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Definition (Brzozowski, Leiss 1980)

A Boolean finite automaton is a quintuple A= (Q, X, 9, g, F)
where

Q@={q1,...,qn} is a set of states
@ X is an input alphabet

@ ) maps every pair (g,a) € Q X X to a Boolean function
over variables q1,...,qn

@ gy is the initial Boolean function
@ FC Q@ is the set of final states

Example (Boolean automaton)

1) ‘ a ‘ b
A= ({q1,q}.{a,b},6,q1 Va2, {q2}) g1 | @2 | g1 A g
q2 | q1 | 7q1

V.
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Example (Boolean automaton — cont.)

1) ‘ a ‘ b
A= ({q1,q}.{a,b},6,q1 Va2, {q2}) a1 | 2| g1 A g
q2 | q1 | 7q1

Computation on ab:
b
GV g @ Vg = (=q1) V(g A=q) = ~q1V g

@ evaluate the resulting function at the finality vector f= (0, 1)

@ gives 1 = ab is accepted by A

@ the empty string is rejected by A
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Basic Notions Il

A Boolean finite automaton A= (Q = {q1,...,qn}, %,0,8, F) is
e alternating (AFA) if gt = a1

e Chandra, Kozen, Stockmeyer 1981
e Fellah, Jiirgensen, Yu 1990

o Birget 1996

e Yu 1997

e nondeterministic (NFA) if g = g1 and each d(q, a) is a disjunction

e deterministic (DFA) if gy = g1 and each d(q, a) = g; for some i
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1. Concatenation on Alternating Finite Automata
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1. Concatenation on Alternating Finite Automata

Known result from:

@ A. Fellah, H. Jirgensen, and S. Yu:
Constructions for alternating finite automata.
Int. J. Comput. Math. 35 (1990) 117-132.

Theorem (Fellah, Jirgensen, Yu 1990)

If A is an m-state AFA and B is an n-state AFA,
then L(A)L(B) is accepted by a (2™ + n + 1)-state AFA.

“We conjecture that this number of states is actually
necessary in the worst case, but have no proof.”

Here: to show that the conjecture holds
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Concatenation on DFAs with Multiple Final States

To prove the conjecture from FJY 1990, we use:
Lemma (Brzozowski, Leiss 1980)

L is accepted by an n-state AFA
if and only if
LR is accepted by a 2"-state DFA with 2"~ states final.

@ this motivated us to study concatenation on DFAs
with multiple final states
@ known: if the first DFA has k final states,
then the complexity of concatenation is m2" — k2" 1
— the second witness DFA has one final state

There exist binary languages K and L such that

e K is accepted by an m-state DFA with k final states,
o L is accepted by an n-state DFA with ¢ final states,
o every DFA for KL has at least m2" — k2"~1 states.
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Binary Witnesses for Concatenation on DFAs

b
b b b b b
a
@ i-a=(i+1)mod m
@ j-b=max{0,i— 1}

©0-a=0, (n—1)-a=1, andi-a=i+1 otherwise
e0-b=1, 1-b=2, and i- b = i otherwise

Every DFA for L(Amk)L(By¢) has at least m2™ — k2"~1 states.
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Witnesses for Concatenation on AFAs

We use:

Our binary witnesses for concatenation on DFAs:

Lemma (Brzozowski, Leiss 1980)
L is accepted by an n-state AFA
if and only if
LR is accepted by a 2"-state DFA with 2"~ states final.

...to describe witnesses for concatenation on AFAs
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Witnesses for Concatenation on AFAs: Proof Idea

Our binary witnesses for concatenation on DFAs:

o every DFA for L(Amk)L(Bny) has at least m2" — k2"~1 states

Binary witnesses for concatenation on AFAs (proof idea):

BL-Lemma
—

o K= L(A2n 2n71)

o L= L(Bympm-1) LR is accepted by an m-state AFA
o every DFA for KL needs 2"22" — 2n=122"~1 gtates

BL-Lemma

=="" every AFA for (KL)R = LRKR needs 2™ + n + 1 states

— LR and K® are witnesses for concatenation on AFAs
—> conjecture from FJY 1990 holds

KR is accepted by an n-state AFA
BL- Lemma

v
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2. Descriptional Complexity of the Forever Operator
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2. Descriptional Complexity of the Forever Operator

Forever operator L — (X*L€)¢
e from temporal logic
o forever := not eventually not

Jean-Eric Pin:
“Let L C X* be recognized by an NFA or a DFA with n states.
How many states are sufficient and necessary in the worst case
for an NFA (DFA) to recognize (X*L€)<?”

