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Abstract

Given a family of continuous real functions G, let RG be a binary relation defined
as follows: a continuous function f : R → R is in the relation with a closed set
E ⊆ R if and only if there exists g ∈ G such that f � E = g � E. We consider
a Galois connection between families of continuous functions and hereditary
families of closed sets of reals naturally associated to RG . We study complete
lattices determined by this connection and prove several results showing the
dependence of the properties of these lattices on the properties of G. In some
special cases we obtain exact description of these lattices.
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1. Introduction and statement of main results

Let X and Y be topological spaces. Denote byCL(X) the family of all closed
subsets of X, and by C(X,Y ) the family of all continuous functions f : X → Y .
Given a fixed family G ⊆ C(X,Y ), let RG be the binary relation defined by

RG = {(f,E) ∈ C(X,Y )×CL(X) : (∃g ∈ G) f �E = g�E}.

For F ⊆ C(X,Y ) and E ⊆CL(X) denote

EG(F) = {E ∈CL(X) : (∀f ∈ F) (f,E) ∈ RG},
FG(E) = {f ∈ C(X,Y ) : (∀E ∈ E) (f,E) ∈ RG}.

The mappings

EG : P(C(X,Y ))→ P(CL(X)) and FG : P(CL(X))→ P(C(X,Y ))
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form a Galois connection between the partially ordered sets (P(C(X,Y )),⊆)
and (P(CL(X)),⊆). This means that EG and FG are inclusion-reversing map-
pings such that for any F ⊆ C(X,Y ) and E ⊆CL(X) one has

E ⊆ EG(F) if and only if FG(E) ⊇ F .

The compond mappings

EGFG : P(CL(X))→ P(CL(X)) and FGEG : P(C(X,Y ))→ P(C(X,Y ))

are closure operators on P(CL(X)) and P(C(X,Y )), respectively. Hence, for
any E ⊆ CL(X), E ⊆ EGFG(E) and EGFG(E) = E if and only if E = EG(F)
for some F ⊆ C(X,Y ). Similarly, for any F ⊆ C(X,Y ), F ⊆ FGEG(F) and
FGEG(F) = F if and only if F = FG(E) for some E ⊆CL(X). Let us denote

KG = {E ⊆CL(X) : EGFG(E) = E} = {EG(F) : F ⊆ C(X,Y )},
LG = {F ⊆ C(X,Y ) : FGEG(F) = F} = {FG(E) : E ⊆CL(X)}

the classes of all closed families with respect to the closure operators associated
with the relationRG . The familiesKG and LG are in a one-to-one correspondence
and, when ordered by inclusion, form dually isomorphic complete lattices. In
fact, the mapping E 7→ FG(E) is an isomorphism (KG ,⊆) → (LG ,⊇) and its
inverse is the mapping F 7→ EG(F). Moreover, the infimum in both lattices
coincides with the set-theoretic intersection. Let us note that in a complete
lattice there exist the least and the greatest elements.

For a history of Galois connections and their applications we refer the reader
to [4]. For more on their relations to complete lattices and formal concept
analysis see [2]. Let us note that Galois connections occur naturally in various
settings; for some examples related to analysis and topology see [6] or [8]. For
applications of Galois connections in the theory of cardinal characteristics see
[1]. Our study of restrictions of continuous functions was loosely motivated by
classical notions of Kronecker and Dirichlet sets from harmonic analysis, see [7]
and [5].

In the present paper we deal with the case X = Y = R. Our aim is to analyze
the structure of the lattices KG and LG for certain simple families G ⊆ C(R,R).
In Section 2 we characterize the elements of the lattices KG and LG . We prove
that every element of KG is a hereditary family of closed sets and that each
hereditary family of closed sets is the least element of some lattice KG . We also
find a family G such that KG is the lattice of all nonempty hereditary families
of closed sets. In Sections 3–5 we describe the lattice KG for three families G
determined by a single continuous function g: the singleton {g}, the family of
all functions f such that f(x) < g(x) for all x, and the family of all functions
f satisfying f(x) 6= g(x) for all x. In each case we characterize all families that
yield the same lattice KG .

1.1. Notation and terminology.

For F ⊆ C(R,R) and E ⊆ R we denote F � E = {f � E : f ∈ F}. For
x ∈ R we also denote F [x] = {f(x) : f ∈ F}. If H ⊆ C(E,R), we denote
[H] = {f ∈ C(R,R) : f �E ∈ H}. We write [h] instead of [{h}] for h ∈ C(E,R).
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For E ⊆ R let CL(E) denote the family of all closed subsets of E. To avoid
ambiguity, we use notation CL(E) only if E is closed; otherwise the family of
all subsets of E that are closed in R is expressed by the term CL(R) ∩ P(E).
Denote Eqf,g = {x ∈ R : f(x) = g(x)} for f, g ∈ C(R,R). Then for any
F ⊆ C(R,R) and E ⊆ CL(R) we have EG(F) =

⋂
f∈F

⋃
g∈GCL(Eqf,g) and

FG(E) =
⋂
E∈E

⋃
g∈G [g�E].

We shall identify a function f : R → R and its graph {(x, y) ∈ R2 : f(x) =
y}. We say that a family G ⊆ C(R,R) is complete if g ∈ G holds for every
g ∈ C(R,R) satisfying g ⊆

⋃
G. A family G is connected if for any f, g ∈ G and

x 6= y there exists h ∈ G such that h(x) = f(x) and h(y) = g(y).
Let R∗ = R ∪ {−∞,∞}. For f, g ∈ C(R,R∗), define inequalities f < g and

f ≤ g by (∀x ∈ R) f(x) < g(x) and (∀x ∈ R) f(x) ≤ g(x), respectively. Further,
let (f, g) = {h ∈ C(R,R) : f < h < g} and [f, g ] = {h ∈ C(R,R) : f ≤ h ≤ g}.
If there is no ambiguity we denote the constant function f : x 7→ z ∈ C(R,R∗)
simply by z.

