the Complete Strong Correctness Preserving Property for its input language.

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, '99] DCFL = $\mathcal{L}(det\text{-mon-RWC}) \subsetneq \mathcal{L}(det\text{-mon-RLWC})$

New:

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, '99]
 - $\mathsf{DCFL} = \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RWC}) \subsetneq \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RLWC})$
 - (b) [Otto,'09] LRR = $\mathcal{L}(det\text{-mon-RLWW}) = \mathcal{L}(det\text{-mon-RLWD})$
- New:

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, '99]
 - $\mathsf{DCFL} = \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RWC}) \subsetneq \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RLWC})$
 - (b) [Otto,'09] LRR = $\mathcal{L}(det\text{-mon-RLWW}) = \mathcal{L}(det\text{-mon-RLWD})$
- New:

Theorem 4

For each det-mon-RLWW-automaton M_a , there exists a det-mon-RLWC-automaton M_b such that $L(M_a) = L(M_b)$.

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, '99]
 - $\mathsf{DCFL} = \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RWC}) \subsetneq \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RLWC})$
 - (b) [Otto,'09] LRR = $\mathcal{L}(det\text{-mon-RLWW}) = \mathcal{L}(det\text{-mon-RLWD})$
- New:

Theorem 4

For each det-mon-RLWW-automaton M_a , there exists a det-mon-RLWC-automaton M_b such that $L(M_a) = L(M_b)$.

Proof:

• $L = L(M_a)$ belongs to the class LRR

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, '99]
 - $\mathsf{DCFL} = \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RWC}) \subsetneq \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RLWC})$
 - (b) [Otto,'09] LRR = $\mathcal{L}(det\text{-mon-RLWW}) = \mathcal{L}(det\text{-mon-RLWD})$
- New:

Theorem 4

For each det-mon-RLWW-automaton M_a , there exists a det-mon-RLWC-automaton M_b such that $L(M_a) = L(M_b)$.

- $L = L(M_a)$ belongs to the class LRR
- [Čulík II, Cohen, '73] there exists a deterministic sequential right-to-left transducer *G* such that $L_1 = G(L)$ is a deterministic context-free language.

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, '99]
 - $\mathsf{DCFL} = \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RWC}) \subsetneq \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RLWC})$
 - (b) [Otto,'09] LRR = $\mathcal{L}(det\text{-mon-RLWW}) = \mathcal{L}(det\text{-mon-RLWD})$
- New:

Theorem 4

For each det-mon-RLWW-automaton M_a , there exists a det-mon-RLWC-automaton M_b such that $L(M_a) = L(M_b)$.

- $L = L(M_a)$ belongs to the class LRR
- [Čulík II, Cohen, '73] there exists a deterministic sequential right-to-left transducer *G* such that $L_1 = G(L)$ is a deterministic context-free language.
- We construct a {MVR, MVL, W, CL, Restart}-automaton M_2 such that M_2 accepts on input *w* iff $G(w) \in L_1$ iff $w \in L$.

- Already known:
 - (a) [Jančar, Mráz, Plátek, Vogel, '99]
 - $\mathsf{DCFL} = \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RWC}) \subsetneq \mathcal{L}(\mathsf{det}\text{-}\mathsf{mon}\text{-}\mathsf{RLWC})$
 - (b) [Otto,'09] LRR = $\mathcal{L}(det\text{-mon-RLWW}) = \mathcal{L}(det\text{-mon-RLWD})$
- New:

Theorem 4

For each det-mon-RLWW-automaton M_a , there exists a det-mon-RLWC-automaton M_b such that $L(M_a) = L(M_b)$.

- $L = L(M_a)$ belongs to the class LRR
- [Čulík II, Cohen, '73] there exists a deterministic sequential right-to-left transducer *G* such that $L_1 = G(L)$ is a deterministic context-free language.
- We construct a {MVR, MVL, W, CL, Restart}-automaton M₂ such that M₂ accepts on input w iff G(w) ∈ L₁ iff w ∈ L.
- We simulate M₂ by a det-mon-RLWC-automaton M₃.

- $L = L(M_a)$ belongs to the class LRR
- [Čulík II, Cohen, '73] there exists a deterministic sequential right-to-left transducer *G* such that $L_1 = G(L)$ is a deterministic context-free language.

