## On nondeterministic two-way transducers

#### Bruno Guillon

Dipartimento di Informatica, Università degli Studi di Milano

NCMA

August 21, 2018

mainly, joint work with Christian Choffrut

## Outline

- Introduction
  - Word transductions
  - Automata and transducers
- 2. Algebraic descriptions of transduction classes
  - Rational operations
  - Hadamard operations
  - Mirror operation
- 3. Unary cases
  - Commutative outputs
  - Both alphabets unary
  - Only one alphabet unary

## Relations in computer science

 $Relation \equiv set \ of \ tuples$ 

Omnipresent in computer science

- ► Graph structures
- ► Data bases
- ► Semantics of programs
- ► Rewriting systems
- ▶ ..

## Relations in computer science

 $Relation \equiv set \ of \ tuples$ 

Omnipresent in computer science

- Graph structures
- Data bases
- ► Semantics of programs
- ► Rewriting systems
- ▶ ...

 $Transduction \equiv a \ binary \ relation$  in which an input and an output are implicitly understood

#### This talk:

► binary relations on words

 $R \subseteq \Sigma^* \times \Delta^*$ 

► computed by some kind of transducers

#### This talk:

► binary relations on words

$$R \subseteq \Sigma^* \times \Delta^*$$

► computed by some kind of transducers

#### **Equivalent formalisms:**

► A function from words into languages:  $f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\Delta^*} \\ u & \mapsto & \{v \mid (u,v) \in R\} \end{array}$ 

#### This talk:

► binary relations on words

$$R \subseteq \Sigma^* \times \Delta^*$$

► computed by some kind of transducers

#### **Equivalent formalisms:**

- ► A function from words into languages:  $f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\Delta^*} \\ u & \mapsto & \{v \mid (u,v) \in R\} \end{array}$
- ▶ A formal power series:  $\sigma = \sum_{u \in \Sigma^*} \langle \sigma, u \rangle u$  with  $\langle \sigma, u \rangle = f_R(u)$

#### This talk:

binary relations on words

- $R \subseteq \Sigma^* \times \Delta^*$
- computed by some kind of transducers

#### **Equivalent formalisms:**

- $f_R: \begin{array}{ccc} \Sigma^* & \rightarrow & 2^{\Delta^*} \\ u & \mapsto & \{v \mid (u,v) \in R\} \end{array}$ ► A function from words into languages:
- $\sigma = \sum_{u \in \Sigma^*} \langle \sigma, u \rangle u$  with  $\langle \sigma, u \rangle = f_R(u)$ ► A formal power series:
- $\triangleright$  computed by some kind of weighted automata over RAT( $\Delta^*$ )

[Lombardy's talk at NCMA'15 in Porto]

#### This talk:

► binary relations on words

- $R \subseteq \Sigma^* \times \Delta^*$
- computed by some kind of transducers
   constant-memory nondeterministic devices

#### **Equivalent formalisms:**

- ► A function from words into languages:  $f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\triangle} \\ u & \mapsto & \{v \mid (u,v) \in R\} \end{array}$
- ► A formal power series:  $\sigma = \sum_{\sigma \in \mathcal{F}_{\bullet}} \langle \sigma, u \rangle u$  with  $\langle \sigma, u \rangle = f_R(u)$
- ightharpoonup computed by some kind of weighted automata over  $RAT(\Delta^*)$  [Lombardy's talk at NCMA'15 in Porto]

#### This talk:

► binary relations on words

- $R \subseteq \Sigma^* \times \Delta^*$
- computed by some kind of transducers

constant-memory nondeterministic devices

#### **Equivalent formalisms:**

- ► A function from words into languages:  $f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\square} \\ u & \mapsto & \{v \mid (u,v) \in R\} \end{array}$
- ▶ A formal power series:  $\sigma = \sum_{\alpha \in \Gamma_{+}} \langle \sigma, u \rangle u$  with  $\langle \sigma, u \rangle = f_{R}(u)$
- lacktriangleright computed by some kind of weighted automata over  $RAT(\Delta^*)$  [Lombardy's talk at NCMA'15 in Porto]

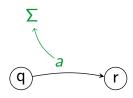
# Which issues arise from nondeterminism?

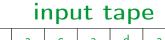
# Which issues arise from nondeterminism?

How can we handle them

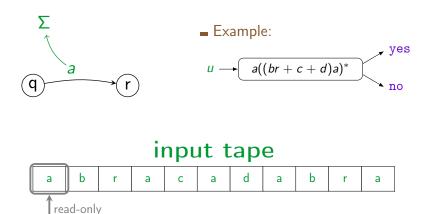
# Which issues arise from nondeterminism?

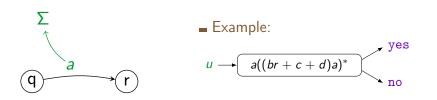
How can we handle them, in some special cases?