Let X be a family of subsets of a topological space. We say that X is
separated if for any distinct sets X,Y ∈ X one can find disjoint open sets U, V
such that X ⊆ U , Y ⊆ V and (∀Z ∈ X )(Z ⊆ U or Z ⊆ V ).

1.2. Main results

We will prove the following equalities and inclusions.

Theorem 1.1. Let g ∈ C(R,R) and let G ⊆ C(R,R) be nonempty.

(1a) K{g} = {CL(E) : E ∈CL(R)}.
(1b) K{g} ⊆ KG if and only if G[x] 6= R for every x ∈ R.
(1c) K{g} ⊇ KG if and only if G = [f, h ] for some f, h ∈ C(R,R∗) such that

f ≤ h, −∞ < h, and f <∞.

(2a) K(g,∞) = {CL(R) ∩ P(X) : X ⊆ R}.
(2b) K(g,∞) ⊆ KG if and only if for every x ∈ R there exists f ∈ C(R,R) such

that EG({f}) = {E ∈CL(R) : x /∈ E}.
(2c) K(g,∞) ⊇ KG if and only if G is complete and connected.

(3a) K(−∞,g)∪(g,∞) =
{
CL(R) ∩

⋃
X∈X : X ⊆ P(R) is separated

}
.

(3b) K(−∞,g)∪(g,∞) ⊆ KG if and only if CL(R) ∩ P(R \ {x}) ∈ KG for every
x ∈ R and CL(R) ∩ (P(U) ∪ P(R \ clU)) ∈ KG for every regular open set
U ⊆ R.

(3c) K(−∞,g)∪(g,∞) ⊇ KG if and only if G =
⋃
i∈I Gi for some linearly ordered

set (I,<) and an indexed system of complete connected families {Gi : i ∈ I}
such that for every i ∈ I there exist functions fi, hi ∈ C(R,R∗) satisfying⋃

j<i

Gj ⊆ (−∞, fi), Gi ⊆ (fi, hi) and
⋃
j>i

Gj ⊆ (hi,∞).

First three statements are proved in Section 3 (Theorems 3.1, 3.2 and 3.3),
statements (2a)–(2c) in Section 4 (Theorems 4.1, 4.2 and 4.5), and (3a)–(3c) in
Section 5 (Theorems 5.1, 5.2 and 5.5).
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2. The elements of lattices KG and LG

We begin with two extremal cases.

Proposition 2.1. Let G ⊆ C(R,R).

(1) K∅ = {∅,CL(R)}, L∅ = {∅, C(R,R)}.
(2) KC(R,R) = {CL(R)}, LC(R,R) = {C(R,R)}.

If G 6= ∅ then every family E ∈ KG is nonempty because it contains ∅, and
every F ∈ LG is nonempty because G ⊆ F . Hence, ∅ ∈ KG if and only if ∅ ∈ LG
if and only if G = ∅.

Proposition 2.2. Let G ⊆ C(R,R), G 6= ∅.

(1) The least element of KG is EG(C(R,R)) = {E ∈CL(R) : G �E = C(E,R)}.
(2) The least element of LG is FG(CL(R)) = FG({R}) = G.

It follows that the lattices KG and LG have at least two elements if and only
if G 6= C(R,R).

By Proposition 2.2 (2), every family G ⊆ C(R,R) is the least element of LG .
Now we are going to characterize families E ⊆CL(R) that can be least elements
of lattices KG .

We say that a family E ⊆ CL(R) is hereditary if for any D,E ∈ CL(R), if
D ⊆ E and E ∈ E then D ∈ E . We show that the elements of lattices KG are
exactly hereditary subfamilies of CL(R) and every hereditary family E ⊆CL(R)
is the least element of some lattice KG .

Proposition 2.3. Let E ⊆CL(R). The following conditions are equivalent.

(1) There exists G ⊆ C(R,R) such that E ∈ KG.
(2) E is hereditary.

Proof. (1)⇒ (2). If E ∈ KG then E = EG(F) for some F ⊆ C(R,R). It follows
from the definition that the family EG(F) is hereditary.

(2) ⇒ (1). Fix f ∈ C(R,R). For every E ∈ E , fix gE ∈ C(R,R) such that
Eqf,gE = E and let G = {gE : E ∈ E}. Then E = EG({f}) ∈ KG .

Lemma 2.4. Let I, J ⊆ R be non-degenerate, bounded, closed intervals. For
every n ∈ ω, let xn ∈ int I be distinct and An ⊆ J be dense in J . Then there
exists an increasing bijection f : I → J such that (∀n ∈ ω) f(xn) ∈ An.

Proof. Let us note that any increasing bijection from I to J is necessarily con-
tinuous. Define a sequence of increasing bijections fn : I → J by induction as
follows. Let f0 be linear. For every n, let a0, . . . , an+1 be the increasing enumer-
ation of the set {a, b}∪{xj : j < n}, where I = [a, b]. Assume that fn : I → J is
an increasing bijection which is linear on each interval [aj , aj+1] and moreover
the function fn − 1

2f0 is strictly inceasing. For every j ≤ n, if xn /∈ (aj , aj+1)
then let fn+1(x) = fn(x) for every x ∈ [aj , aj+1]. If xn ∈ (aj , aj+1), let fn+1

be defined linearly on intervals [aj , xn] and [xn, aj+1], where fn+1(aj) = fn(aj),
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fn+1(aj+1) = fn(aj+1), and fn+1(xn) ∈ An is chosen so that fn+1 − 1
2f0 is

strictly increasing and for every x ∈ (aj , aj+1), |fn+1(x)− fn(x)| < 2−n. We
obtain a uniformly convergent sequence of increasing bijections fn : I → J . Its
limit f : I → J is continuous and surjective. Function f − 1

2f0, being a limit of
a sequence of strictly increasing functions, is non-decreasing, hence f is strictly
increasing. For every n we have f(xn) = fn+1(xn) ∈ An.

