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Relations in computer science

Relation ≡ set of tuples

Omnipresent in computer science
I Graph structures
I Data bases
I Semantics of programs
I Rewriting systems
I . . .

Transduction ≡ a binary relation
in which an input and an output are implicitly understood
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Word transductions

This talk:
I binary relations on words R ⊆ Σ∗ ×∆∗

I computed by some kind of transducers

constant-memory nondeterministic devices

Equivalent formalisms:

I A function from words into languages: fR : Σ∗ → 2∆∗

u 7→ {v | (u, v) ∈ R}

I A formal power series: σ = ∑
u∈Σ∗

〈σ, u〉u with 〈σ, u〉 = fR(u)

I computed by some kind of weighted automata over Rat(∆∗)
[Lombardy’s talk at NCMA’15 in Porto]
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Which issues arise
from nondeterminism?

How can we handle them

, in some special cases?
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Automata with outputs: 1-way transducers

q r
|a

Σ

w

∆∗

Example:

a b r a c a d a b r a

input tape

read-onlyread-onlyread-onlyread-only read-only

yesb a a b b b a a b

output tape

write-onlywrite-only write-only write-only
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Examples

with Σ = ∆ fixed

I Identity : u 7→ u
I Erase : u 7→ ε

I L-Rotate : σu 7→ uσ, for each σ ∈ Σ = ∆
I R-Rotate : uσ 7→ σu, for each σ ∈ Σ = ∆
I Subword : {(u, v) | v is a not-necessarily connected subword of u}
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Nondeterminism versus determinism

I functions ⊂ relations
e.g., no deterministic transducer realize subword

I sequential functions ⊂ rational functions
e.g., no deterministic transducer realize right-rotate

I [Griffith’68] equivalence, inclusion, intersection emptiness. . .
are undecidable problems for nondeterministic transducers
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Two-wayness

A transducer is defined by:
I an automaton with transition set δ
I a production function from δ to ∆∗

Two-way transducers:

q r
|a

Σ

←,

{←, ↓,→}

w

∆∗
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Examples

Two-wayness extends expressiveness of transducers. . .
I Square : u 7→ uu
I Mirror : u 7→ u (u denotes the reverse of u)
I Sort : u 7→ a|u|ab|u|b · · · z |u|z
I Powers :

{
(u, uk) | k ∈ N

}

9 / 29



“Regular” transductions

The class of functions realized by two-way transducers is robust

I closure under composition [Chytil&Jákl’77, Dartois et al.’17]

I decidable equivalence [Gurari’80]
I alternative characterizations:

I reversible = deterministic = functional [Dartois et al.’17,
Engelfriet&Hoogeboom’01]

I mso word transductions [Engelfriet&Hoogeboom’01]
I copyless register automata [Alur&Černy’10]
I “regular combinators” [Alur et al.’14,

Baudru&Reynier’18, Dave et al.’18]
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Expressiveness of transducers

1dft 1f nft 1nft

2nft2f nft2dft

deterministic functional unrestricted

on
e-

w
ay

tw
o-

w
ay

⊂ ⊂

⊂ ⊂ ⊂

= ⊂

functions relations

sequential

regular
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What are the transductions
realized by 2nft?

2. Algebraic descriptions of transduction classes
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Rational operations

I set union R1 ∪ R2
I componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
I Kleene star R∗ = {(u1 · · · uk , v1 · · · vk) | ∀i , (ui , vi ) ∈ R}

one-way
. /

Rat
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Which operations capture behaviors of 2nfts?

one-way two-way

?

. /

. /
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Abilities of two-way transducers
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Hadamard operations

I set union R1 ∪ R2
I Hadamard product

R1 � R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}
I Hadamard star R ? = {(u, v1 · · · vk) | ∀i , (u, vi ) ∈ R}
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transducer one-way rotating sweeping two-way

general ?

q r
a,→| b

. / . / . / . /

Rat Had MHad

Study of particular cases

3. Unary cases

#Σ = 1 and/or #∆ = 1
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Contribution of mirror
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Both unary case Σ = ∆ = {a}

Examples:
I uIdentity = {(an, an) | n ∈ N} ∈ Rat
I uSquare =

{
(an, a2n) | n ∈ N

}
= uIdentity� uIdentity ∈ Rat

I uPowers =
{

(an, akn) | k, n ∈ N
}

= uIdentity? /∈ Rat

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft =Had

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad
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Proof sketch

Theorem: [Choffrut, G.’14] When #Σ = 1 and #∆ = 1, 2nft = Had

Proof: fix a unary transducer T realizing R

I decompose computations in hits
hit ≡ computation path between 2 successive visits of endmarkers

I each family of hits define a relation R(q,s),(q′,s′)

e.g., (p, .)-to-(q, /), (p, /)-to-(q, /)

I simulate each hit family with a one-way transducer
=⇒ each R(q,s),(q′,s′) ∈ Rat

I commutative outputs
I deal with central loops

I R is a combination of R(q,s),(q′,s′)’s using Hadamard operations

=⇒ ∈ Had
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Unary central loops
a a a a a a a a a a a a aa a a a a a a a a

0 1 2 1
340

0 1 2 1
340

0 1 2 1 2 1
34340

0 1 2 1 2 1 2 1
3434340

0 1 2 1

2 1
3

4340

0 1 2 1
340

1 2 1
340

1 2 1
340

I each language Lq ⊆ a∗ of outputs of all central loops around state q
satisfies Lq

∗ = Lq

=⇒ Lq ∈ Rat =⇒ L is finitely generated

I ∃N∈N such that a window of size N is sufficient to generate each Lq

I Open problem: bound N?
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Relax assumptions?

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Theorem: [G.’16] When #Σ > 1, Had ⊂ 2nft
When #∆ > 1, Had ⊂ 2nft
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Input-unary witness

RLPrefix = {(an, ambm) | n,m ∈ N, m ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

RLPrefix /∈ Had

Remark: Had is not closed under componentwise concatenation
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Output-unary witness

Mult1Block =
{

(u, akn) | u∈{a, ]}∗, k, n∈N, and ]an] is a factor of u
}

▷ # a a # a a a a a a # a a # ◁

a a a a a a a a a a a a a a a a a a

Mult1Block /∈ Had

Remark: Had is not closed under componentwise concatenation
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Two-way versus componentwise concatenation

Proposition: 2nft is not closed under
componentwise concatenation and Kleene star

Proposition: 2nft is closed under
unambiguous componentwise concatenation

and unambiguous Kleene star
Remark: these operations are used in the characterization of

regular functions through regular combinators
[Alur et al.’14, Baudru&Reynier’18, Dave et al.’18]

but they are still not sufficient for the non-functional case
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Conclusion

transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unaryboth unary

q r
a,→| b

. / . / . / . /

Rat
Had

MHad

Abilities arising from nondeterminism:

I loop
I output an unbounded word in one step e.g., Erase−1

I loop over some portion of the input word e.g., Powers
I nondeterministically select some positions e.g., RLPrefix

Thank you
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