
On nondeterministic two-way transducers

Bruno Guillon

Dipartimento di Informatica, Università degli Studi di Milano

ncma
August 21, 2018

mainly, joint work with Christian Choffrut

0 / 29



Outline

1. Introduction
Word transductions
Automata and transducers

2. Algebraic descriptions of transduction classes
Rational operations
Hadamard operations
Mirror operation

3. Unary cases
Commutative outputs
Both alphabets unary
Only one alphabet unary

1 / 29



Relations in computer science

Relation ≡ set of tuples

Omnipresent in computer science
I Graph structures
I Data bases
I Semantics of programs
I Rewriting systems
I . . .

Transduction ≡ a binary relation
in which an input and an output are implicitly understood

2 / 29



Relations in computer science

Relation ≡ set of tuples

Omnipresent in computer science
I Graph structures
I Data bases
I Semantics of programs
I Rewriting systems
I . . .

Transduction ≡ a binary relation
in which an input and an output are implicitly understood

2 / 29



Word transductions

This talk:
I binary relations on words R ⊆ Σ∗ ×∆∗

I computed by some kind of transducers

constant-memory nondeterministic devices

Equivalent formalisms:

I A function from words into languages: fR : Σ∗ → 2∆∗

u 7→ {v | (u, v) ∈ R}

I A formal power series: σ = ∑
u∈Σ∗

〈σ, u〉u with 〈σ, u〉 = fR(u)

I computed by some kind of weighted automata over Rat(∆∗)
[Lombardy’s talk at NCMA’15 in Porto]

3 / 29



Word transductions

This talk:
I binary relations on words R ⊆ Σ∗ ×∆∗

I computed by some kind of transducers

constant-memory nondeterministic devices

Equivalent formalisms:
I A function from words into languages: fR : Σ∗ → 2∆∗

u 7→ {v | (u, v) ∈ R}

I A formal power series: σ = ∑
u∈Σ∗

〈σ, u〉u with 〈σ, u〉 = fR(u)

I computed by some kind of weighted automata over Rat(∆∗)
[Lombardy’s talk at NCMA’15 in Porto]

3 / 29



Word transductions

This talk:
I binary relations on words R ⊆ Σ∗ ×∆∗

I computed by some kind of transducers

constant-memory nondeterministic devices

Equivalent formalisms:
I A function from words into languages: fR : Σ∗ → 2∆∗

u 7→ {v | (u, v) ∈ R}

I A formal power series: σ = ∑
u∈Σ∗

〈σ, u〉u with 〈σ, u〉 = fR(u)

I computed by some kind of weighted automata over Rat(∆∗)
[Lombardy’s talk at NCMA’15 in Porto]

3 / 29



Word transductions

This talk:
I binary relations on words R ⊆ Σ∗ ×∆∗

I computed by some kind of transducers

constant-memory nondeterministic devices

Equivalent formalisms:
I A function from words into languages: fR : Σ∗ → 2∆∗

u 7→ {v | (u, v) ∈ R}

I A formal power series: σ = ∑
u∈Σ∗

〈σ, u〉u with 〈σ, u〉 = fR(u)

I computed by some kind of weighted automata over Rat(∆∗)
[Lombardy’s talk at NCMA’15 in Porto]

3 / 29



Word transductions

This talk:
I binary relations on words R ⊆ Σ∗ ×∆∗

I computed by some kind of transducers
constant-memory nondeterministic devices

Equivalent formalisms:
I A function from words into languages: fR : Σ∗ → 2∆∗

u 7→ {v | (u, v) ∈ R}

I A formal power series: σ = ∑
u∈Σ∗

〈σ, u〉u with 〈σ, u〉 = fR(u)

I computed by some kind of weighted automata over Rat(∆∗)
[Lombardy’s talk at NCMA’15 in Porto]

3 / 29



Word transductions

This talk:
I binary relations on words R ⊆ Σ∗ ×∆∗

I computed by some kind of transducers
constant-memory nondeterministic devices

Equivalent formalisms:
I A function from words into languages: fR : Σ∗ → 2∆∗

u 7→ {v | (u, v) ∈ R}

I A formal power series: σ = ∑
u∈Σ∗

〈σ, u〉u with 〈σ, u〉 = fR(u)

I computed by some kind of weighted automata over Rat(∆∗)
[Lombardy’s talk at NCMA’15 in Porto]

3 / 29



Which issues arise
from nondeterminism?