Partial answer by Jean-Camille Birget (1996):

DFA |X| | NFA I=| | AFA 1=
DFA | 2=t 3 | 2n-1 3
NFA > 2n-1 3
S 2n+1 + 1
AFA <n+1

Here: exact trade-off in each box
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Results for the Forever Operator L — (X*L€)¢

Results by Birget

DFA IX| | NFA 1| | AFA 1Z|
DFA | 21 g5 |t 3
NFA > 21 3
S 2n+1 +1
AFA <n+1

Our results

DFA IX| | NFA 1| | AFA ha
DFA | 21 2 n 3
NFA | M(n—1) 21 | 2n-1 3 | n 2
AFA | 22" 2 |onl4 2 |n 1

@ the most interesting: NFA-to-DFA trade-off
@ M(n) = Dedekind number
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Dedekind Number

Definition

Dedekind number M(n) = the number of antichains
of subsets of an n-element set

M(n

~—

o logn
2 22nflogn S M(n) S 22 3
168

7 581

7 828 354

2 414 682 040 998

56 130 437 228 687 557 907 788

OO WN

0 ~NO 1 WDNHE OIS
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NFA-to-DFA Trade-Off for the Forever Operator

Construction of a DFA for (X*L€)¢

n-state NFA for L with Q = {0,1,...,n—1} and ;=0
|l determinization + inverting finality

2M_state DFA for L€ states = subsets of Q

|} adding a loop on each letter in the initial state {0}
2"-state NFA for X*L¢
|} determinization + inverting finality

22"_state DFA D for (X*L€)¢ states = sets of subsets of @

NFA-to-DFA: tight upper bound = M(n — 1)

@ upper bound: show that each state of D
is equivalent to an antichain on set {1,2,...,n— 1}

o tightness for |X| = 21

@ conjecture: 6-letter alphabet should work
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3. Complexity of L¥ and L™ on Convex NFA Languages
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3. Complexity of L% and L* on Convex NFA Languages

w = BRATISLAVA

o prefix, suffix of w
BRAT is a prefix of w

LAVA is a suffix of w
@ subword of w := scattered subsequence of w RAT is a factor of w

BTS is a subword of w

@ factor of w := contiguous subsequence of w

A language is

o prefix-free if w € L = no proper prefix of wis in L
o prefix-closed if w € L = every prefix of wis in L

o prefix-convex if u,ve L and u <, v=
every w with u <, wand w <, visin L

analogously suffix-, factor-, subword-free, -closed, -convex
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Subclasses of Convex Languages

A language L is

@ right ideal if L = LX*

o left ideal if L =X*L

@ two-sided ideal if L = X*LY*
@ all-sided ideal if L =L ¥*

o prefix-free, prefix-closed, and right ideal languages
are also prefix-convex

e similarly suffix- (left), factor- (two-sided), subword- (all-sided)
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@ operations on DFAs for convex classes: Brzozowski et al. (2013-14)

@ operations on NFAs for convex classes: Mlynaréik et al. (2014-17)

Here: L¥ and LT on NFAs for subclasses of convex languages

Definition

L= {ujup- - ug | uj€ Lfori=1,2,... k} Lt =Up U

Lower-bound methods:
e fooling set method
@ lemma guaranteeing the existence of a fooling set

Let N be an NFA with the state set {1,2,...,n}. If for each i,
o {i} is reachable,

o {1,2,...,i} is co-reachable (i.e., reachable in NF),
then N is minimal.
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k-th Power on Subword-Closed Languages

If L is accepted by an n-state NFA N, then L¥ is accepted by a
kn-state NFA (take k copies of N and connect them properly).

Theorem (the most interesting result of this chapter)

Let L be accepted by an NFA A. Then L is subword-closed,
and every NFA for L* has at least kn states.

ol Y.