Theorem 2.5. Let E ⊆ CL(R) be hereditary. Then there exists G ⊆ C(R,R)
such that E is the least element of KG.

Proof. Fix disjoint countable dense setsD0, D1 ⊆ R and h : R→ {0, 1} such that
both h−1[{0}] and h−1[{1}] are dense. Given a hereditary family E ⊆ CL(R),
let G be the family of all functions g ∈ C(R,R) such that Eg ∈ E , where
Eg = cl

{
x ∈ R : g(x) ∈ Dh(x)

}
. We prove that E = EG(C(R,R)).

Let E ∈ E and f ∈ C(R,R) be arbitrary. We will find g ∈ [f �E] such that
Eg ⊆ E. Without a loss of generality we may assume that the complement
of E is a disjoint union of bounded open intervals and that the values of f at
the endpoints of each of these intervals are different. We can accomplish this
by adding to E an unbounded discrete set Z ⊆ R \ E dividing each interval
adjacent to E, and suitably modifying the values of f outside E to ensure that
f(z) /∈ Dh(z) for z ∈ Z and f(a) 6= f(b) for each interval [a, b] adjacent to E∪Z.

Let [a, b] be a closed interval adjacent to E. Assume that f(a) < f(b).
Let I = [f(a), f(b)], J = [a, b], {xn : n ∈ ω} = (D0 ∪ D1) ∩ int I, and for
every n, let An = J ∩ h−1[{i}] where i ∈ {0, 1} is such that xn /∈ Di. Let
gJ : I → J be the increasing bijection obtained in Lemma 2.4. Its inverse
g−1J : [a, b]→ [f(a), f(b)] is an increasing bijection as well and for every x ∈ (a, b)
we have g−1J (x) /∈ Dh(x). Similarly, if f(b) < f(a) then there exists a decreasing

bijection g−1J : [a, b] → [f(b), f(a)] such that g−1J (x) /∈ Dh(x) for all x ∈ (a, b).
Define g : R→ R by

g(x) =

{
f(x), if x ∈ E,
g−1J (x) if J is a closed interval adjacent to E and x ∈ int J.

Obviously, g is continuous and Eg ⊆ E. Since E ∈ E and E is hereditary, we
have Eg ∈ E , hence g ∈ G.

We have shown that for every E ∈ E and f ∈ C(R,R) there exists g ∈ G such
that g �E = f �E, hence E ⊆ EG(C(R,R)). To prove the opposite inclusion,
let us take E ∈CL(R) \ E . Let {xn : n ∈ ω} be a countable dense subset of E,
and for every n, let An = Dh(xn). By repeated use of Lemma 2.4 we can find
f ∈ C(R,R) such that f(xn) ∈ An for all n. Since E is hereditary and E /∈ E ,
for every g ∈ G we have E * Eg, hence there exists n such that xn ∈ E \ Eg.
We have f(xn) = Dh(xn) and g(xn) /∈ Dh(xn), hence f �E 6= g �E. It follows
that f �E /∈ G �E, thus E /∈ EG(C(R,R)).

Theorem 2.6. There exists G ⊆ C(R,R) such that KG contains every nonempty
hereditary family E ⊆CL(R).
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Proof. Let {Eα : α < 2ω} be a one-to-one enumeration of all nonempty closed
subsets of R. For each α < 2ω fix some xα ∈ Eα. Using transfinite induction for
α < 2ω we define yα ∈ R and a sequence of functions {gα,n : n ∈ ω} ⊆ C(R,R).

We proceed as follows. If yβ and gβ,n are defined for all β < α and n ∈ ω,
find yα /∈ {yβ : β < α} ∪ {gβ,n(xα) : β < α, n ∈ ω}. Let {Iα,n : n ∈ ω} be the
family of all nonempty open intervals with rational endpoints having nonempty
intersection with Eα. For every n, there exists a function gα,n ∈ C(R,R) such
that gα,n(x) = yα if and only if x /∈ Iα,n, and gα,n(xβ) 6= yβ for all β < α.

Let G = {gα,n : α < 2ω, n ∈ ω}. For every α < 2ω, let fα be the constant
function with value yα. We show that fα �Eα /∈ G �Eα. If g ∈ G then g = gβ,n
for some β < 2ω and n ∈ ω. If β < α then gβ,n(xα) 6= yα by the definition
of yα. Since xα ∈ Eα, we have fα �Eα 6= g �Eα. If β = α then there exists
x ∈ Eα ∩ Iα,n. We have gα,n(x) 6= yα, hence fα �Eα 6= g �Eα. Finally, if β > α
then gβ,n(xα) 6= yα by the definition of gβ,n. Again, fα �Eα 6= g�Eα.

Let E be a nonempty hereditary family of closed subsets of R. Then ∅ ∈ E ,
hence each E ∈CL(R) \ E is nonempty. Denote F = {fα : Eα ∈CL(R) \ E}. If
E ∈ E and f ∈ F then f = fα for some α < 2ω such that Eα ∈CL(R)\E , hence
Eα * E. There exists n such that E ⊆ R \ Iα,n. By the definition of gα,n we
have fα �E = gα,n �E, hence fα �E ∈ G �E. It follows that E ∈ EG(F), and we
conclude that E ⊆ EG(F). Conversely, if E ∈CL(R) \ E then E = Eα for some
α < 2ω. Since fα �Eα /∈ G �Eα and fα ∈ F , we have E /∈ EG(F). It follows that
E = EG(F), hence E ∈ KG .

3. Results for family G = {g}

We show that if G is a singleton then the lattice KG is isomorphic to the
complete lattice (CL(R),⊆) of all closed subsets of R. Let us note that in
(CL(R),⊆) we have

∧
E =

⋂
E and

∨
E = cl

(⋃
E
)
, for any E ⊆CL(R).