How can we handle them

, in some special cases?

4 / 29



Which issues arise
from nondeterminism?

How can we handle them

, in some special cases?

4 / 29



Which issues arise
from nondeterminism?

How can we handle them, in some special cases?

4 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗

Example:

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗

Example:

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗
Example:

u a((br + c + d)a)∗
yes

no
u

• replace a by b
• replace b by aa
• ignore other letters

v ∈ ∆∗

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only

5 / 29



Examples

with Σ = ∆ fixed

I Identity : u 7→ u
I Erase : u 7→ ε

I L-Rotate : σu 7→ uσ, for each σ ∈ Σ = ∆
I R-Rotate : uσ 7→ σu, for each σ ∈ Σ = ∆
I Subword : {(u, v) | v is a not-necessarily connected subword of u}

6 / 29



Nondeterminism versus determinism

I functions ⊂ relations
e.g., no deterministic transducer realize subword

I sequential functions ⊂ rational functions
e.g., no deterministic transducer realize right-rotate

I [Griffith’68] equivalence, inclusion, intersection emptiness. . .
are undecidable problems for nondeterministic transducers

7 / 29



Nondeterminism versus determinism

I functions ⊂ relations
e.g., no deterministic transducer realize subword

I sequential functions ⊂ rational functions
e.g., no deterministic transducer realize right-rotate

I [Griffith’68] equivalence, inclusion, intersection emptiness. . .
are undecidable problems for nondeterministic transducers

7 / 29



Nondeterminism versus determinism

I functions ⊂ relations
e.g., no deterministic transducer realize subword

I sequential functions ⊂ rational functions
e.g., no deterministic transducer realize right-rotate

I [Griffith’68] equivalence, inclusion, intersection emptiness. . .
are undecidable problems for nondeterministic transducers

7 / 29



Two-wayness

A transducer is defined by:
I an automaton with transition set δ
I a production function from δ to ∆∗

Two-way transducers:

q r
|a

Σ

←,

{←, ↓,→}

w

∆∗

8 / 29



Two-wayness

A transducer is defined by:
I an automaton with transition set δ
I a production function from δ to ∆∗

Two-way transducers:

q r
|a

Σ

←,

{←, ↓,→}

w

∆∗

i n p u t

o u t

read-only

write-only

← →

→

. /

endmarkers

8 / 29



Two-wayness

A transducer is defined by:
I an automaton with transition set δ
I a production function from δ to ∆∗

Two-way transducers:

q r
|a

Σ

←,

{←, ↓,→}

w

∆∗

i n p u t

o u t

read-only

write-only

← →

→

. /

endmarkers

8 / 29



Examples

Two-wayness extends expressiveness of transducers. . .
I Square : u 7→ uu
I Mirror : u 7→ u (u denotes the reverse of u)
I Sort : u 7→ a|u|ab|u|b · · · z |u|z
I Powers :

{
(u, uk) | k ∈ N

}

9 / 29



“Regular” transductions

The class of functions realized by two-way transducers is robust

I closure under composition [Chytil&Jákl’77, Dartois et al.’17]

I decidable equivalence [Gurari’80]
I alternative characterizations:

I reversible = deterministic = functional [Dartois et al.’17,
Engelfriet&Hoogeboom’01]

I mso word transductions [Engelfriet&Hoogeboom’01]
I copyless register automata [Alur&Černy’10]
I “regular combinators” [Alur et al.’14,

Baudru&Reynier’18, Dave et al.’18]

10 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular

11 / 29



What are the transductions
realized by 2nft?

2. Algebraic descriptions of transduction classes

12 / 29



What are the transductions
realized by 2nft?

2. Algebraic descriptions of transduction classes

12 / 29



Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

one-way
. /

Rat

13 / 29



Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2sisi

one-way
. /

Rat

13 / 29



Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2sisi

I simulate T1 or T2

one-way
. /

Rat

13 / 29



Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2sisi

I simulate T1 on some prefix
I simulate T2 on corresp. suffix e.g., Prefix=Identity ·Erase

one-way
. /

Rat

13 / 29



Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2sisi

I repeat
simulate T1 or accept e.g., Subword = (Identity ∪Erase)∗

one-way
. /

Rat

13 / 29



Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

Definition (Rat) The class of rational relations is the smallest class
I including finite relations
I closed under rational operations

Theorem: [Elgot & Mezei’65]

1nft = rational

one-way
. /

Rat

13 / 29



Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

Definition (Rat) The class of rational relations is the smallest class
I including finite relations
I closed under rational operations

Theorem: [Elgot & Mezei’65]

1nft = rational

one-way
. /

Rat

13 / 29



Which operations capture behaviors of 2nfts?

one-way two-way

?