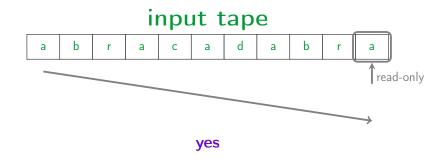


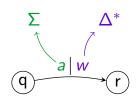


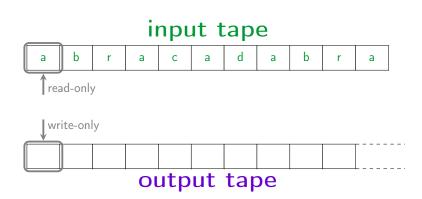


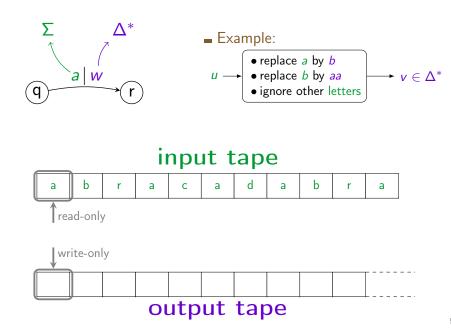


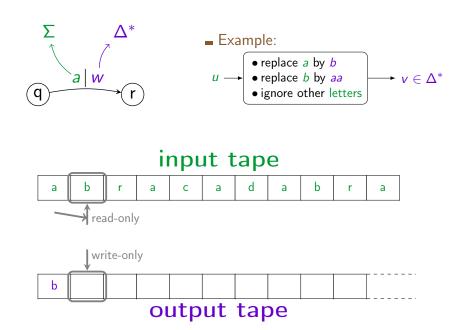


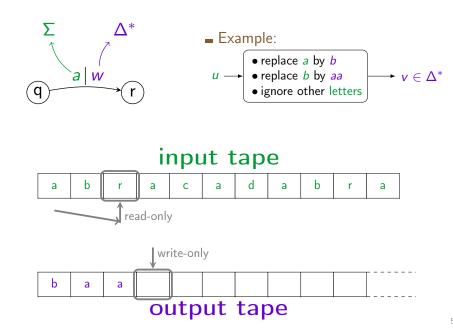


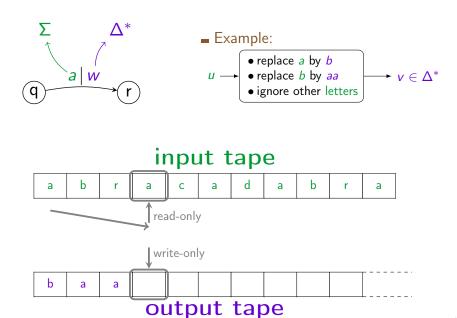


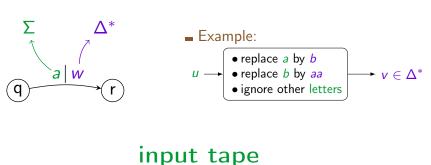


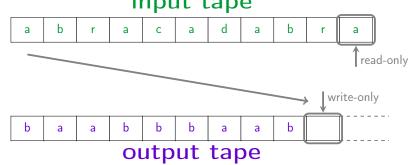


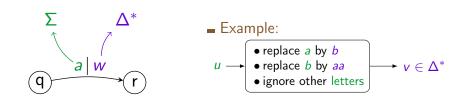


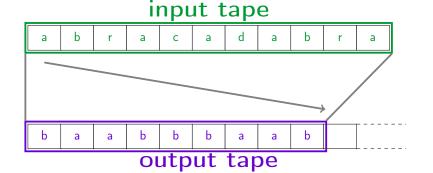












## **Examples**

with 
$$\Sigma = \Delta$$
 fixed

- ▶ IDENTITY :  $u \mapsto u$
- ▶ Erase :  $u \mapsto \varepsilon$
- ▶ L-ROTATE :  $\sigma u \mapsto u \sigma$ , for each  $\sigma \in \Sigma = \Delta$
- ▶ R-ROTATE :  $u\sigma \mapsto \sigma u$ , for each  $\sigma \in \Sigma = \Delta$
- ► Subword :  $\{(u, v) \mid v \text{ is a not-necessarily connected subword of } u\}$

#### Nondeterminism versus determinism

▶ functions ⊂ relations e.g., no deterministic transducer realize subword

#### Nondeterminism versus determinism

- ▶ functions ⊂ relations e.g., no deterministic transducer realize subword
- ightharpoonup sequential functions c.g., no deterministic transducer realize right-rotate

#### Nondeterminism versus determinism

- ▶ functions ⊂ relations e.g., no deterministic transducer realize subword
- ▶ sequential functions ⊂ rational functions e.g., no deterministic transducer realize right-rotate
- ► [Griffith'68] equivalence, inclusion, intersection emptiness... are undecidable problems for nondeterministic transducers

## Two-wayness

#### A transducer is defined by:

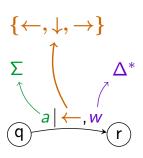
- lacktriangle an automaton with transition set  $\delta$
- ▶ a production function from  $\delta$  to  $\Delta^*$

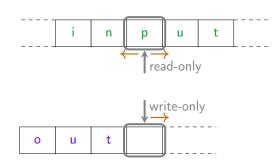
## Two-wayness

#### A transducer is defined by:

- $\blacktriangleright$  an automaton with transition set  $\delta$
- ▶ a production function from  $\delta$  to  $\Delta^*$

#### Two-way transducers:

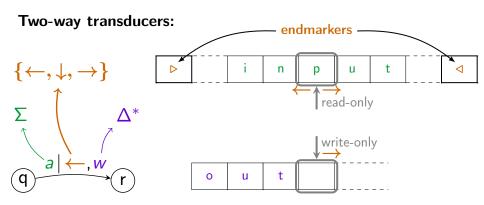




## Two-wayness

#### A transducer is defined by:

- $\blacktriangleright$  an automaton with transition set  $\delta$
- ▶ a production function from  $\delta$  to  $\Delta^*$



### **Examples**

#### Two-wayness extends expressiveness of transducers...

- ► Square :  $u \mapsto uu$
- ► MIRROR :  $u \mapsto \overline{u}$  ( $\overline{u}$  denotes the reverse of u)
- ► SORT:  $u \mapsto a^{|u|_a} b^{|u|_b} \cdots z^{|u|_z}$
- ▶ Powers :  $\{(u, u^k) \mid k \in \mathbb{N}\}$

## "Regular" transductions

#### The class of **functions** realized by two-way transducers is **robust**

```
closure under composition
                                  [Chytil&Jákl'77, Dartois et al.'17]
▶ decidable equivalence
                                                       [Gurari'80]
alternative characterizations:
    ► reversible = deterministic = functional
                                                 [Dartois et al.'17.
                                        Engelfriet&Hoogeboom'01]
    ▶ MSO word transductions
                                       [Engelfriet&Hoogeboom'01]
                                                  [Alur&Černy'10]
    copyless register automata
    "regular combinators"
                                                    [Alur et al.'14,
                                Baudru&Reynier'18, Dave et al.'18]
```

deterministic functional unrestricted two-way 2DFT 2fNFT 2NFT

1fNFT

1<sub>DFT</sub>

Expressiveness of transducers

11/29

| Expressiveness of transducers |                   |            |              |  |  |  |  |
|-------------------------------|-------------------|------------|--------------|--|--|--|--|
|                               | $\det$ erministic | functional | unrestricted |  |  |  |  |
| two-way                       | 2DFT              | 2fNFT      | 2nft         |  |  |  |  |

functions relations

1fnft

1NFT

one-way 1<sub>DFT</sub>

| Expressiveness of transducers |                   |            |  |              |  |  |  |
|-------------------------------|-------------------|------------|--|--------------|--|--|--|
|                               | $\det$ erministic | functional |  | unrestricted |  |  |  |
| two-way                       | 2dft              | 2fNFT      |  | 2nft         |  |  |  |
| ıe-way                        | 1DFT              | 1fNFT      |  | 1nft         |  |  |  |

11 / 29

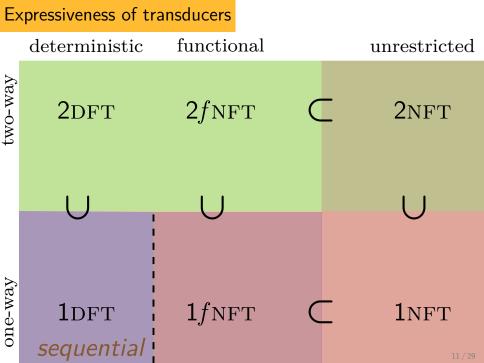
| Expressiveness of transducers |               |            |   |              |  |  |  |  |
|-------------------------------|---------------|------------|---|--------------|--|--|--|--|
|                               | deterministic | functional |   | unrestricted |  |  |  |  |
| two-way                       | 2dft          | 2fnft      | C | 2nft         |  |  |  |  |
| ay                            |               |            |   |              |  |  |  |  |

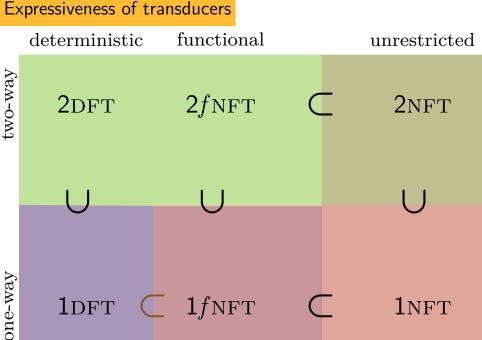
 $1_{DFT}$ 

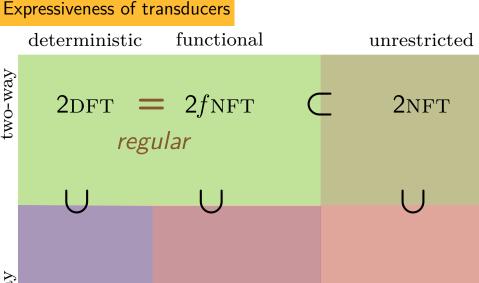
1fnft

1NFT









 $_{
m hom}^{
m hom}$  1DFT  $\subset$  1 $_{
m NFT}$   $\subset$  1NFT

## What are the transductions realized by 2NFT?

# What are the transductions realized by 2NFT?

2. Algebraic descriptions of transduction classes

- ▶ set union  $R_1 \cup R_2$
- componentwise concatenation

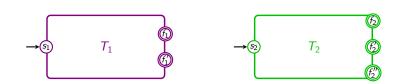
$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