- it can be simulated by a {MVR, MVL, W}-RLA
- L₁ = G(L) is from DCFL ⇒ it is accepted by a det-mon-RWC-automaton M₁ operations {MVR, CL, Restart}
- an {MVR, MVL, W, CL, Restart}-automaton M₂ can simulate the composition of G and M₁

the {MVR, MVL, W, CL, Restart}-automaton M₂ can be simulated by a det-mon-RLWC-automaton M₃.
- the {MVR, MVL, W, CL, Restart}-automaton M₂ can be simulated by a det-mon-RLWC-automaton M₃.
 - M_3 behaves like M_2 , but without rewrites of the form $a \rightarrow (a, p_a)$

- the {MVR, MVL, W, CL, Restart}-automaton M₂ can be simulated by a det-mon-RLWC-automaton M₃.
 - M_3 behaves like M_2 , but without rewrites of the form $a \rightarrow (a, p_a)$
 - It scans tape from right to left and simulates the transducer *G* in its finite-state control and remembers the output of *G* just for the letters inside the window of M_1

- the {MVR, MVL, W, CL, Restart}-automaton M₂ can be simulated by a det-mon-RLWC-automaton M₃.
 - M_3 behaves like M_2 , but without rewrites of the form $a \rightarrow (a, p_a)$
 - It scans tape from right to left and simulates the transducer *G* in its finite-state control and remembers the output of *G* just for the letters inside the window of M_1
 - The first step of M_1 on G(w) can be simulated,

- the {MVR, MVL, W, CL, Restart}-automaton M₂ can be simulated by a det-mon-RLWC-automaton M₃.
 - M_3 behaves like M_2 , but without rewrites of the form $a \rightarrow (a, p_a)$
 - It scans tape from right to left and simulates the transducer *G* in its finite-state control and remembers the output of *G* just for the letters inside the window of M_1
 - The first step of M_1 on G(w) can be simulated,
 - but if M₁ perform a MVR-step, it must reconstruct the contents of the window

- the {MVR, MVL, W, CL, Restart}-automaton *M*₂ can be simulated by a det-mon-RLWC-automaton *M*₃.
 - M_3 behaves like M_2 , but without rewrites of the form $a \rightarrow (a, p_a)$
 - It scans tape from right to left and simulates the transducer *G* in its finite-state control and remembers the output of *G* just for the letters inside the window of M_1
 - The first step of M_1 on G(w) can be simulated,
 - but if M₁ perform a MVR-step, it must reconstruct the contents of the window
 - for that a mirrored version of a theorem [Aho, Hopcroft, Ullman,'69] can be used

- the {MVR, MVL, W, CL, Restart}-automaton M₂ can be simulated by a det-mon-RLWC-automaton M₃.
 - M_3 behaves like M_2 , but without rewrites of the form $a \rightarrow (a, p_a)$
 - It scans tape from right to left and simulates the transducer *G* in its finite-state control and remembers the output of *G* just for the letters inside the window of M_1
 - The first step of M_1 on G(w) can be simulated,
 - but if M₁ perform a MVR-step, it must reconstruct the contents of the window
 - for that a mirrored version of a theorem [Aho, Hopcroft, Ullman,'69] can be used
 - for each (one-way) deterministic finite-state automaton *A* there exists a two-way deterministic finite-state automaton *B* such that if *A* arrives at some position *i* of its input *x* in a state q_i , then *B* starting at the same position in state q_i , finishes at position i 1 in the state q_{i-1}

- the {MVR, MVL, W, CL, Restart}-automaton *M*₂ can be simulated by a det-mon-RLWC-automaton *M*₃.
 - M_3 behaves like M_2 , but without rewrites of the form $a \rightarrow (a, p_a)$
 - It scans tape from right to left and simulates the transducer *G* in its finite-state control and remembers the output of *G* just for the letters inside the window of M_1
 - The first step of M_1 on G(w) can be simulated,
 - but if M₁ perform a MVR-step, it must reconstruct the contents of the window
 - for that a mirrored version of a theorem [Aho, Hopcroft, Ullman,'69] can be used
 - for each (one-way) deterministic finite-state automaton *A* there exists a two-way deterministic finite-state automaton *B* such that if *A* arrives at some position *i* of its input *x* in a state q_i , then *B* starting at the same position in state q_i , finishes at position i 1 in the state q_{i-1}
 - The first cycle of M₁ on G(w) can be simulated; the resulting contents of the tape x is such that G(x) ∈ L₁ iff G(w) ∈ L₁ hence x ∈ L iff w ∈ L.

Corollary 5

Each det-mon-RLWC-automaton can be turned into det-mon-{MVR, MVL, CL}-automaton satisfying the Complete Strong Correctness Preserving Property for its input language.