Theorem 3.1. Let G = {g}, g ∈ C(R,R). Then KG = {CL(E) : E ∈ CL(R)}
and LG = {[g�E] : E ∈CL(R)}.

Proof. It is clear that (f,E) ∈ RG if and only if E ⊆ Eqf,g, for any f ∈ C(R,R)
and E ∈CL(R). Hence, for any F ⊆ C(R,R) we have

EG(F) =
⋂
f∈F

CL(Eqf,g) =CL
(⋂

f∈F Eqf,g

)
.

Since for any set E ∈CL(R) there exists f ∈ C(R,R) such that E = Eqf,g, we
obtain that KG = {EG(F) : F ⊆ C(R,R)} = {CL(E) : E ∈ CL(R)}. For any
E ⊆CL(R) we also have

FG(E) =
⋂
E∈E

[g�E] =
[
g�cl

(⋃
E
)]
,

hence LG = {FG(E) : E ⊆CL(R)} = {[g�E] : E ∈CL(R)}.
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It can be easily seen that if G = {g} then each element E ∈ KG can be
generated by a family consisting of a single function f : if E ∈ KG then there
exists E ∈CL(R) such that E =CL(E), for any f ∈ C(R,R) satisfying Eqf,g =
E we then have E = EG({f}). Similarly, each F ∈ LG can be expressed as
FG({E}) for some E ∈CL(R). Moreover, this set E is unique; if D,E ∈CL(R)
are distinct then FG({D}) 6= FG({E}) by the normality of R.

The next two results allows us to characterize families G ⊆ C(R,R) for which
the lattice KG is the same as in Theorem 3.1.

Theorem 3.2. Let G ⊆ C(R,R) be nonempty. The following conditions are
equivalent.

(1) {CL(E) : E ∈CL(R)} ⊆ KG.
(2) The least element of KG is {∅}.
(3) For each x ∈ R, G[x] 6= R.

Proof. (1)⇒ (2) is trivial.
(2) ⇒ (3). If EG(C(R,R)) = {∅} then for each nonempty E ∈CL(R) there

exists f ∈ C(R,R) such that f �E /∈ G �E. In particular, for every x ∈ R there
exists y ∈ R such that if f(x) = y then f �{x} /∈ G �{x}, hence y /∈ G[x].

(3)⇒ (1). Fix a function h ∈ G. For every E ∈CL(R) and x /∈ E let us take
y /∈ G[x] and a function fx ∈ [h�E] such that fx(x) = y. Let F = {fx : x /∈ E}.
If D ∈ EG(F) then for any x /∈ E we have fx �D ∈ G �D, hence x /∈ D. It
follows that D ⊆ E and thus EG(F) ⊆CL(E). The opposite inclusion is clear,
hence we obtain CL(E) = EG(F) ∈ KG .

Theorem 3.3. Let G ⊆ C(R,R) be nonempty. The following conditions are
equivalent.

(1) KG ⊆ {CL(E) : E ∈CL(R)}.
(2) There exist h1, h2 ∈ C(R,R∗) such that G = {g ∈ C(R,R) : h1 ≤ g ≤ h2}.

Proof. (1) ⇒ (2). Denote H =
⋃
G. Let us first show that H is a closed

subset of R2. Assume that (x, y) ∈ clH. Since G is a nonempty family of
continuous functions, there exists in H a sequence of points {(xn, yn) : n ∈ ω}
converging to (x, y) and such that all xn are distinct. Let f ∈ C(R,R) be such
that f(xn) = yn for every n and f(x) = y. Then {xn} ∈ EG({f}) for every n.
Since EG({f}) ∈ KG , it follows from (1) that cl{xn : n ∈ ω} ∈ EG({f}), hence
{x} ∈ EG({f}) and so (x, y) ∈ H.

We show that G[x] = {g(x) : g ∈ G} is connected, for every x ∈ R. Otherwise
we can find g1, g2 ∈ G and y /∈ G[x] such that g1(x) < y < g2(x). Since
H is closed, there exist a, b, c, d ∈ R such that x ∈ (a, b), y ∈ (c, d), and(
(a, b) × (c, d)

)
∩ H = ∅. Let f ∈ C(R,R) be such that f(a) = g1(a) and

f(b) = g2(b). Then {a}, {b} ∈ EG({f}), hence also {a, b} ∈ EG({f}), and thus
there exists g ∈ G such that g(a) = g1(a) and g(b) = g2(b). By Intermediate
Value Theorem there is z ∈ (a, b) such that g(z) ∈ (c, d), which contradicts the
assumption that

(
(a, b)× (c, d)

)
∩H is empty. So G[x] is a connected closed set,

that is, a closed interval.
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For every x ∈ R denote h1(x) = inf G[x] and h2(x) = supG[x]. We show that
h1, h2 are continuous. If y < h1(x) then there exist a, b, c, d ∈ R such that x ∈
(a, b), y ∈ (c, d), and

(
(a, b)×(c, d)

)
∩H = ∅. It follows

(
(a, b)×(−∞, d)

)
∩H = ∅,

otherwise one could find a contradiction using Intermediate Value Theorem, as
before. We can conclude that h1 is lower semi-continuous. Since h1 is the
infimum of a family of continuous functions, it is also upper semi-continuous,
and hence continuous. A similar argument shows the continuity of h2.

It remained to show that G = {g ∈ C(R,R) : h1 ≤ g ≤ h2}. The inclusion
from left to right is clear. If g ∈ C(R,R) is such that h1 ≤ g ≤ h2, then for every
x ∈ R we have g(x) ∈ G[x], hence {x} ∈ EG({g}). By (1), also R ∈ EG({g}),
hence g ∈ G.

(2) ⇒ (1). Let E ∈ KG , that is, E = EG(F) for some F ⊆ C(R,R), and let
E =

⋃
E . Then E = {x ∈ R : F [x] ⊆ G[x]}. First, let us show that E ∈CL(R).