► Kleene star  $R^* = \{(u_1 \cdots u_k, v_1 \cdots v_k) \mid \forall i, (u_i, v_i) \in R\}$ 

- ▶ set union  $R_1 \cup R_2$
- componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

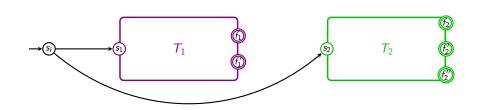
► Kleene star  $R^* = \{(u_1 \cdots u_k, v_1 \cdots v_k) \mid \forall i, (u_i, v_i) \in R\}$ 



- ► set union  $R_1 \cup R_2$
- componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

► Kleene star  $R^* = \{(u_1 \cdots u_k, v_1 \cdots v_k) \mid \forall i, (u_i, v_i) \in R\}$ 

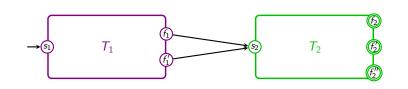


 $\blacktriangleright$  simulate  $T_1$  or  $T_2$ 

- ▶ set union  $R_1 \cup R_2$
- componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

► Kleene star  $R^* = \{(u_1 \cdots u_k, v_1 \cdots v_k) \mid \forall i, (u_i, v_i) \in R\}$ 



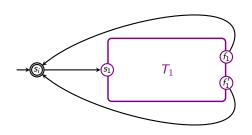
- ightharpoonup simulate  $T_1$  on some prefix
- ▶ simulate  $T_2$  on corresp. suffix

e.g.,  $Prefix = Identity \cdot Erase$ 

- ▶ set union  $R_1 \cup R_2$
- componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

► Kleene star  $R^* = \{(u_1 \cdots u_k, v_1 \cdots v_k) \mid \forall i, (u_i, v_i) \in R\}$ 



► repeat simulate  $\mathcal{T}_1$  or accept

e.g., Subword =  $(Identity \cup Erase)^*$ 

- ▶ set union  $R_1 \cup R_2$
- componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

► Kleene star  $R^* = \{(u_1 \cdots u_k, v_1 \cdots v_k) \mid \forall i, (u_i, v_i) \in R\}$ 

#### **Definition** (RAT) The class of rational relations is the smallest class

- ▶ including finite relations
- closed under rational operations

- ▶ set union  $R_1 \cup R_2$
- ► componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

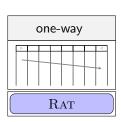
► Kleene star  $R^* = \{(u_1 \cdots u_k, v_1 \cdots v_k) \mid \forall i, (u_i, v_i) \in R\}$ 

#### **Definition** (RAT) The class of *rational relations* is the smallest class

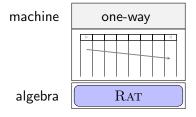
- ► including finite relations
- closed under rational operations

Theorem: [Elgot & Mezei'65]

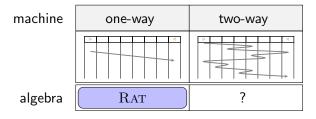
$$1 \text{NFT} = \text{rational}$$

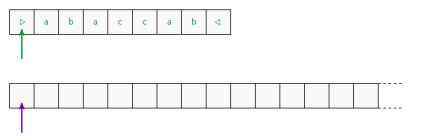


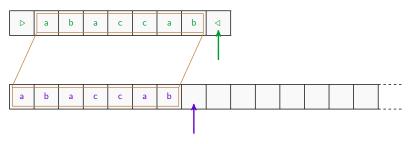
## Which operations capture behaviors of 2NFTs?



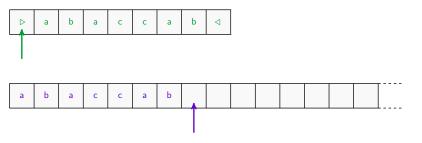
## Which operations capture behaviors of 2NFTs?



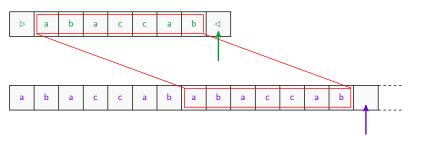




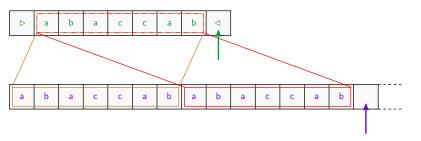
► copy the input word



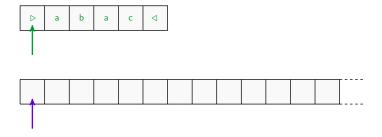
- ► copy the input word
- ▶ rewind the input tape

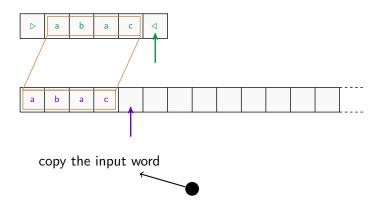


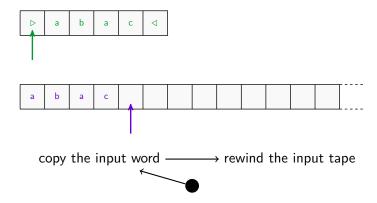
- ► copy the input word
- ► rewind the input tape
- ► append a copy of the input word

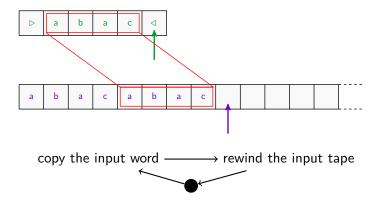


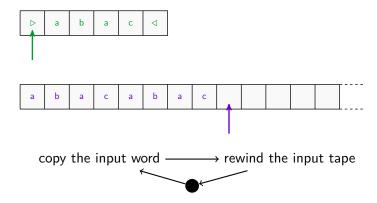
- ► copy the input word
- ► rewind the input tape
- ► append a copy of the input word

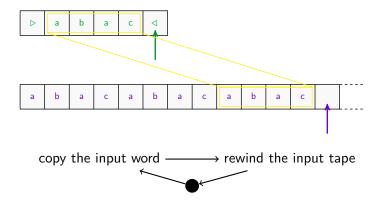


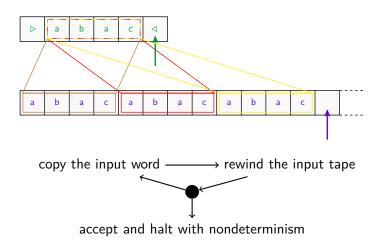












Square, Powers ∉ Rat

- ▶ set union  $R_1 \cup R_2$
- Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star  $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

► set union

 $\textit{R}_1 \cup \textit{R}_2$ 

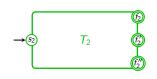
Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star

$$R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$$





► set union

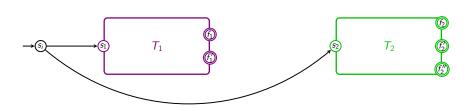
 $R_1 \cup R_2$ 

► Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star

$$R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$$



ightharpoonup simulate  $T_1$  or  $T_2$ 

▶ set union

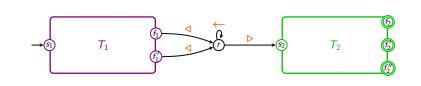
 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star

$$R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$$



- ► simulate T<sub>1</sub>
- ► rewind the input tape
- ► simulate T<sub>2</sub>

e.g.,  $SQUARE = IDENTITY \odot IDENTITY$ 

► set union

 $R_1 \cup R_2$ 

► Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$
  
ar  $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

Hadamard star

- ► repeat
  - ▶ simulate T<sub>1</sub>
  - ► rewind the input tape
- or accept nondeterministically

e.g., Powers = Identity<sup>®</sup>

▶ set union

 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

Hadamard star

$$R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$$

**Definition** (HAD) The class of *Hadamard relations* is the smallest class

- ► including rational relations
- ► closed under Hadamard operations

► set union

 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

Definition (HAD) The class of Hadamard relations is the smallest class

- ► including rational relations
- ► closed under Hadamard operations

R.at



HAD

2NFT

► set union

 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

Definition (HAD) The class of Hadamard relations is the smallest class

- ► including rational relations
- closed under Hadamard operations

Rat



 $_{\rm HAD}$ 



2nft

► set union

 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

Definition (HAD) The class of Hadamard relations is the smallest class

- ► including rational relations
- ► closed under Hadamard operations

| machine | one-way    |     | two-way |
|---------|------------|-----|---------|
|         | <b>D d</b> |     |         |
| algebra | Rat        | HAD | ?       |