Proof idea.

@ show that L¥ is recognized by a partial DFA D
— k copies of A connected by transitions (jn, b, jn + 1)

e {i} is reachable in D
e {1,2,...,i} is co-reachable in D
= D is a minimal NFA Ol

v

Michal Hospodar Descriptional Complexity of Formal Systems 18/27



The Most Interesting Result of This Chapter

NFA A for L

A - DD

L¥ is recognized by partial DFA D

PG - 2D

@abe a>i
2% p T

e {i} is reachable and {1,2,...,/} is co-reachable

= D is a minimal NFA = every NFA for L* has at least kn states
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L* and L* on Subclasses of Convex Languages

Our results

L* 1z L+ |Z]
free kin—1)+1 1 n 1
ideal kin—1)+1 1 n 1
prefix-, suffix-closed kn 2 n 2
factor-, subword-closed | kn 2 1 1
convex kn 2 n 1
regular kn 2[DO] | n 1 [HK]

@ all alphabets are optimal

[DO] = Domaratzki, Okhotin: State complexity of power.
Theoret. Comput. Sci, 2009
[HK] = Holzer, Kutrib: Nondeterministic descriptional complexity
of regular languages. Internat. J. Found. Comput. Sci., 2003
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4. The Magic Number Problem for the Cut Operation
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4. The Magic Number Problem for the Cut Operation
The magic number problem for NFA-to-DFA conversion

@ stated by lwama, Kambayashi, Takaki 2000:
“Given a minimal n-state NFA,
how many states can the equivalent minimal DFA have?”

=- not only worst-case complexity, but rather
all possible complexities of the resulting languages

Cut operation (motivated by UNIX text processors)

The cut of languages K and L is the language
KI'L={uv|ue K,ve L u/ ¢ K for every non-empty prefix v of v}

The magic number problem for cut

Given two minimal DFAs of m and n states,
how many states can the minimal DFA
for the cut of their languages have?
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The Cut Operation

Definition (Berglund, Bjérklund, Drewes, v.d.Merwe, Watson 2013)

The cut of languages K and L over ¥ is the language
K'L={uv|ue K ve L u/ ¢ K for every non-empty prefix v of v}

The complexity of cut on DFAs (Drewes, Holzer, Jakobi, v.d.M. 2017)

X[ >2 | (m—1)n+m with binary witnesses
X|=1| k=max{2m—1,m+ n— 2}

Our results on the magic number problem for cut

1.2m-1 | 2m..n—1 | n.m+n—2 | k+1..(m—1)n+m
x| >2 v v v v
Z=1| v X v -

@ the magic number problem completely solved for every alphabet
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5. The Ranges of Accepting State Complexities
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5. The Ranges of Accepting State Complexities

Definition (Dassow 2016)

The accepting state complexity of L
:= the smallest number of accepting states in any DFA for L.

Lemma (Dassow 2016)

.= the number of accepting states in the minimal DFA for L.

Here: the ranges of accepting state complexities for
@ intersection,
@ symmetric difference,

right and left quotient,

reversal,

permutation on binary finite languages,

cut operation
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Accepting State Complexities for Symmetric Difference

Example (Symmetric Difference)
W.lo.g, m<n Leta>1.

e Minimal unary DFA with m accepting states:

A~> i@i

e Minimal unary DFA with n accepting states:

O DO O e

e Minimal unary DFA for L(A) & L(B) with « accepting states:

Cﬂ@i i@i@i@i i@i i
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Results on Ranges of Accepting State Complexities

operation range of asc  |X|
difference [0, 0) 1
union [1,00) 1
concatenation [1, 00) 1
star [1,00) 1
complementation [1, 00) 1
intersection C [0, mn]
intersection [0, mn] 2
right and left quotient [0, 00) 1
cut operation [0, 00) 1
symmetric difference [1, 00) 1
reversal [1, 00) 2
permutation on binary finite languages | [2, 00) 2
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© concatenation on AFAs: 2™ +n+41
(solves the conjecture from FJY 1990)
@ forever operator L — (X*L)¢:

o trade-offs between six different models of finite automata
e exact in 32 out of 36 cases