If x ∈ clE then there exists a sequence {xn : n ∈ ω} in E such that xn → x. For
any y ∈ F [x], let us take some f ∈ F such that f(x) = y. For every n we have
f(xn) ∈ F [xn] ⊆ G[xn], hence h1(xn) ≤ f(xn) ≤ h2(xn). By the continuity of
f , h1, and h2 we obtain that h1(x) ≤ f(x) ≤ h2(x), hence y ∈ G[x]. We have
F [x] ⊆ G[x], hence x ∈ E, and it follows that E is closed.

We show that for every f ∈ F there exists g ∈ G such that f �E = g �E.
Fix some f ∈ F . For every x ∈ E we have f(x) ∈ G[x], hence h1(x) ≤ f(x) ≤
h2(x). Let g(x) = min{max{f(x), h1(x)}, h2(x)}, for all x ∈ R. Clearly, g is
continuous and g � E = f � E. Since G is nonempty, we have h1 ≤ h2, and
hence also h1 ≤ g ≤ h2. By (2), we have g ∈ G. It follows that E ∈ E , hence
E =CL(E).

Now we can characterize those families G for which KG = {CL(E) : E ∈
CL(R)}. Let us recall that for f, h ∈ C(R,R∗) we denoted [f, h] = {g ∈ C(R,R) :
f ≤ g ≤ h}, where f ≤ g if and only if (∀x ∈ R) f(x) ≤ g(x).

Corollary 3.4. Let G ⊆ C(R,R). The following conditions are equivalent.

(1) KG = {CL(E) : E ∈CL(R)}.
(2) There exist f, h ∈ C(R,R∗) such that f ≤ h, f−1[R] ∪ h−1[R] = R, and
G = [f, h].

It follows that the same lattice KG is obtained for families G of the form
(−∞, g ] = {f ∈ C(R,R) : f ≤ g} and [g,∞) = {f ∈ C(R,R) : g ≤ f}.

Corollary 3.5. Let g ∈ C(R,R). Then K(−∞,g] = K[g,∞) = {CL(E) : E ∈
CL(R)}.

4. Results for family G = (g,∞)

Recall that for f, h ∈ C(R,R∗), (f, h) = {g ∈ C(R,R) : f < g < h}, where
f < g is a shorthand for (∀x ∈ R) f(x) < g(x).

Theorem 4.1. Let G = (g,∞) where g ∈ C(R,R). Then KG = {CL(R)∩P(X) :
X ⊆ R}.
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Proof. If E ∈ KG then E = EG(F) for some F ⊆ C(R,R). Denote X =
⋃
E .

Clearly E ⊆ CL(R) ∩ P(X). If E ∈ CL(R) ∩ P(X) then for every x ∈ E we
have x ∈ D for some D ∈ E , hence f(x) > g(x) for all f ∈ F . For every f ∈ F
there exists f ′ ∈ G such that f ′ �E = f �E; it suffices to take f ′ = h′ + g where
h′ > 0 is a continuous function such that h′ �E = (f −g)�E, h′ is linear on each
bounded interval adjacent to E, and constant on unbounded adjacent intervals,
if there are any. It follows that E ∈ E , and we obtain E =CL(R)∩P(X), hence
KG ⊆ {CL(R) ∩ P(X) : X ⊆ R}.

To prove the opposite, let X ⊆ R. Denote F = {fa : a ∈ R \ X}, where
fa(x) = g(x) + |x− a| for all x ∈ R. If E ∈ EG(F) then fa(x) > g(x) for all
x ∈ E and a ∈ R \X, hence E ⊆ X. It follows that EG(F) ⊆ CL(R) ∩ P(X).
The opposite inclusion is clear since F ⊆ FG(CL(R) ∩ P(X)). We obtain that
CL(R) ∩ P(X) = EG(F) ∈ KG , hence {CL(R) ∩ P(X) : X ⊆ R} ⊆ KG .

A similar argument would prove the same result for the family G = (−∞, g).
Nevertheless, it will also follow from Corollary 4.6 below.

We will characterize those families G ⊆ C(R,R) for which KG = {CL(R) ∩
P(X) : X ⊆ R}. Like in the previous section, we characterize both inclusions
separately. For x ∈ R denote Ax =CL(R)∩P(R \ {x}) = {E ∈CL(R) : x /∈ E}.

Theorem 4.2. Let G ⊆ C(R,R) be nonempty. The following conditions are
equivalent.

(1) {CL(R) ∩ P(X) : X ⊆ R} ⊆ KG.
(2) {Ax : x ∈ R} ⊆ KG.
(3) For every x ∈ R there exists f ∈ C(R,R) such that EG({f}) = Ax.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (3). For every x ∈ R, we have {x} /∈ Ax = EG(FG(Ax)), hence there

exists f ∈ FG(Ax) such that f �{x} /∈ G �{x}. We have {f} ⊆ FG(Ax), hence
EG({f}) ⊇ EG(FG(Ax)) = Ax. Conversely, if E ∈CL(R) \ Ax then x ∈ E and
hence f �E /∈ G �E. It follows that E /∈ EG({f}), and we obtain EG({f}) ⊆ Ax.

(3) ⇒ (1). Let X ⊆ R, E = CL(R) ∩ P(X), and F = FG(E). We will show
that EG(F) = E . If not, then there exists E ∈ EG(F) such that E * X. Let
x ∈ E \ X. By (3) there exists f ∈ C(R,R) such that EG({f}) = Ax. Since
E ⊆ Ax, we have FG(E) ⊇ FG(Ax), hence f ∈ FG(E) = F . It follows that
E ∈ EG({f}), and we come to a contradiction.