Proof:

- Each deterministic RLWC-automaton satisfies the Complete Strong Correctness Preserving Property for its input language.
- An RLWC-automaton can use MVR-, CL- and Restart-steps only
- Simulate each Restart-step by MVL-steps!

Corollary 5

Each det-mon-RLWC-automaton can be turned into det-mon-{MVR, MVL, CL}-automaton satisfying the Complete Strong Correctness Preserving Property for its input language.

Proof:

- Each deterministic RLWC-automaton satisfies the Complete Strong Correctness Preserving Property for its input language.
- An RLWC-automaton can use MVR-, CL- and Restart-steps only
- Simulate each Restart-step by MVL-steps!

Proposition 1

For each det-mon-{MVR, MVL, SL}-automaton M_a , there exists a det-mon-RLWW-automaton M_b such that $L(M_a) = L(M_b)$.

Proof:

Corollary 5

Each det-mon-RLWC-automaton can be turned into det-mon-{MVR, MVL, CL}-automaton satisfying the Complete Strong Correctness Preserving Property for its input language.

Proof:

- Each deterministic RLWC-automaton satisfies the Complete Strong Correctness Preserving Property for its input language.
- An RLWC-automaton can use MVR-, CL- and Restart-steps only
- Simulate each Restart-step by MVL-steps!

Proposition 1

For each det-mon-{MVR, MVL, SL}-automaton M_a , there exists a det-mon-RLWW-automaton M_b such that $L(M_a) = L(M_b)$.

Proof:

- *M_b* must restart after simulating an SL-step of *M_a*
- Use the monotonicity! It encodes the state of M_a after an SL-step on its tape together with thr rightmost symbol of the rewritten part
- The next cycle of M_b starts by finding the rightmost tape field encoding also a state

Main Results

Characterisation of LRR by Automata With Complete Strong Correctness Preserving Property

cscpp- denotes the Complete Strong Correctness Preserving Property.

Corollary 6 $LRR = \mathcal{L}(det-mon-RLWW)$ $= \mathcal{L}(det-mon-\{MVR,MVL,SL\})$ $= \mathcal{L}(det-mon-cscpp-RLWC)$ $= \mathcal{L}(det-mon-cscpp-\{MVR,MVL,SL\})$ $= \mathcal{L}(det-mon-cscpp-\{MVR,MVL,CL\}).$

 an RLA is in *weak cyclic form* if before accepting it always shortens its tape contents so that it fits in its window

- an RLA is in weak cyclic form if before accepting it always shortens its tape contents so that it fits in its window
- an RLA is in strong cyclic form if before accepting or rejecting it always shortens its tape contents so that it fits in its window

- an RLA is in weak cyclic form if before accepting it always shortens its tape contents so that it fits in its window
- an RLA is in strong cyclic form if before accepting or rejecting it always shortens its tape contents so that it fits in its window

Theorem 7

For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automaton M_{scf} in strong cyclic form such that $L(M) = L(M_{\text{scf}})$ and, for all $u \Rightarrow_{M}^{c} v$, also $u \Rightarrow_{M_{\text{scf}}}^{c} v$.

 The set of words accepted by *M* in a tail computation is regular – it can be accepted by a finite state automaton *A*₊.

- The set of words accepted by *M* in a tail computation is regular it can be accepted by a finite state automaton *A*₊.
- The set of words rejected by *M* in a tail computation is regular it can accepted by a finite state automaton *A*_.

- The set of words accepted by *M* in a tail computation is regular it can be accepted by a finite state automaton A₊.
- The set of words rejected by *M* in a tail computation is regular it can accepted by a finite state automaton *A*_.
- There exists a constant *c* such that for each word *z* from $L(A_+) \cup L(A_-)$ of length at least *c*, there is a factorization z = uvw such that $|vw| \le c$, $|v| \ge 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$

- The set of words accepted by *M* in a tail computation is regular it can be accepted by a finite state automaton A₊.
- The set of words rejected by *M* in a tail computation is regular it can accepted by a finite state automaton *A*_.
- There exists a constant *c* such that for each word *z* from $L(A_+) \cup L(A_-)$ of length at least *c*, there is a factorization z = uvw such that $|vw| \le c$, $|v| \ge 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$

M_{scf} accepts or rejects all "short" words

- The set of words accepted by *M* in a tail computation is regular it can be accepted by a finite state automaton *A*₊.
- The set of words rejected by *M* in a tail computation is regular it can accepted by a finite state automaton *A*_.
- There exists a constant *c* such that for each word *z* from $L(A_+) \cup L(A_-)$ of length at least *c*, there is a factorization z = uvw such that $|vw| \le c$, $|v| \ge 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$
 - M_{scf} accepts or rejects all "short" words
 - On "long" words if tests whether A₊ or A₋ would accted it; if yes, it cuts out v from the tape suffix and restarts.

