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A superclass of DCFL can be accepted by “well-behaved” restarting au-
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the class of left-to-right regular languages (LRR)

REG

DCFL LRR CFL

DCFL can be accepted
deterministically by LR(1)-analyzers
with lookahead of size 1
LRR can be accepted
deterministically by LR-analyzers with
unlimited lookahead; example

{anbnc,anb2nd | n ≥ 0}
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The main result

A superclass of DCFL can be accepted by “well-behaved” restarting au-
tomata

deterministic
no auxiliary symbols
length-reducing

local changes
monotone
correctness-preserving
even more restrictions are possible

deleting only – moreover, deleting at most two continuous factor in
one step
always reduce the input into a word of small size (limited by a
constant) before accepting or rejecting

expresses the structure for correct inputs
shows a core for an error in rejected inputs
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Automata Models

Two-Way Restarting List Automaton

M = (Q,Σ, Γ,�,�,q0, k , δ)

finite state control, set of states Q,

read/write window of a fixed size k ,
tape = list of symbols delimited by sentinels � and �,
input alphabet Σ,
working alphabet Γ, Σ ⊆ Γ,
operations: MVR, MVL, W (v), SL (v), Restart, Accept, Reject.
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Automata Models

Accepted Languages

a configuration of an RLA M: αqβ
q is the current state
αβ ∈ {�} · Γ∗ · {�} is the current contents of the tape
contents of the window = the first k symbols of β

a restarting configuration: q0�w�, where w ∈ Γ∗

an initial configuration: q0�w�, where w ∈ Σ∗

the input language of M:

L(M) = {w ∈ Σ∗ | q0 � w� `∗M Accept}.

the basic (characteristic) language of M:

L C(M) = {w ∈ Γ∗ | q0 � w� `∗M Accept}.

obviously L C(M) ∩ Σ∗ = L(M).
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Automata Models

Cycles, Reductions
Error and Correctness Preserving Properties

a cycle = a part of a computation between a restarting configuration
and the configuration after a restart step

a tail = a part of a computation after the last restarting configuration
and a halting step (Accept or Reject)
notation:

q0�u� `c
M q0�v� denotes a cycle of M

then we write u ⇒c
M v – the cycle rewriting relation of M

if u ⇒c
M v and |u| > |v |, then u ⇒c

M v is called a reduction

Fact 1

(Error Preserving Property for basic languages of RLAs).
Let M be an RLA. If u ⇒c∗

M v and u /∈ L C(M), then v /∈ L C(M).

Fact 2

(Correctness Preserving Property for basic languages of det-RLAs).
Let M be a deterministic RLA. If u ⇒c∗

M v and u ∈ L C(M), then
v ∈ L C(M).
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Automata Models

Refinements and Constraints on RLAs

Restricted SL-steps:
A delete-left step (DL-step) = an SL-step which can only delete
symbols
A contextual-left step (CL-step) = an DL-step which can delete at
most two factors

Notation for T ⊆ {MVR, MVL, W, SL, DL, CL, Restart}: T -RLA
denotes RLAs which can use operations from
T ∪ {Accept,Reject}
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Automata Models

Refinements and Constraints on RLAs
Monotonicity and Complete Monotonicity

Let C = Ck ,Ck+1, . . . ,Cj be a subcomputation and let Cw = �αqβ�
be a configuration from C. Then Dr (Cw ) = |β � | is the right distance
of Cw .

Monotonicity of rewritings: let C1, . . . ,Cn be a maximal subsequence
of C containing all configurations in which a rewriting occurs.
C is monotone if Dr (C1) ≥ Dr (C2) ≥ · · · ≥ Dr (Cn).
M is monotone if all its computations are monotone.
M is completely monotone if Dr (C`) ≥ Dr (C`+1) holds whenever
configuration C` `M C`+1.

Fact 3

Each {MVR,SL,W}-automaton is completely monotone.

A {MVR,SL,W}-automaton with a window of size k ≥ 2 can be
interpreted as a pushdown automaton with a k -lookahead and with a
limited look under the top of the pushdown.
A deterministic PDA can be simulated by a det-{MVR,SL,W}-
automaton with a window of size 1.
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Automata Models

RLWW-automata

An RLWW-automaton M is an RLA
1 No W-steps (rewritings only by SL-steps).
2 Exactly one SL-step in each cycle.
3 At most one SL-step in each tail computation.