Note that the family {Ax : x ∈ R} in condition (2) of Theorem 4.2 cannot
be replaced by a smaller one. More precisely, for every z ∈ R there exists
G ⊆ C(R,R) such that Ax ∈ KG for all x 6= z but Az /∈ KG . Indeed, let
G = {f ∈ C(R,R) : (∀x 6= z) f(x) > 0}. For every y ∈ R, let fy(x) = |x− y|.
If y 6= z then EG({fy}) = Ay, hence Ay ∈ KG . Since FG(Az) = {f ∈ C(R,R) :
(∀x 6= z) f(x) > 0} = G, we obtain that EG(FG(Az)) =CL(R), hence Az /∈ KG .

To characterize all families G such that KG ⊆ {CL(R) ∩ P(X) : X ⊆ R} we
need the following notion. We say that a set H ⊆ R2 is functionally connected
if for any two points (x1, y1), (x2, y2) ∈ H such that x1 < x2, there exists a
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continuous function h : [x1, x2] → R such that h(x1) = y1, h(x2) = y2, and the
graph of h is included in H. If H is a functionally connected set then π1[H], the
projection of H to the first coordinate, is connected. If π1[H] has at most one
point then H is functionally connected. If π1[H] has more than one point and
H is functionally connected then H must be pathwise connected. A connected
set need not to be functionally connected, a simple example is the unit circle
{(x, y) : x2 + y2 = 1}.

Lemma 4.3. Let a < b and let H ⊆ R2 be a functionally connected set such
that [a, b] ⊆ π1[H]. Let h : [a, b]→ R be a continuous function such that h ⊆ H,
and let u, v ∈ R be such that points (a, u), (b, v) ∈ H. Then for every open
interval J such that u, v ∈ J and rng(h) ⊆ J , there exists a continuous function
g : [a, b]→ J such that g ⊆ H, g(a) = u, and g(b) = v.

Proof. Let a, b,H, h, u, v, and J be as above. There exists a continuous function
f : [a, b] → R such that f ⊆ H, f(a) = u, and f(b) = v. Let a2, b2 ∈ (a, b) be
such that a2 < b2 and f(x) ∈ J for every x ∈ [a, a2] ∪ [b2, b].

Let us first prove that there exists some a1 ∈ [a, a2] and a continuous function
f1 : [a, a1] → J such that f1 ⊆ H, f1(a) = f(a), and f1(a1) = h(a1). This is
clear if f(x) = h(x) for some x ∈ [a, a2]. If this is not the case then the values
f(a) − h(a) and f(a2) − h(a2) must have the same signs. Without a loss of
generality, assume that f(a) > h(a) and f(a2) > h(a2). Let f ′ : [a, a2] → R be
a continuous function such that f ′ ⊆ H, f ′(a) = f(a), and f ′(a2) = h(a2). Let
a0 = max{x ∈ [a, a2] : f ′(x) = f(x)} and a1 = min{x ∈ [a0, a2] : f ′(x) = h(x)}.
It follows that f ′(x) ∈ J for every x ∈ [a0, a1], and we can define f1(x) = f(x)
for x ∈ [a, a0] and f1(x) = f ′(x) for x ∈ [a0, a1]. Then f1 is as required.

Similarly, there exist b1 ∈ [b2, b] and a continuous function f2 : [b1, b] → J
such that f2 ⊆ H, f2(b1) = h(b1), and f2(b) = f(b). Let g(x) = f1(x) for
x ∈ [a, a1], g(x) = h(x) for x ∈ [a1, b1], and g(x) = f2(x) for x ∈ [b1, b]. Then g
has the required properties.

Lemma 4.4. Let H ⊆ R2 be a functionally connected set such that π1[H] = R.
Then for every f ∈ C(R,R) and E ∈ CL(R) such that f �E ⊆ H, there exists
g ∈ C(R,R) such that g�E = f �E and g ⊆ H.

Proof. Let H, f and E be as assumed. Let us note that for each point (x, y) ∈ H
there exists g ∈ C(R,R) such that g(x) = y and g ⊆ H.

For every closed interval I adjacent to E there exists a continuous function
gI : R → R such that gI ⊆ H and gI coincides with f at the endpoints of I.
Let g(x) = f(x) for x ∈ E and g(x) = gI(x) for x ∈ I if I is a closed interval
adjacent to E. We obtain a function g : R → R such that g �E = f �E and
g ⊆ H.

It remains to show that gI can be chosen so that g is continuous. This is clear
if there are only finitely many such intervals, so we will assume the opposite.
Let {In : n ∈ ω} be one-to-one enumeration of all closed intervals adjacent to
E. We define continuous functions gn = gIn as follows.

If In is unbounded then let gn : In → R be arbitrary continuous function
such that gn ⊆ H and gn coincides with f at the only endpoint of In.
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Assume that In = [an, bn]. For every continuous function h : In → R denote
osc(h) its oscillation, that is, osc(h) = max{h(x) − h(y) : x, y ∈ In}. Let
on = inf{osc(h) : h ∈ Hn}, where Hn is the family of all functions h ∈ C(In,R)
such that h ⊆ H and h � {an, bn} = f � {an, bn}. Choose gn ∈ Hn such that
osc(gn) ≤ on + 2−n.

As above, let g : R → R be a map such that g(x) = f(x) for all x ∈ E and
g(x) = gn(x) for all x ∈ In, n ∈ ω. We prove that g is continuous at every
point z ∈ R. Let us take a convergent sequence zk → z. We will assume that
this sequence is increasing, as it suffices to consider only one-sided limits, and
for decreasing sequences the proof is the same. We may further assume that
zk ∈ R \ E for all k since we have g(x) = f(x) for x ∈ E and f is continuous
at z. For every k, let nk be such that zk ∈ Ink

. If there exist m, l such that
nk = m for all k > l, then g(zk) = gm(zk) for all k > l, hence z ∈ cl Im and
g(zk)→ g(z). So we may assume that nk →∞ and z ∈ E.