► set union

 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

Definition (HAD) The class of Hadamard relations is the smallest class

- ► including rational relations
- ► closed under Hadamard operations

| machine | one-way | rotating | two-way |
|---------|---------|----------|---------|
|         | D       | D 4      |         |
| algebra | RAT     | HAD      | ?       |

► set union

 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

Definition (HAD) The class of Hadamard relations is the smallest class

- ► including rational relations
- ► closed under Hadamard operations

## rotating



► set union

 $R_1 \cup R_2$ 

Hadamard product

$$R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► Hadamard star

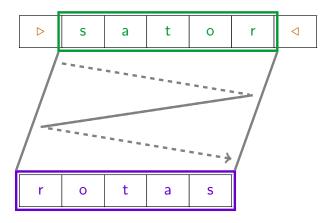
 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

Definition (HAD) The class of Hadamard relations is the smallest class

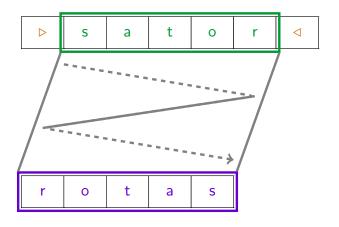
- ► including rational relations
- ► closed under Hadamard operations

| machine | one-way | rotating | two-way |
|---------|---------|----------|---------|
|         | D       | D 4      |         |
| algebra | RAT     | HAD      | ?       |

## Mirror



## Mirror



 $\operatorname{Mirror} \notin \operatorname{Had}$ 

► mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$

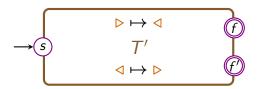
► mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$



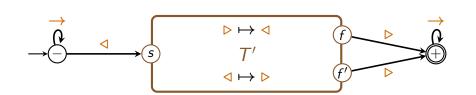
▶ mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$



▶ mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$



▶ mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$

## Definition (MHAD) class of mirror-Hadamard relations: smallest class

- ► including rational relations
- ► closed under Hadamard operations and mirror

▶ set union

 $R_1 \cup R_2$ 

- ► Hadamard product
- $R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$
- ► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

► mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$

#### Definition (MHAD) class of mirror-Hadamard relations: smallest class

- ▶ including rational relations
- closed under Hadamard operations and mirror

► set union

 $R_1 \cup R_2$ 

- ► Hadamard product
- $R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$
- ► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

▶ mirror

 $\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$ 

#### Definition (MHAD) class of mirror-Hadamard relations: smallest class

- ▶ including rational relations
- closed under Hadamard operations and mirror







MHAD

2nft

► set union

 $R_1 \cup R_2$ 

- ► Hadamard product
- $R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$
- ► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

▶ mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$

#### Definition (MHAD) class of mirror-Hadamard relations: smallest class

- ▶ including rational relations
- closed under Hadamard operations and mirror







MHAD



2nft

▶ set union

 $R_1 \cup R_2$ 

- ► Hadamard product
- $R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

▶ Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

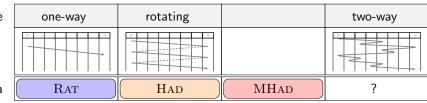
▶ mirror

 $\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$ 

## **Definition** (MHAD) class of *mirror-Hadamard* relations: smallest class

- including rational relations
- closed under Hadamard operations and mirror

machine



algebra

▶ set union

 $R_1 \cup R_2$ 

- ► Hadamard product
- $R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

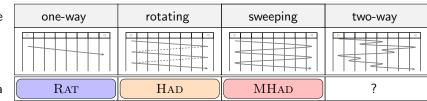
▶ mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$

## Definition (MHAD) class of mirror-Hadamard relations: smallest class

- ► including rational relations
- closed under Hadamard operations and mirror

machine



▶ set union

 $R_1 \cup R_2$ 

- ► Hadamard product
- $R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$
- ► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

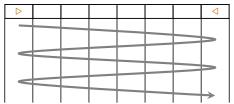
▶ mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$

#### **Definition** (MHAD) class of *mirror-Hadamard* relations: smallest class

- ▶ including rational relations
- closed under Hadamard operations and mirror

#### sweeping



▶ set union

 $R_1 \cup R_2$ 

- ► Hadamard product
- $R_1 \odot R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

► Hadamard star

 $R^{\circledast} = \{(u, v_1 \cdots v_k) \mid \forall i, (u, v_i) \in R\}$ 

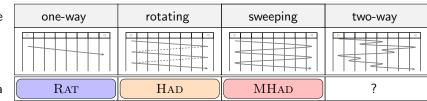
▶ mirror

$$\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$$

### Definition (MHAD) class of mirror-Hadamard relations: smallest class

- ► including rational relations
- closed under Hadamard operations and mirror

machine



| transducer                                                         | one-way     | rotating | sweeping | two-way |
|--------------------------------------------------------------------|-------------|----------|----------|---------|
| $ \begin{array}{c c} a, \rightarrow \mid b \\ \hline \end{array} $ | <b>&gt;</b> |          |          |         |
| general                                                            | Rat         | HAD      | MHAD     | ?       |

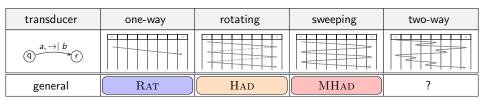
| transducer                                  | one-way    | rotating | sweeping | two-way |
|---------------------------------------------|------------|----------|----------|---------|
| $\underbrace{q}_{a,\rightarrow \mid b}_{r}$ | <b>D Q</b> |          |          |         |
| general                                     | RAT        | HAD      | MHAD     | ?       |

# Study of particular cases

| transducer                                             | one-way     | rotating   | sweeping | two-way |
|--------------------------------------------------------|-------------|------------|----------|---------|
| $ \overbrace{q} \xrightarrow{a, \rightarrow \mid b}  $ | <b>&gt;</b> | <b>D d</b> |          |         |
| general                                                | RAT         | HAD        | MHAD     | ?       |

# Study of particular cases

3. Unary cases



# Study of particular cases

3. Unary cases

$$\#\Sigma=1$$
 and/or  $\#\Delta=1$ 

Proposition: If  $\#\Sigma = 1$  or  $\#\Delta = 1$  then HAD = MHAD

Proposition: If  $\#\Sigma = 1$  or  $\#\Delta = 1$  then HAD = MHAD

| transducer                                                         | one-way | rotating | sweeping | two-way |
|--------------------------------------------------------------------|---------|----------|----------|---------|
| $ \begin{array}{c c} a, \rightarrow \mid b \\ \hline \end{array} $ | D 4     | 0        |          |         |
| general                                                            |         |          | MHAD     | ?       |
| input unary                                                        | Rat     | 11       |          | ?       |
| output unary                                                       |         | HAD      |          | ?       |