For RLWW-automata, all cycle-rewritings are reductions.
Different variants of RLWW-automata

SL-steps DL-steps
only

CL-steps
only

auxiliary
symbols possible
(−WW)

MVL-steps (RL−) RLWW RLWWD RLWWC
no MVL-steps, rewrite fol-
lowed by restart (R−) RWW RWWD RWWC

no auxiliary
symbols (−W)

MVL-steps (RL−) RLW RLWD RLWC
no MVL-steps, rewrite fol-
lowed by restart (R−) RW RWD RWC

For each RLW-automaton M, L(M) = L C(M).
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Automata Models

Correctness Preserving Properties

(a) An RLA-automaton M satisfies the Complete Weak Correctness
Preserving Property (CWCPP) for its basic (input) language if, for
each accepting computation C0,C1, . . . ,Cn of M, uj ∈ LC(M)
(uj ∈ L(M)) for all j = 0,1, . . . ,n, where uj is the contents of the tape
in configuration Cj (0 ≤ j ≤ n).

(b) An RLA-automaton M satisfies the Complete Strong Correctness
Preserving Property (CSCPP) for its basic (input) language if, for each
computation C0,C1, . . . ,Cn of M, we have that uj ∈ L C(M)
(uj ∈ L(M)) for all j = 0,1, . . . ,n, if ui ∈ L C(M) (ui ∈ L(M)) for some i .
Here uj is the contents of the tape in configuration Cj (0 ≤ j ≤ n).

Complete ≡ each and every operation of the automaton M considered
preserves the property of the tape contents to belong to the language
L C(M) (L(M)).
No intermediate information is stored on the tape.
Complete Weak and Strong Correctness Preserving Properties do not
depend on the operation of restart.
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Automata Models

Example

L = {anbnc,anb2nd | n ≥ 0}
is accepted by a monotone RWW-automaton M; on input ambnx , where
m,n ≥ 2 and x ∈ {c,d}:

either
performs the cycle q0�ambnx� `c

M q0�am−1Cbn−1x�, where C is an
auxiliary symbol (guessing that x = c);
repeatedly performs CL-steps rewriting aCb into C
accepts on �Cc�

or
performs the cycle q0 � ambnx� `c

M q0�am−1Dbn−2x�, where D is an
auxiliary symbol (guessing that x = d);
repeatedly performs CL-steps rewriting aDbb into D
accepts on �Dd�

In an accepting computation of M, all but the initial configuration
contain an occurrence of an auxiliary symbol⇒ does not satisfy the
Complete Weak Correctness Preserving Property for its input
language.
The automaton is monotone.
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Automata Models

Example

L = {anbnc,anb2nd | n ≥ 0}
is accepted by a deterministic monotone RLW-automaton M ′; on input
ambnx , where m,n ≥ 2 and x ∈ {c,d}:

Scans the given input completely and accepts or rejects words of
length 1.

If the last letter is a c, it deletes ab and restarts;
if the last letter is a d , it deletes abb and restarts.

The automaton is monotone.
The (accepting) computations of M ′ are much more transparent
than those of the RWW-automaton M.
The det-RLW-automaton M ′ satisfies the Complete Strong
Correctness Preserving Property for its input language.
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Automata Models

Complete Correctness Preserving Properties for
RLWW-Automata

Each RLW-automaton can be turned into an RLW-automaton that
satisfies the Complete Weak Correctness Preserving Property for
its input language.

Take care of tails – do not rewrite in tails.

Each deterministic RLW-automaton can be turned into a
deterministic RLW-automaton that satisfies the Complete Strong
Correctness Preserving Property for its input language.

F. Mráz, F. Otto, M. Plátek (Prague) Characterizations of LRR-Languages NCMA 2018 13 / 24



Automata Models

Complete Correctness Preserving Properties for
RLWW-Automata

Each RLW-automaton can be turned into an RLW-automaton that
satisfies the Complete Weak Correctness Preserving Property for
its input language.

Take care of tails – do not rewrite in tails.

Each deterministic RLW-automaton can be turned into a
deterministic RLW-automaton that satisfies the Complete Strong
Correctness Preserving Property for its input language.

F. Mráz, F. Otto, M. Plátek (Prague) Characterizations of LRR-Languages NCMA 2018 13 / 24



Main Results

Characterization of LRR

Already known:
(a) [Jančar, Mráz, Plátek, Vogel, ’99]

DCFL = L(det-mon-RWC) ( L(det-mon-RLWC)

(b) [Otto,’09] LRR = L(det-mon-RLWW) = L(det-mon-RLWD)

New:

Theorem 4

For each det-mon-RLWW-automaton Ma, there exists a
det-mon-RLWC-automaton Mb such that L(Ma) = L(Mb).

Proof:
L = L(Ma) belongs to the class LRR
[Čulík II, Cohen, ’73] there exists a deterministic sequential
right-to-left transducer G such that L1 = G(L) is a deterministic
context-free language.
We construct a {MVR,MVL,W,CL,Restart}-automaton M2 such that
M2 accepts on input w iff G(w) ∈ L1 iff w ∈ L.
We simulate M2 by a det-mon-RLWC-automaton M3.
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The first cycle of M1 on G(w) can be simulated; the resulting contents
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Main Results

Corollary 5
Each det-mon-RLWC-automaton can be turned into
det-mon-{MVR,MVL,CL}-automaton satisfying the Complete Strong
Correctness Preserving Property for its input language.