To prove that g(zk) → g(z), it will suffice to show that osc(gnk
) → 0. Fix

some h ∈ C(R,R) such that h ⊆ H and h(z) = g(z). By Lemma 4.3, for every
n we have on ≤ diam(f [In] ∪ h[In]). Since both f and h is continuous at z, we
have diam(f [In] ∪ h[In])→ 0, hence osc(gnk

) ≤ onk
+ 2−nk → 0.

Recall that a family G ⊆ C(R,R) is said to be complete if f ∈ G for every
f ∈ C(R,R) such that f ⊆

⋃
G. A complete family G ⊆ C(R,R) is connected if

and only if
⋃
G is functionally connected.

Theorem 4.5. Let G ⊆ C(R,R) be nonempty. The following conditions are
equivalent.

(1) KG ⊆ {CL(R) ∩ P(X) : X ⊆ R}.
(2) G is a complete and connected family.

Proof. (1) ⇒ (2). Denote H =
⋃
G. Clearly, G ⊆ {g ∈ C(R,R) : g ⊆ H}. To

prove the opposite inclusion, let g ∈ C(R,R) be such that g ⊆ H. For every
x ∈ R we have g(x) ∈ G[x], hence {x} ∈ EG({g}). It follows that R ∈ EG({g}),
hence g ∈ G. Thus, G = {g ∈ C(R,R) : g ⊆ H}, hence G is complete.

It remains to show that H is functionally connected. Let (x1, y1), (x2, y2) ∈
H and x1 < x2. Let f ∈ C(R,R) be such that f(x1) = y1 and f(x2) = y2. Since
{x1}, {x2} ∈ EG({f}) and EG({f}) ∈ KG , it follows that {x1, x2} ∈ EG({f}).
Hence, there exists g ∈ G such that g(x1) = y1 and g(x2) = y2.

(2) ⇒ (1). Let E ∈ KG , that is, there exists F ⊆ C(R,R) such that E =
EG(F). Let X =

⋃
E . We will show that E =CL(R) ∩ P(X).

Let us take E ∈ CL(R) ∩ P(X) and an arbitrary f ∈ F . For every x ∈ E
we have {x} ∈ E , hence f(x) ∈ G[x]. It follows that f �E ⊆

⋃
G. Since G is

connected, by Lemma 4.4 there exists g ∈ C(R,R) such that f �E = g �E and
g ⊆

⋃
G. Since G is complete, we have g ∈ G. This shows that E ∈ EG(F), so

CL(R) ∩ P(X) ⊆ E . The opposite inclusion is clear.

From Theorems 4.2 and 4.5 we obtain the following characterization.

Corollary 4.6. Let G ⊆ C(R,R) be nonempty. The following conditions are
equivalent.
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(1) KG = {CL(R) ∩ P(X) : X ⊆ R}.
(2) G is a complete and connected family, and for every x ∈ R there exists a

function f ∈ C(R,R) such that f \
⋃
G = f �{x}.

5. Results for family (−∞, g) ∪ (g,∞)

For f, g ∈ C(R,R), if f(x) 6= g(x) for every x then either f < g or f > g.
Hence, {f ∈ C(R,R) : (∀x ∈ R) f(x) 6= g(x)} = (−∞, g) ∪ (g,∞).

Recall that a family X of subsets of a topological space is said to be separated
if for every distinct X,Y ∈ X there exist disjoint open sets U, V such that
X ⊆ U , Y ⊆ V and (∀Z ∈ X )(Z ⊆ U or Z ⊆ V ).

Theorem 5.1. Let g ∈ C(R,R), G = (−∞, g) ∪ (g,∞). Then

KG =

{
CL(R) ∩

⋃
X∈X

P(X) : X ⊆ P(R) is separated

}
.

Proof. Let E ∈ KG , that is, E = EG(F) for some F ⊆ C(R,R). For x ∈
⋃
E ,

denote Ex = {E ∈ E : x ∈ E}, and let X =
{⋃
Ex : x ∈

⋃
E
}

. We will show
that X is separated and E = CL(R) ∩

⋃
X∈X P(X). Let us note that for every

x, y ∈ R, {x, y} ∈ E if and only if for every f ∈ F ,

(f(x) > g(x) and f(y) > g(y)) or (f(x) < g(x) and f(y) < g(y)).

Hence, the relation ∼, defined by x ∼ y ⇔ {x, y} ∈ E , is an equivalence relation
on
⋃
E , and X is the corresponding partition of

⋃
E into equivalence classes.

Let X =
⋃
Ex and Y =

⋃
Ey be distinct elements of X . Then {x, y} /∈ E ,

hence there exists f ∈ F such that (f(x) − g(x))(f(y) − g(y)) ≤ 0. We have
{x}, {y} ∈ E , so (f(x)− g(x))(f(y)− g(y)) 6= 0. Without a loss of generality we
may assume that f(x) < g(x) and f(y) > g(y). Let U = {u ∈ R : f(u) < g(u)}
and V = {v ∈ R : f(v) > g(v)}. Then U, V are disjoint open sets such that
X ⊆ U , Y ⊆ V . Also, for every z ∈

⋃
E we have f(z) 6= g(z), hence z ∈ U or

z ∈ V . Clearly, z ∈ U implies Ez ⊆ U , and similarly z ∈ V implies Ez ⊆ V ,
hence the family X is separated.

We show that E = CL(R) ∩
⋃
X∈X P(X). The inclusion from left to right

follows from the definition of X . Conversely, if E ∈ CL(R) ∩ P(X) for some
X ∈ X then we have x ∼ y for all x, y ∈ E, hence for every f ∈ F we have
either f <E g or g <E f , where f <E g is a shorthand for (∀x ∈ E) f(x) < g(x).
It follows that f �E ∈ G �E, thus E ∈ EG(F) = E .