Proposition: If  $\#\Sigma = 1$  or  $\#\Delta = 1$  then HAD = MHAD

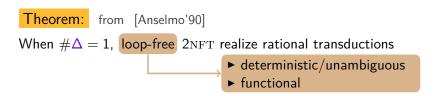
| transducer                                                      | one-way | rotating | sweeping | two-way |
|-----------------------------------------------------------------|---------|----------|----------|---------|
| $ \begin{array}{c c} a, \rightarrow   b \\ \hline \end{array} $ | D 4     | b        |          |         |
| general                                                         |         |          | MHAD     | ?       |
| input unary                                                     | Rat     |          |          | ?       |
| output unary                                                    |         | Had      |          | ?       |

Theorem: from [Anselmo'90]

When  $\#\Delta = 1$ , loop-free 2NFT realize rational transductions

**Proposition:** If  $\#\Sigma = 1$  or  $\#\Delta = 1$  then HAD = MHAD

| transducer                                                         | one-way | rotating | sweeping | two-way |
|--------------------------------------------------------------------|---------|----------|----------|---------|
| $ \begin{array}{c c} a, \rightarrow \mid b \\ \hline \end{array} $ | D 4     | b        |          |         |
| general                                                            |         |          | MHAD     | ?       |
| input unary                                                        | Rat     | 11       |          | ?       |
| output unary                                                       |         | H.       | AD       | ?       |



**Proposition:** If  $\#\Sigma = 1$  or  $\#\Delta = 1$  then HAD = MHAD

| transducer                                  | one-way | rotating | sweeping | two-way |
|---------------------------------------------|---------|----------|----------|---------|
| $\underbrace{q}_{a,\rightarrow \mid b}_{r}$ | b       | b d      | b d      |         |
| general                                     |         |          | MHAD     | ?       |
| input unary                                 | D       | 11       | AD       | ?       |
| output unary                                | Rat     | П        | AD       | ?       |
| f output unary                              |         |          |          |         |

Theorem: from [Anselmo'90]

When  $\#\Delta = 1$ , loop-free 2NFT realize rational transductions

- ► deterministic/unambiguous
- ► functional

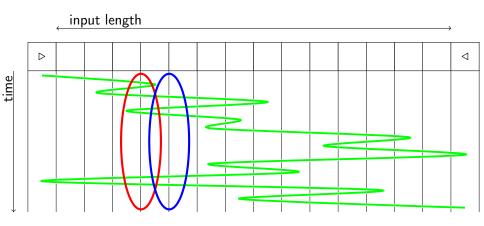




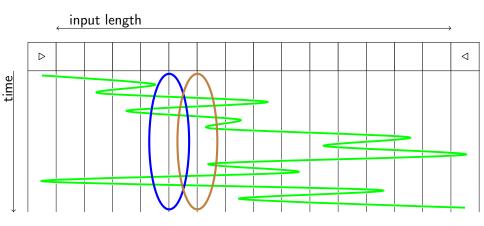
 $1. \ \ \text{every accepted word admits a loop-free accepting computation}$ 



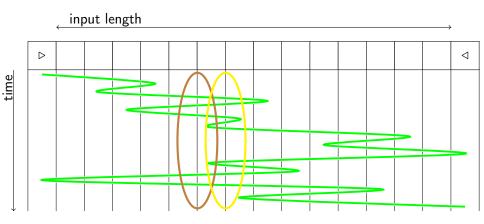
 $1. \ \ \text{every accepted word admits a loop-free accepting computation}$ 



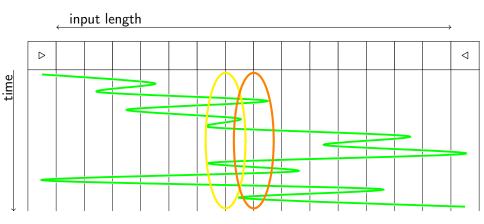
- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



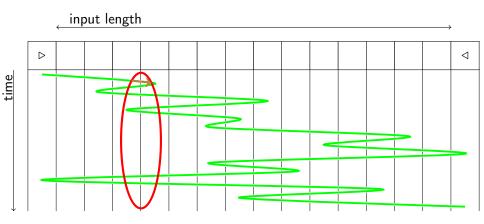
- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



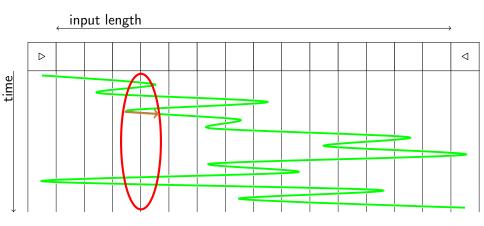
- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



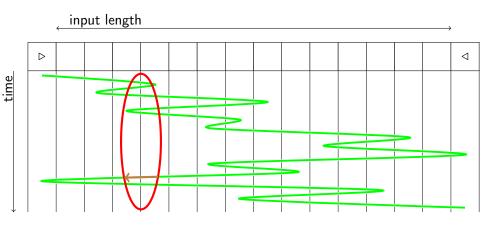
- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



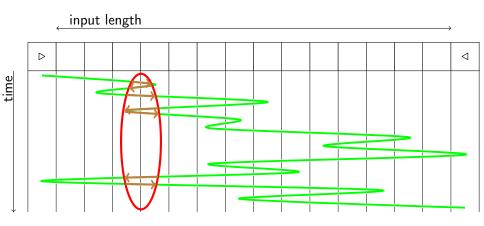
- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- 2. the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- 2. the successor relation of crossing sequences is locally testable



- 1. every accepted word admits a loop-free accepting computation
- $2. \ \,$  the successor relation of crossing sequences is locally testable

# Both unary case

$$\Sigma = \Delta = \{a\}$$

- Examples:
  - ▶ UIDENTITY =  $\{(a^n, a^n) \mid n \in \mathbb{N}\}$

- $\in Rat$
- ► USQUARE =  $\{(a^n, a^{2n}) \mid n \in \mathbb{N}\}$  = UIDENTITY  $\odot$  UIDENTITY
- $\in Rat$

▶ UPOWERS =  $\{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$  = UIDENTITY®

€ RAT ∉ RAT

# Both unary case

$$\Sigma = \Delta = \{a\}$$

Examples:

- ▶ UIDENTITY =  $\{(a^n, a^n) \mid n \in \mathbb{N}\}$  ∈ RAT
- ► USQUARE =  $\{(a^n, a^{2n}) \mid n \in \mathbb{N}\}$  = UIDENTITY  $\odot$  UIDENTITY  $\in$  RAT ► UPOWERS =  $\{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$  = UIDENTITY $^{\oplus}$   $\notin$  RAT
- Theorem: [Choffrut, G.'14] When  $\#\Sigma = 1$  and  $\#\Delta = 1$ , 2NFT =HAD

# Both unary case

$$\Sigma = \Delta = \{a\}$$

Examples:

▶ UIDENTITY =  $\{(a^n, a^n) \mid n \in \mathbb{N}\}$ 

- $\in Rat$
- ▶ USQUARE =  $\{(a^n, a^{2n}) \mid n \in \mathbb{N}\}$  = UIDENTITY  $\odot$  UIDENTITY
- $\in Rat$

▶ UPOWERS =  $\{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$  = UIDENTITY®

∉ Rat

Theorem: [Choffrut, G.'14] When  $\#\Sigma = 1$  and  $\#\Delta = 1$ , 2NFT =HAD

| transducer                                              | one-way | rotating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sweeping | two-way |  |  |
|---------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--|--|
| $ \overbrace{q}^{a,\rightarrow \mid b} \underbrace{r} $ | D 4     | b d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b d      |         |  |  |
| general                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHAD     | ?       |  |  |
| input unary                                             | Dam     | , and the second | ?        |         |  |  |
| output unary                                            | Rat     | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ?        |         |  |  |
| both unary                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |  |  |