. /

. /

Rat

machine

algebra

14 / 29



Which operations capture behaviors of 2nfts?

one-way two-way

?

. / . /

Rat

machine

algebra

14 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word

I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape

I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word

rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Abilities of two-way transducers

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

I copy the input word
I rewind the input tape
I append a copy of the input word

copy the input word rewind the input tape

accept and halt with nondeterminism

Square, Powers /∈ Rat

15 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2si r
.

←/

/ r f

→

.

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2si r
.

←/

/ r f

→

.

I simulate T1 or T2

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2si r
.

←/

/ r f

→

.

I simulate T1
I rewind the input tape
I simulate T2

e.g., Square = Identity� Identity

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

T1s1

f1f1

f ′1f
′
1

s1 T2s2

f2

f ′2

f ′′2

s2si r
.

←/

/ r f

→

.

I repeat
I simulate T1
I rewind the input tape

I or accept nondeterministically

e.g., Powers = Identity?

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

Definition (Had) The class of Hadamard relations is the smallest class
I including rational relations
I closed under Hadamard operations

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

Definition (Had) The class of Hadamard relations is the smallest class
I including rational relations
I closed under Hadamard operations

one-way two-way

?

. / . / . /

Rat

rotating

Had 2nft⊂ ⊂

machine

algebra

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

Definition (Had) The class of Hadamard relations is the smallest class
I including rational relations
I closed under Hadamard operations

one-way two-way

?

. / . / . /

Rat

rotating

Had 2nft⊂ ⊂

machine

algebra

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

Definition (Had) The class of Hadamard relations is the smallest class
I including rational relations
I closed under Hadamard operations

one-way two-way

?

. / . / . /

Rat

rotating

Had 2nft⊂ ⊂

machine

algebra

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

Definition (Had) The class of Hadamard relations is the smallest class
I including rational relations
I closed under Hadamard operations

one-way two-way

?

. / . / . /

Rat

rotating

Had 2nft⊂ ⊂

machine

algebra

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

Definition (Had) The class of Hadamard relations is the smallest class
I including rational relations
I closed under Hadamard operations

rotating
. /

16 / 29



Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

Definition (Had) The class of Hadamard relations is the smallest class
I including rational relations
I closed under Hadamard operations

one-way two-way

?

. / . / . /

Rat

rotating

Had 2nft⊂ ⊂

machine

algebra

16 / 29



Mirror

. s a t o r /

r o t a s

Mirror /∈ Had

17 / 29



Mirror

. s a t o r /

r o t a s

Mirror /∈ Had

17 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

TT ′
. 7→ /

/ 7→ .

− +s
f

f ′

→
/

.

.

→
s

f

f ′

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

TT ′
. 7→ /

/ 7→ .

− +s
f

f ′

→
/

.

.

→
s

f

f ′

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

TT ′
. 7→ /

/ 7→ .

− +s
f

f ′

→
/

.

.

→
s

f

f ′

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

one-way rotating two-way

?

. / . / . / . /

Rat Had

sweeping

MHad 2nft⊂ ⊂ ⊂

machine

algebra

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

one-way rotating two-way

?

. / . / . / . /

Rat Had

sweeping

MHad 2nft⊂ ⊂ ⊂

machine

algebra

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

one-way rotating two-way

?

. / . / . / . /

Rat Had

sweeping

MHad 2nft⊂ ⊂ ⊂

machine

algebra

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

one-way rotating two-way

?

. / . / . / . /

Rat Had

sweeping

MHad 2nft⊂ ⊂ ⊂

machine

algebra

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

sweeping
. /

18 / 29



Mirror operations

I set union R1 ∪ R2

I Hadamard product R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}

I mirror R = {(u, v) | (u, v) ∈ R}

Definition (MHad) class of mirror-Hadamard relations: smallest class
I including rational relations
I closed under Hadamard operations and mirror

one-way rotating two-way

?