- The set of words accepted by *M* in a tail computation is regular it can be accepted by a finite state automaton *A*₊.
- The set of words rejected by *M* in a tail computation is regular it can accepted by a finite state automaton *A*_.
- There exists a constant *c* such that for each word *z* from $L(A_+) \cup L(A_-)$ of length at least *c*, there is a factorization z = uvw such that $|vw| \le c$, $|v| \ge 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$
 - M_{scf} accepts or rejects all "short" words
 - On "long" words if tests whether A₊ or A₋ would accted it; if yes, it cuts out v from the tape suffix and restarts.
- Monotonicity is preserved.

- The set of words accepted by *M* in a tail computation is regular it can be accepted by a finite state automaton *A*₊.
- The set of words rejected by *M* in a tail computation is regular it can accepted by a finite state automaton *A*_.
- There exists a constant *c* such that for each word *z* from $L(A_+) \cup L(A_-)$ of length at least *c*, there is a factorization z = uvw such that $|vw| \le c$, $|v| \ge 1$, if $z \in L(A_+)$, then $uw \in L(A_+)$ and if $z \in L(A_-)$, then $uw \in L(A_-)$
 - M_{scf} accepts or rejects all "short" words
 - On "long" words if tests whether A₊ or A₋ would accted it; if yes, it cuts out v from the tape suffix and restarts.
 - Otherwise, it simulates the next cycle of *M*.
- Monotonicity is preserved.

RLWW-automata

Corollary 8

For all $Y \in \{\lambda, scf, scf-cscpp\}$, the following holds:

- RLWC-, RLWD-, and RLW-automata can always be modified to satisfy the Complete Weak Correctness Preserving Property for input and basic languages.
- Deterministic RLWC-, RLWD-, and RLW-automata can always be modified to satisfy the Complete Strong Correctness Preserving Property for input and basic languages.
- General nondeterministic RLWW-automata can be modified to satisfy CSCPP only for basic languages.

RLA-automata

Corollary 9

```
For all X \in \{\{MVR, MVL, SL\}, \{MVR, MVL, DL\}, \{MVR, MVL, CL\}\} and all Y \in \{\lambda, scf, scf-cscpp\}, the following holds:
```

 $\mathcal{L}(det-mon-Y-X) = LRR.$

No Restart-steps

 the language class LRR is robust – characterized by automata both with and without Complete Strong Correctness Preserving Property

Why?

 det-mon-RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:

Why?

- det-mon-*RLWC*-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.

Why?

- det-mon-*RLWC*-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - det-mon-cscpp-scf-{*MVR*, *MVL*, *CL*}-automata have this ability, too.

Why?

- det-mon-*RLWC*-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - det-mon-cscpp-scf-{*MVR*, *MVL*, *CL*}-automata have this ability, too.
- det-mon-*RLWC*-automata in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.

Why?

- det-mon-RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - det-mon-cscpp-scf-{*MVR*, *MVL*, *CL*}-automata have this ability, too.
- det-mon-*RLWC*-automata in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.
 - Again, this also holds for det-mon-cscpp-scf-{MVR, MVL, CL}-automata.

Why?

- det-mon-RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - det-mon-cscpp-scf-{*MVR*, *MVL*, *CL*}-automata have this ability, too.
- det-mon-RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.
 - Again, this also holds for det-mon-cscpp-scf-{*MVR*, *MVL*, *CL*}-automata.
 - Localization of syntactical errors and for syntactic error recovery.

Why?

- det-mon-RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for LRR-languages:
 - immediate constituents correspond to reductions and the final irreducible sentence.
 - det-mon-cscpp-scf-{*MVR*, *MVL*, *CL*}-automata have this ability, too.
- det-mon-RLWC-automata in strong cyclic form ensure a deterministic analysis by reduction for the complement of any LRR-language.
 - Again, this also holds for det-mon-cscpp-scf-{*MVR*, *MVL*, *CL*}-automata.
 - Localization of syntactical errors and for syntactic error recovery.

Further research:

 To study det-mon-RLWC-automata in strong cyclic form having minimal look-ahead window and minimal reductions for a given LRR-language.

Thank you for your attention!