Theorem: [Choffrut, G.'14] When  $\#\Sigma = 1$  and  $\#\Delta = 1$ , 2NFT = HAD

Theorem: [Choffrut, G.'14] When  $\#\Sigma = 1$  and  $\#\Delta = 1$ , 2NFT = HAD

Proof: fix a unary transducer T realizing R

**Theorem:** [Choffrut, G.'14] When  $\#\Sigma = 1$  and  $\#\Delta = 1$ , 2NFT = HAD

Proof: fix a unary transducer T realizing R

ightharpoonup decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers

Theorem: [Choffrut, G.'14] When  $\#\Sigma = 1$  and  $\#\Delta = 1$ , 2NFT = HAD

Proof: fix a unary transducer T realizing R

- lacktriangledown decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers
- ▶ each family of hits define a relation  $R_{(q,s),(q',s')}$

**Theorem:** [Choffrut, G.'14] When 
$$\#\Sigma = 1$$
 and  $\#\Delta = 1$ ,  $2$ NFT = HAD

Proof: fix a unary transducer T realizing R

- lacktriangledown decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} e.g., $(p, \triangleright)$-to-$(q, \triangleleft), $(p, \triangleleft)$-to-$(q, \triangleleft), $(p, \triangleleft)$-to-$(q, \triangleleft). $(p, \triangleleft)$-to-$(q, \triangleleft), $(p, \square)$-to-$(q, \square)$$

**Theorem:** [Choffrut, G.'14] When 
$$\#\Sigma = 1$$
 and  $\#\Delta = 1$ ,  $2NFT = HAD$ 

Proof: fix a unary transducer T realizing R

- lacktriangledown decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers
- ▶ each family of hits define a relation  $R_{(q,s),(q',s')}$  e.g.,  $(p, \triangleright)$ -to- $(q, \triangleleft)$ ,  $(p, \triangleleft)$ -to- $(q, \triangleleft)$

▶ R is a combination of  $R_{(q,s),(q',s')}$ 's using Hadamard operations

Theorem: [Choffrut, G.'14] When 
$$\#\Sigma = 1$$
 and  $\#\Delta = 1$ ,  $2NFT = HAD$ 

Proof: fix a unary transducer T realizing R

- lacktriangledown decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers

each 
$$R_{(q,s),(q',s')} \in \mathrm{RAT}$$

► R is a combination of  $R_{(q,s),(q',s')}$ 's using Hadamard operations

**Theorem:** [Choffrut, G.'14] When 
$$\#\Sigma = 1$$
 and  $\#\Delta = 1$ ,  $2NFT = HAD$ 

Proof: fix a unary transducer T realizing R

- lacktriangledown decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers
- ▶ each family of hits define a relation  $R_{(q,s),(q',s')}$  $e.g., (p,\triangleright)$ -to- $(q,\triangleleft), (p,\triangleleft)$ -to- $(q,\triangleleft)$

each 
$$R_{(q,s),(q',s')} \in \mathrm{RAT}$$

► R is a combination of  $R_{(q,s),(q',s')}$ 's using Hadamard operations

$$\Longrightarrow \in \text{Had} \square$$

**Theorem:** [Choffrut, G.'14] When 
$$\#\Sigma = 1$$
 and  $\#\Delta = 1$ ,  $2NFT = HAD$ 

Proof: fix a unary transducer T realizing R

- lacktriangledown decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers
- $\hbox{\bf each family of hits define a relation } R_{(q,s),(q',s')} \\ \hbox{\it e.g., } (p,\rhd)\hbox{-to-}(q,\vartriangleleft), \ (p,\vartriangleleft)\hbox{-to-}(q,\vartriangleleft)$
- ▶ simulate each hit family with a one-way transducer  $\implies$  each  $R_{(q,s),(q',s')} \in RAT$

► R is a combination of  $R_{(q,s),(q',s')}$ 's using Hadamard operations

$$\Longrightarrow \in \mathsf{HAD} \square$$

**Theorem:** [Choffrut, G.'14] When 
$$\#\Sigma = 1$$
 and  $\#\Delta = 1$ ,  $2NFT = HAD$ 

Proof: fix a unary transducer T realizing R

- decompose computations in hits  $hit \equiv computation path between 2 successive visits of endmarkers$
- ▶ each family of hits define a relation  $R_{(q,s),(q',s')}$ e.g.,  $(p, \triangleright)$ -to- $(q, \triangleleft)$ ,  $(p, \triangleleft)$ -to- $(q, \triangleleft)$
- simulate each hit family with a one-way transducer  $\implies$  each  $R_{(q,s),(q',s')} \in RAT$

▶ R is a combination of  $R_{(q,s),(q',s')}$ 's using Hadamard operations

 $\Longrightarrow \in \mathsf{HAD} \square$ 

**Theorem:** [Choffrut, G.'14] When 
$$\#\Sigma = 1$$
 and  $\#\Delta = 1$ ,  $2NFT = HAD$ 

Proof: fix a unary transducer T realizing R

- lacktriangledown decompose computations in hits hit  $\equiv$  computation path between 2 successive visits of endmarkers
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} e.g., $(p,\rhd)$-to-$(q,\vartriangleleft), $(p,\vartriangleleft)$-to-$(q,\vartriangleleft), $(p,\vartriangleleft)$-to-$(q,\vartriangleleft). \end{tabular}$
- simulate each hit family with a one-way transducer

$$\implies$$
 each  $R_{(q,s),(q',s')} \in \text{RAT}$ 

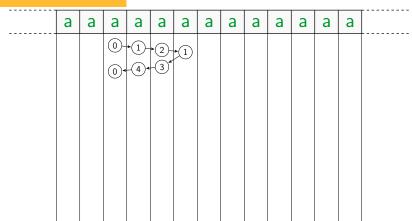
- commutative outputs
- ► deal with *central loops*
- ► R is a combination of  $R_{(q,s),(q',s')}$ 's using Hadamard operations



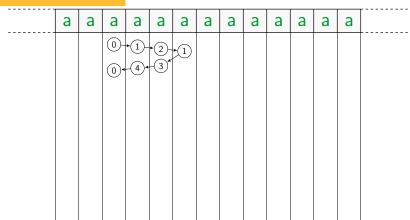
| <br>a | a | a  | a    | a   | a            | a | a | a | a | a | a | a |  |
|-------|---|----|------|-----|--------------|---|---|---|---|---|---|---|--|
|       |   | 0- | •1)- | 2)- | <b>*</b> (1) |   |   |   |   |   |   |   |  |
|       |   | 0  | 4    | -3  |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |

| <br>а | a | a | а | a            | a    | а             | а            | а | a | a | а | a |  |
|-------|---|---|---|--------------|------|---------------|--------------|---|---|---|---|---|--|
|       |   |   |   | 0-           | •1)- | <b>*</b> (2)- | <b>*</b> (1) |   |   |   |   |   |  |
|       |   |   |   | (0) <b>-</b> | 4    | -3*           |              |   |   |   |   |   |  |
|       |   |   |   |              |      |               |              |   |   |   |   |   |  |
|       |   |   |   |              |      |               |              |   |   |   |   |   |  |
|       |   |   |   |              |      |               |              |   |   |   |   |   |  |
|       |   |   |   |              |      |               |              |   |   |   |   |   |  |
|       |   |   |   |              |      |               |              |   |   |   |   |   |  |
|       |   |   |   |              |      |               |              |   |   |   |   |   |  |
|       |   |   |   |              |      |               |              |   |   |   |   |   |  |