. / . / . / . /

Rat Had

sweeping

MHad 2nft⊂ ⊂ ⊂

machine

algebra

18 / 29



transducer one-way rotating sweeping two-way

general ?

q r
a,→| b

. / . / . / . /

Rat Had MHad

Study of particular cases

3. Unary cases

#Σ = 1 and/or #∆ = 1

19 / 29



transducer one-way rotating sweeping two-way

general ?

q r
a,→| b

. / . / . / . /

Rat Had MHad

Study of particular cases

3. Unary cases

#Σ = 1 and/or #∆ = 1

19 / 29



transducer one-way rotating sweeping two-way

general ?

q r
a,→| b

. / . / . / . /

Rat Had MHad

Study of particular cases

3. Unary cases

#Σ = 1 and/or #∆ = 1

19 / 29



transducer one-way rotating sweeping two-way

general ?

q r
a,→| b

. / . / . / . /

Rat Had MHad

Study of particular cases

3. Unary cases

#Σ = 1 and/or #∆ = 1

19 / 29



Contribution of mirror

Proposition: If #Σ = 1 or #∆ = 1 then Had = MHad

Theorem: from [Anselmo’90]

When #∆ = 1, loop-free 2nft realize rational transductions

I deterministic/unambiguous
I functional

20 / 29



Contribution of mirror

Proposition: If #Σ = 1 or #∆ = 1 then Had = MHad

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Theorem: from [Anselmo’90]

When #∆ = 1, loop-free 2nft realize rational transductions

I deterministic/unambiguous
I functional

20 / 29



Contribution of mirror

Proposition: If #Σ = 1 or #∆ = 1 then Had = MHad

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Theorem: from [Anselmo’90]

When #∆ = 1, loop-free 2nft realize rational transductions
I deterministic/unambiguous
I functional

20 / 29



Contribution of mirror

Proposition: If #Σ = 1 or #∆ = 1 then Had = MHad

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Theorem: from [Anselmo’90]

When #∆ = 1, loop-free 2nft realize rational transductions
I deterministic/unambiguous
I functional

20 / 29



Contribution of mirror

Proposition: If #Σ = 1 or #∆ = 1 then Had = MHad

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

f output unary

q r
a,→| b

. / . / . / . /

Rat Had

MHad

Theorem: from [Anselmo’90]

When #∆ = 1, loop-free 2nft realize rational transductions
I deterministic/unambiguous
I functional

20 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation

2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation

2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



From 2-way to 1-way automata

. /

tim
e

input length

1. every accepted word admits a loop-free accepting computation
2. the successor relation of crossing sequences is locally testable

21 / 29



Both unary case Σ = ∆ = {a}

Examples:
I uIdentity = {(an, an) | n ∈ N} ∈ Rat
I uSquare =

{
(an, a2n) | n ∈ N

}
= uIdentity� uIdentity ∈ Rat

I uPowers =
{

(an, akn) | k, n ∈ N
}

= uIdentity? /∈ Rat

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft =Had

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

22 / 29



Both unary case Σ = ∆ = {a}

Examples:
I uIdentity = {(an, an) | n ∈ N} ∈ Rat
I uSquare =

{
(an, a2n) | n ∈ N

}
= uIdentity� uIdentity ∈ Rat

I uPowers =
{

(an, akn) | k, n ∈ N
}

= uIdentity? /∈ Rat

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft =Had

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

22 / 29



Both unary case Σ = ∆ = {a}

Examples:
I uIdentity = {(an, an) | n ∈ N} ∈ Rat
I uSquare =

{
(an, a2n) | n ∈ N

}
= uIdentity� uIdentity ∈ Rat

I uPowers =
{

(an, akn) | k, n ∈ N
}

= uIdentity? /∈ Rat

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft =Had

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

22 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R

I decompose computations in hits
hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)

e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R

I decompose computations in hits
hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)

e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)

e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)

e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)
e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)
e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)
e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒

each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)
e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒

each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations
=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)
e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations
=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)
e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations
=⇒ ∈ Had

23 / 29



Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R
I decompose computations in hits

hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)
e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations
=⇒ ∈ Had

23 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq

=⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq

=⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq

=⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq

=⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat

=⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?

24 / 29



Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq =⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N? 24 / 29



Relax assumptions?

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Theorem: [G.’16] When #Σ > 1, Had ⊂ 2nft
When #∆ > 1, Had ⊂ 2nft

25 / 29



Relax assumptions?