Proof:
Each deterministic RLWC-automaton satisfies the Complete Strong
Correctness Preserving Property for its input language.
An RLWC-automaton can use MVR-, CL- and Restart-steps only
Simulate each Restart-step by MVL-steps!

Proposition 1

For each det-mon-{MVR,MVL,SL}-automaton Ma, there exists a
det-mon-RLWW-automaton Mb such that L(Ma) = L(Mb).

Proof:
Mb must restart after simulating an SL-step of Ma
Use the monotonicity! It encodes the state of Ma after an SL-step on
its tape – together with thr rightmost symbol of the rewritten part
The next cycle of Mb starts by finding the rightmost tape field
encoding also a state
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Main Results

Characterisation of LRR by Automata With Complete
Strong Correctness Preserving Property

cscpp- denotes the Complete Strong Correctness Preserving Property.

Corollary 6

LRR = L(det-mon-RLWW)
= L(det-mon-{MVR,MVL,SL })
= L(det-mon-cscpp-RLWC)
= L(det-mon-cscpp-{MVR,MVL,SL })
= L(det-mon-cscpp-{MVR,MVL,CL }).
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Strong Cyclic Form

Strong Cyclic Form

an RLA is in weak cyclic form if before accepting it always shortens its
tape contents so that it fits in its window

an RLA is in strong cyclic form if before accepting or rejecting it
always shortens its tape contents so that it fits in its window

Theorem 7

For each det-mon-RLWC-automaton M, there is a
det-mon-RLWC-automaton Mscf in strong cyclic form such that
L(M) = L(Mscf) and, for all u ⇒c

M v, also u ⇒c
Mscf

v.
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Strong Cyclic Form

Strong Cyclic Form

For each det-mon-RLWC-automaton M, there is a det-mon-RLWC-automa-
ton Mscf in strong cyclic form such that L(M) = L(Mscf) and, for all u ⇒c

M v ,
also u ⇒c

Mscf
v .

The set of words accepted by M in a tail computation is regular – it
can be accepted by a finite state automaton A+.

The set of words rejected by M in a tail computation is regular – it can
accepted by a finite state automaton A−.
There exists a constant c such that for each word z from
L(A+) ∪ L(A−) of length at least c, there is a factorization z = uvw
such that |vw | ≤ c, |v | ≥ 1, if z ∈ L(A+), then uw ∈ L(A+) and if
z ∈ L(A−), then uw ∈ L(A−)

1 Mscf accepts or rejects all “short” words
2 On “long” words if tests whether A+ or A− would accted it; if yes, it cuts

out v from the tape suffix and restarts.
3 Otherwise, it simulates the next cycle of M.

Monotonicity is preserved.
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Conclusions

RLWW-automata

Corollary 8

For all Y ∈ {λ, scf, scf-cscpp}, the following holds:

L(det-mon-RLWW) = L(det-mon-Y-RLW) =
L(det-mon-Y-RLWD) = L(det-mon-Y-RLWC) = LRR.

RLWC-, RLWD-, and RLW-automata can always be modified to
satisfy the Complete Weak Correctness Preserving Property for
input and basic languages.
Deterministic RLWC-, RLWD-, and RLW-automata can always be
modified to satisfy the Complete Strong Correctness Preserving
Property for input and basic languages.
General – nondeterministic – RLWW-automata can be modified to
satisfy CSCPP only for basic languages.

F. Mráz, F. Otto, M. Plátek (Prague) Characterizations of LRR-Languages NCMA 2018 21 / 24



Conclusions

RLA-automata

Corollary 9

For all X ∈ {{MVR,MVL,SL}, {MVR,MVL,DL}, {MVR,MVL,CL}} and
all Y ∈ {λ, scf, scf-cscpp}, the following holds:

L(det-mon-Y-X) = LRR.

No Restart-steps
the language class LRR is robust – characterized by automata
both with and without Complete Strong Correctness Preserving
Property
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Conclusions

Conclusions

Why?
det-mon-RLWC-automata in strong cyclic form ensure a deterministic
analysis by reduction for LRR-languages:

immediate constituents correspond to reductions and the final
irreducible sentence.
det-mon-cscpp-scf-{MVR,MVL,CL}-automata have this ability, too.

det-mon-RLWC-automata in strong cyclic form ensure a deterministic
analysis by reduction for the complement of any LRR-language.

Again, this also holds for
det-mon-cscpp-scf-{MVR,MVL,CL}-automata.
Localization of syntactical errors and for syntactic error recovery.

Further research:

To study det-mon-RLWC-automata in strong cyclic form having
minimal look-ahead window and minimal reductions for a given
LRR-language.
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Thank you for your attention!
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