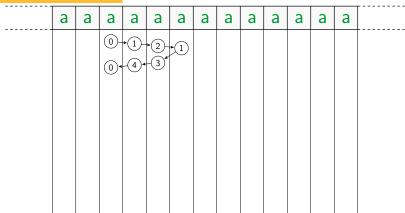
| <br>a | a | a  | a    | a   | a            | a | a | a | a | a | a | a |  |
|-------|---|----|------|-----|--------------|---|---|---|---|---|---|---|--|
|       |   | 0- | •1)- | 2)- | <b>*</b> (1) |   |   |   |   |   |   |   |  |
|       |   | 0  | 4    | -3  |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |
|       |   |    |      |     |              |   |   |   |   |   |   |   |  |



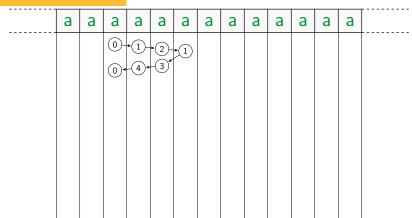
lacktriangle each language  $L_q\subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q{}^*=L_q$ 



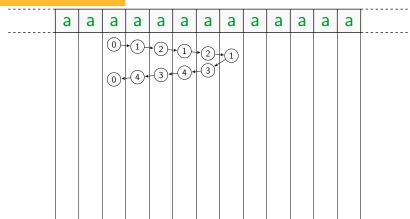
lacktriangle each language  $L_q\subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q^*=L_q\implies L_q\in\mathrm{RAT}$ 



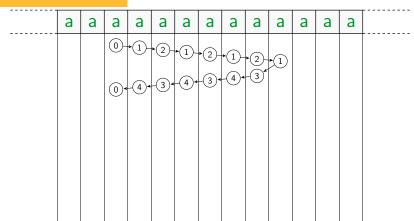
▶ each language  $L_q \subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q^* = L_q \implies L_q \in RAT \implies L$  is finitely generated



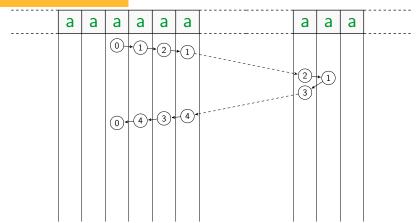
- ▶ each language  $L_q \subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q{}^* = L_q \implies L_q \in \text{RAT} \implies L$  is finitely generated
- ▶  $\exists N$  ∈  $\mathbb{N}$  such that a window of size N is sufficient to generate each  $L_q$



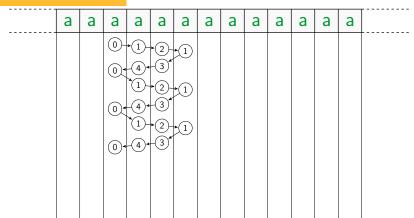
- ▶ each language  $L_q \subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q{}^* = L_q \implies L_q \in \text{RAT} \implies L$  is finitely generated
- ▶  $\exists N \in \mathbb{N}$  such that a window of size N is sufficient to generate each  $L_q$



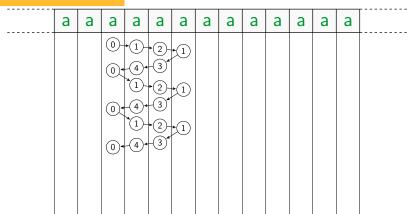
- ▶ each language  $L_q \subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q{}^* = L_q \implies L_q \in \text{RAT} \implies L$  is finitely generated
- ▶  $\exists N \in \mathbb{N}$  such that a window of size N is sufficient to generate each  $L_q$



- ▶ each language  $L_q \subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q^* = L_q \implies L_q \in RAT \implies L$  is finitely generated
- ▶  $\exists N \in \mathbb{N}$  such that a window of size N is sufficient to generate each  $L_q$



- ▶ each language  $L_q \subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q^* = L_q \implies L_q \in RAT \implies L$  is finitely generated
- ▶  $\exists N$  ∈  $\mathbb{N}$  such that a window of size N is sufficient to generate each  $L_q$

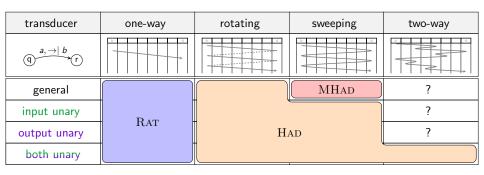


- ▶ each language  $L_q \subseteq a^*$  of outputs of all central loops around state q satisfies  $L_q^* = L_q \implies L_q \in \text{RAT} \implies L$  is finitely generated
- lacktriangledown  $\exists N\!\in\!\mathbb{N}$  such that a window of size N is sufficient to generate each  $L_q$
- ► **Open problem:** bound *N*?

## Relax assumptions?

| transducer                                  | one-way  | rotating | two-way    |   |  |
|---------------------------------------------|----------|----------|------------|---|--|
| $\underbrace{q}_{a,\rightarrow \mid b}_{r}$ | <b>D</b> | 0        | <b>D Q</b> |   |  |
| general                                     |          |          | MHAD       | ? |  |
| input unary                                 | Dum      |          | ?          |   |  |
| output unary                                | Rat      | H        | ?          |   |  |
| both unary                                  |          |          |            |   |  |

## Relax assumptions?

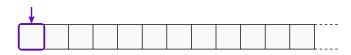


Theorem: [G.'16]

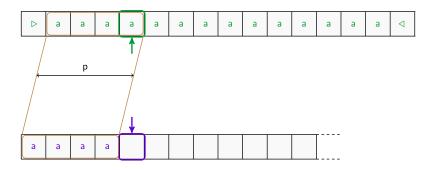
When  $\#\Sigma > 1$ , Had  $\subset$  2NFT When  $\#\Delta > 1$ , Had  $\subset$  2NFT

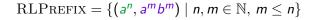
$$\operatorname{RLPrefix} = \{ \left( a^n, a^m b^m \right) \mid n, m \in \mathbb{N}, \ m \leq n \}$$

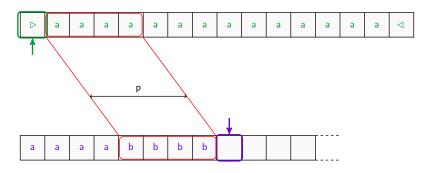




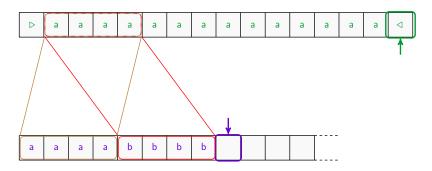
$$\operatorname{RLPrefix} = \{ \left( a^n, a^m b^m \right) \mid n, m \in \mathbb{N}, \ m \leq n \}$$



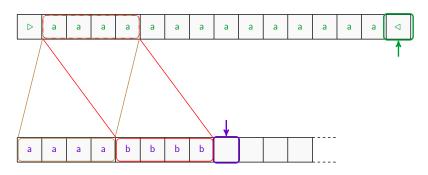




$$\text{RLPrefix} = \{(a^n, a^m b^m) \mid n, m \in \mathbb{N}, \ m \le n\}$$

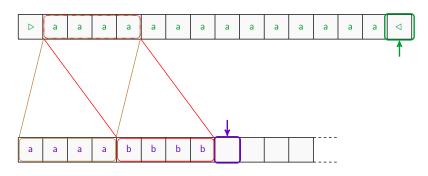


$$\text{RLPrefix} = \{(a^n, a^m b^m) \mid n, m \in \mathbb{N}, \ m \le n\}$$



 $\operatorname{RLPrefix} \notin \operatorname{Had}$ 

RLPrefix = 
$$\{(a^n, a^m b^m) \mid n, m \in \mathbb{N}, m \le n\}$$



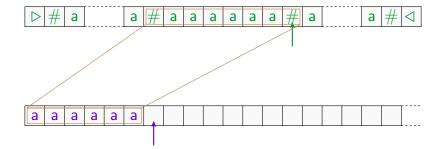
RLPrefix ∉ Had

Remark: HAD is not closed under componentwise concatenation

MULT1BLOCK = 
$$\{(u, a^{kn}) \mid u \in \{a, \sharp\}^*, k, n \in \mathbb{N}, \text{ and } \sharp a^n \sharp \text{ is a factor of } u\}$$