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Theorem: [G.’16] When #Σ > 1, Had ⊂ 2nft
When #∆ > 1, Had ⊂ 2nft

25 / 29



Input-unary witness

RLPrefix = {(an, ambm) | n,m ∈ N, m ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

RLPrefix /∈ Had

Remark: Had is not closed under componentwise concatenation

26 / 29



Input-unary witness

RLPrefix = {(an, ambm) | n,m ∈ N, m ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

RLPrefix /∈ Had

Remark: Had is not closed under componentwise concatenation

26 / 29



Input-unary witness

RLPrefix = {(an, ambm) | n,m ∈ N, m ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

RLPrefix /∈ Had

Remark: Had is not closed under componentwise concatenation

26 / 29



Input-unary witness

RLPrefix = {(an, ambm) | n,m ∈ N, m ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

RLPrefix /∈ Had

Remark: Had is not closed under componentwise concatenation

26 / 29



Input-unary witness

RLPrefix = {(an, ambm) | n,m ∈ N, m ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

RLPrefix /∈ Had

Remark: Had is not closed under componentwise concatenation

26 / 29



Input-unary witness

RLPrefix = {(an, ambm) | n,m ∈ N, m ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

RLPrefix /∈ Had

Remark: Had is not closed under componentwise concatenation

26 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation

27 / 29



Two-way versus componentwise concatenation

Proposition: 2nft is not closed under
componentwise concatenation and Kleene star

Proposition: 2nft is closed under
unambiguous componentwise concatenation

and unambiguous Kleene star
Remark: these operations are used in the characterization of

regular functions through regular combinators
[Alur et al.’14, Baudru&Reynier’18, Dave et al.’18]

but they are still not sufficient for the non-functional case

28 / 29



Two-way versus componentwise concatenation

Proposition: 2nft is not closed under
componentwise concatenation and Kleene star

Proposition: 2nft is closed under
unambiguous componentwise concatenation

and unambiguous Kleene star

Remark: these operations are used in the characterization of
regular functions through regular combinators

[Alur et al.’14, Baudru&Reynier’18, Dave et al.’18]

but they are still not sufficient for the non-functional case

28 / 29



Two-way versus componentwise concatenation

Proposition: 2nft is not closed under
componentwise concatenation and Kleene star

Proposition: 2nft is closed under
unambiguous componentwise concatenation

and unambiguous Kleene star
Remark: these operations are used in the characterization of

regular functions through regular combinators
[Alur et al.’14, Baudru&Reynier’18, Dave et al.’18]

but they are still not sufficient for the non-functional case

28 / 29



Two-way versus componentwise concatenation

Proposition: 2nft is not closed under
componentwise concatenation and Kleene star

Proposition: 2nft is closed under
unambiguous componentwise concatenation

and unambiguous Kleene star
Remark: these operations are used in the characterization of

regular functions through regular combinators
[Alur et al.’14, Baudru&Reynier’18, Dave et al.’18]

but they are still not sufficient for the non-functional case

28 / 29



Conclusion

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Abilities arising from nondeterminism:

I loop
I output an unbounded word in one step e.g., Erase−1

I loop over some portion of the input word e.g., Powers
I nondeterministically select some positions e.g., RLPrefix

Thank you

29 / 29



Conclusion

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Abilities arising from nondeterminism:
I loop

I output an unbounded word in one step e.g., Erase−1

I loop over some portion of the input word e.g., Powers

I nondeterministically select some positions e.g., RLPrefix

Thank you

29 / 29



Conclusion

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Abilities arising from nondeterminism:
I loop

I output an unbounded word in one step e.g., Erase−1

I loop over some portion of the input word e.g., Powers
I nondeterministically select some positions e.g., RLPrefix

Thank you

29 / 29



Conclusion

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Abilities arising from nondeterminism:
I loop

I output an unbounded word in one step e.g., Erase−1

I loop over some portion of the input word e.g., Powers
I nondeterministically select some positions e.g., RLPrefix

Thank you

29 / 29



Conclusion

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Abilities arising from nondeterminism:
I loop

I output an unbounded word in one step e.g., Erase−1

I loop over some portion of the input word e.g., Powers
I nondeterministically select some positions e.g., RLPrefix

Thank you
29 / 29


	Introduction
	Algebraic descriptions of transduction classes
	Unary cases