© the complexity of L¥ and LT on NFAs
in subclasses of convex languages

@ the magic number problem for cut on DFAs:
completely solved

© ranges of accepting state complexities:
intersection, symmetric difference, right and left quotient,
reversal, permutation, and cut
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Open Problems

@ concatenation on unary AFA languages:
m+n—1<-<m+n+1

o MNFA-to-{DFA, partial DFA, NFA, MNFA} trade-offs
for the forever operator L — (X*L€)¢

o DFA complexity of L¥ and L
in subclasses of convex languages

@ cut operation on NFAs:
complexity, magic number problem

@ ranges of accepting state complexities
for other operations (shuffle, power...)
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Questions from Reviewers

G. Andrejkova

@ Operations on languages in each class could be combined in
many different ways. For example, the definition of
“symmetric difference” operation is done by other investigated
binary operations. How can you find interesting and important
combinations of operations for the theory of formal languages?

Answer:

@ 2007 Salomaa, Salomaa, Yu: State complexity of combined
operations — start of systematic study

@ many other combined operations without complementation...

@ 2011 Brzozowski, Grant, Shallit: Closures in formal languages
and Kuratowski's theorem — star-complement-star

@ 1996 Birget: (X*L) — not intended as a combined operation
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Questions from Reviewers

G. Andrejkova
@ Operation “forever” in the open problem 4. You have upper
and lower bounds on trade-offs starting with MNFA. Could
you explain why is it difficult to determine them?

Each state is equivalent to an antichain = we count antichains

NFA-to-DFA trade-off:
@ reachable states are of the form {{s}, 5>, Ss,..., Sk}
where {5, S3,..., Sk} is an antichain in 2Q\{s}
@ there is M(n — 1) such states

MNFA-to-DFA trade-off:
@ reachable states are of the form {/, S,, Ss, ..., Sk}
where {1, S5, S3,..., S} is an antichain in 29
@ there is at most M(n) such states,
but we do not know how many of them are reachable
e computations: M(n—1) < - < M(n)
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Questions from Reviewers

@ The notation asc is used for the state complexity of languages
accepted by alternating finite automata as well as for the
accepting state complexity of regular languages.

Answer: We could use afa-sc(L) for alternating state complexity.

J. Dassow

The notation is not very unified;
@ in most cases the author uses {m, n) without a specification
of the complexity measure, however, in Chapter 6 the measure
is used as an upper index;

@ sometimes the unary case is denoted by 1, sometimes by u.

Answer:
The notations fim, n) and fi(m, n) are just for two different
functions. The index 1 does not mean “unary”,
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Questions from Reviewers

@ In Section 6.4 the operation can only be applied to finite
languages such that the notations without f in the upper
index (in Theorem 6.17) should be avoided.

@ In Table 6.1, the result concerning permutations is not
correctly given since the notation for the range is false.

Theorem 6.17. We have

{0}, ifn =0
gii(n) = gl (n) = N, ifn=1
N\ {1}, ifn>2

For unary regular languages, we have giie*(n) = {n} if n > 0.

In the journal version of CIAA 2018 paper submitted to I1JFCS,

the notation g% (n) is avoided, only gef(n) is used.

Michal Hospodar Descriptional Complexity of Formal Systems 32/27



Questions from Reviewers

F. Mraz: remark for p.74, paragraph Next, the number...

@ The proposed modification of DFA B (when m = 1) consisting
of adding one non-final state into DFA B results into oo — 1
accepting states instead of the desired a accepting states as
the resulting automaton has only m+ a + 1 = o + 2 states
out of which 3 states will be non-final. | think that the
automaton B should not be modified, and the original
automaton B sould suffice.

Answer: You are right if o # 2n — 2.
However, if m =1 and a = 2n — 2, then the resulting DFA
would be non-minimal without a modification.

A detailed explanation is in the next slide.
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ASC of Cut, Case m=1and o« =2n—2

Without modification

nOL0,0,0,05

(D@D

Result has «/2 final states
after minimization

With incorrect modification

nOL0L0L0L0.0

(DD

Result has v — 1 final states
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ASC of Cut, Case m=1and o« =2n—2

Without modification With correct modification

2O0L0,0,0,0 I 0.0:60,0,0.0 5

(DD DD~

DD