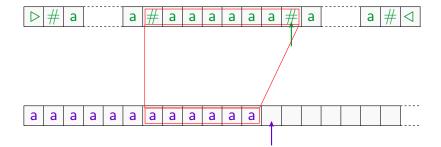
MULT1BLOCK = 
$$\{(u, a^{kn}) \mid u \in \{a, \sharp\}^*, k, n \in \mathbb{N}, \text{ and } \sharp a^n \sharp \text{ is a factor of } u\}$$

 $\text{MULT1BLOCK} = \left\{ (u, a^{kn}) \mid u \in \{a, \sharp\}^*, \ k, n \in \mathbb{N}, \text{ and } \sharp a^n \sharp \text{ is a factor of } u \right\}$ 

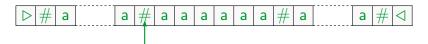


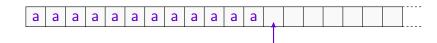
MULT1BLOCK = 
$$\{(u, a^{kn}) \mid u \in \{a, \sharp\}^*, k, n \in \mathbb{N}, \text{ and } \sharp a^n \sharp \text{ is a factor of } u\}$$

 $\text{MULT1BLOCK} = \left\{ (u, a^{kn}) \mid u \in \{a, \sharp\}^*, \ k, n \in \mathbb{N}, \text{ and } \sharp a^n \sharp \text{ is a factor of } u \right\}$ 

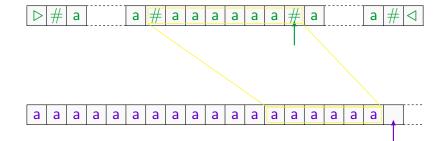


$$\text{MULT1BLOCK} = \left\{ \left(u, a^{kn}\right) \mid u \in \left\{a, \sharp\right\}^*, \ k, n \in \mathbb{N}, \ \text{and} \ \sharp a^n \sharp \ \text{is a factor of} \ u \right\}$$

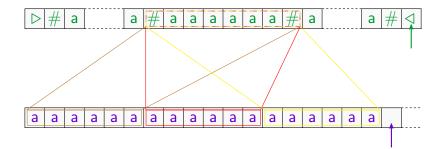




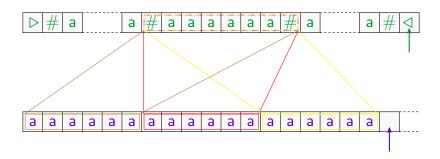
 $\text{MULT1BLOCK} = \left\{ \left(u, a^{kn}\right) \mid u \in \{a, \sharp\}^*, \ k, n \in \mathbb{N}, \ \text{and} \ \sharp a^n \sharp \ \text{is a factor of} \ u \right\}$ 



 $\text{MULT1BLOCK} = \left\{ (u, a^{kn}) \mid u \in \{a, \sharp\}^*, \ k, n \in \mathbb{N}, \text{ and } \sharp a^n \sharp \text{ is a factor of } u \right\}$ 



$$\text{MULT1BLOCK} = \left\{ (u, a^{kn}) \mid u \in \{a, \sharp\}^*, \ k, n \in \mathbb{N}, \text{ and } \sharp a^n \sharp \text{ is a factor of } u \right\}$$



### Mult1Block ∉ Had

Remark: HAD is not closed under componentwise concatenation

Proposition: 2NFT is not closed under componentwise concatenation

and Kleene star

Proposition: 2NFT is not closed under componentwise concatenation

and Kleene star

Proposition:

2NFT is closed under

unambiguous componentwise concatenation and unambiguous Kleene star

Proposition: 2NFT is not closed under componentwise concatenation

and Kleene star

Proposition:

2NFT is closed under

**unambiguous** componentwise concatenation and **unambiguous** Kleene star

Remark: these operations are used in the characterization of regular functions through regular combinators

[Alur et al.'14, Baudru&Reynier'18, Dave et al.'18]

Proposition: 2NFT is not closed under componentwise concatenation

and Kleene star

Proposition:

2NFT is closed under

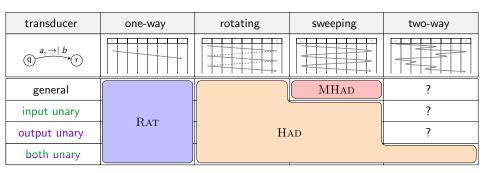
**unambiguous** componentwise concatenation and **unambiguous** Kleene star

Remark: these operations are used in the characterization of regular functions through regular combinators

[Alur et al.'14, Baudru&Reynier'18, Dave et al.'18]

but they are still not sufficient for the non-functional case

| transducer                                             | one-way     | rotating | sweeping | two-way |
|--------------------------------------------------------|-------------|----------|----------|---------|
| $ \overbrace{q} \xrightarrow{a, \rightarrow \mid b}  $ | <b>&gt;</b> |          |          |         |
| general                                                | RAT         |          | MHAD     | ?       |
| input unary                                            |             | HAD      |          | ?       |
| output unary                                           |             |          |          | ?       |
| both unary                                             |             |          |          |         |



#### Abilities arising from nondeterminism:

- ► loop
  - output an unbounded word in one step e.g.,  $Erase^{-1}$
  - ▶ loop over some portion of the input word e.g., Powers

| transducer                                  | one-way     | rotating | sweeping | two-way |
|---------------------------------------------|-------------|----------|----------|---------|
| $\underbrace{q}_{a,\rightarrow \mid b}_{r}$ | <b>&gt;</b> |          |          |         |
| general                                     |             |          | MHAD     | ?       |
| input unary                                 | RAT         | HAD      |          | ?       |
| output unary                                |             |          |          | ?       |
| both unary                                  |             |          | ,        |         |

### Abilities arising from nondeterminism:

- ► loop
  - ▶ output an unbounded word in one step e.g.,  $E_{RASE}^{-1}$
  - ▶ loop over some portion of the input word e.g., Powers
- ▶ nondeterministically select some positions *e.g.*, RLPREFIX

| transducer                                  | one-way     | rotating | sweeping | two-way |
|---------------------------------------------|-------------|----------|----------|---------|
| $\underbrace{q}_{a,\rightarrow \mid b}_{r}$ | <b>&gt;</b> |          |          |         |
| general                                     |             |          | MHAD     | ?       |
| input unary                                 | RAT         | HAD      |          | ?       |
| output unary                                |             |          |          | ?       |
| both unary                                  |             |          | ,        |         |

### Abilities arising from nondeterminism:

- ► loop
  - ▶ output an unbounded word in one step e.g.,  $E_{RASE}^{-1}$
  - ▶ loop over some portion of the input word e.g., Powers
- ▶ nondeterministically select some positions *e.g.*, RLPREFIX

| transducer                                  | one-way | rotating | sweeping | two-way |
|---------------------------------------------|---------|----------|----------|---------|
| $\underbrace{q}_{a,\rightarrow \mid b}_{r}$ | D       | 0        |          |         |
| general                                     |         |          | MHAD     | ?       |
| input unary                                 | RAT     | HAD      |          | ?       |
| output unary                                |         |          |          | ?       |
| both unary                                  |         |          |          |         |

#### Abilities arising from nondeterminism:

- ► loop
  - output an unbounded word in one step e.g.,  $Erase^{-1}$
  - ▶ loop over some portion of the input word *e.g.*, Powers
- ► nondeterministically select some positions
- e.g., RLPrefix

Thank you