We have proved that KG ⊆
{
CL(R) ∩

⋃
X∈X : X ⊆ P(R) is separated

}
. For

the reverse inclusion, let us take E = CL(R) ∩
⋃
X∈X P(X) for some separated

family X ⊆ P(R), and let F = FG(E). Then f ∈ F if and only if f ∈ C(R,R)
and f �E ∈ G �E for every E ∈ E . Hence, F = {f ∈ C(R,R) : (∀X ∈ X )(f <X
g or g <X f)}.

Let us further show that EG(F) = E . Assume that E ∈ CL(R) and E /∈ E .
Then either E *

⋃
X or there exist distinct sets X,Y ∈ X such that E intersects
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both of them. In the first case we take z ∈ E \
⋃
X and f ∈ C(R,R) such that

f(z) = g(z) and f(x) > g(x) for all x 6= z. Then f ∈ F but f(z) /∈ G[z], hence
E /∈ EG(F). In the second case let U, V be disjoint open sets such that X ⊆ U ,
Y ⊆ V and (∀Z ∈ X )(Z ⊆ U or Z ⊆ V ). There exists f ∈ C(R,R) such that
U = {x ∈ R : f(x) > g(x)} and V = {x ∈ R : f(x) < g(x)}. We have f ∈ F but
f �E /∈ G �E, hence again E /∈ EG(F). It follows that EG(F) ⊆ E , hence the
equality holds true, and thus E ∈ KG . Therefore,

{
CL(R) ∩

⋃
X∈X P(X) : X ⊆

P(R) is separated
}
⊆ KG .

If a family X ⊆ P(R) is separated then for every distinct sets X,Y ∈ X one
can find regular open sets U, V such that X ⊆ U , Y ⊆ V and (∀Z ∈ X )(Z ⊆
U or Z ⊆ V ). Indeed, if U, V are disjoint open sets then their regularizations
U ′ = int(clU), V ′ = int(clV ) satisfy U ⊆ U ′, V ⊆ V ′ and are disjoint as well.
We may also take R \ clU ′ instead of V ′.

Let us recall that for x ∈ R we have denoted Ax =CL(R)∩P(R \ {x}). For
every open set U ⊆ R we also denote BU =CL(R) ∩ (P(U) ∪ P(R \ clU)).

Theorem 5.2. Let G ⊆ C(R,R) be nonempty. The following conditions are
equivalent.

(1)
{
CL(R) ∩

⋃
X∈X P(X) : X ⊆ P(R) is separated

}
⊆ KG.

(2) {Ax : x ∈ R} ∪ {BU : U ⊆ R is regular open} ⊆ KG.
(3) For any x ∈ R there exists f ∈ C(R,R) such that EG({f}) = Ax, and for

any x, y ∈ R and any regular open set U ⊆ R such that x ∈ U and y /∈ clU
there exists f ∈ FG(BU ) such that f �{x, y} /∈ G �{x, y}.

Proof. (1)⇒ (2) is obvious.
(2) ⇒ (3). The first part of (3) follows from Theorem 4.2. For the second

part, let U be a regular open set such that x ∈ U and y /∈ clU . By (2), we have
BU ∈ KG , hence EG(FG(BU )) = BU . Since {x, y} /∈ BU , there exists f ∈ FG(BU )
such that f �{x, y} /∈ G �{x, y}.

(3) ⇒ (1). Let X ⊆ P(R) be a separated family and let E = CL(R) ∩⋃
X∈X P(X). Denote F = FG(E). We show that E = EG(F). Let us take

E ∈CL(R), E /∈ E . Then either there exists x ∈ E \
⋃
X , or there exist x, y ∈ E

and distinct sets X,Y ∈ X such that x ∈ X and y ∈ Y .
If x ∈ E \

⋃
X then let f ∈ FG(Ax) be such that f(x) /∈ G[x]. Since E ⊆ Ax,

we have FG(Ax) ⊆ FG(E), hence f ∈ F . It follows that {x} /∈ EG(F), hence
E /∈ EG(F). If x ∈ X, y ∈ Y for some distinct X,Y ∈ X then there exists
an open regular set U such that X ⊆ U , Y ⊆ R \ clU and each Z ∈ X is
covered either by U or by R \ clU . It follows that E ⊆ BU . By (3), there
exists f ∈ FG(BU ) such that f � {x, y} /∈ G � {x, y}. We have f ∈ F , hence
{x, y} /∈ EG(F), so E /∈ EG(F). In both cases it follows that EG(F) = E , hence
E ∈ KG .

Let us note that the family H = {Ax : x ∈ R} ∪ {BU : U is regular open} in
the second condition of Theorem 5.2 is not minimal. Indeed, B∅ = BR =CL(R)
is an element of KG for every G ⊆ C(R,R), hence H \ {B∅} ⊆ KG ⇔ H ⊆ KG
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holds for every G. We do not know whether there exists a regular open set U
and a family G ⊆ C(R,R) such that H \ {BU} ⊆ KG and BU /∈ KG . We also
do not know whether one can find a minimal familyM of nonempty hereditary
families of closed sets having the property that for every G, if M ⊆ KG then
CL(R) ∩

⋃
X∈X P(X) ∈ KG for every separated family X .

To characterize families G such that CL(R) ∩
⋃
X∈X P(X) ∈ KG holds for

every separated family X , we need few more notions. Given a fixed family
G ⊆ C(R,R) and points a = (a1, a2), b = (b1, b2) in R2, let us write a ∼ b if
there exists a function f ∈ G such that f(a1) = a2 and f(b1) = b2. Clearly, if
a ∼ b and a1 = b1 then a = b. We say that family G is transitive if for any points
a, b, c ∈ R2 having distinct first coordinates, if a ∼ b and b ∼ c then a ∼ c. We
say that family G is sequential if a ∼ b holds true whenever a, b ∈

⋃
G and there

exists a sequence of points {an : n ∈ ω} in
⋃
G such that an → a, an ∼ b, and

the first coordinates of points a, b, and an, n ∈ ω, are pairwise distinct.
Let (I,<) be a linearly ordered set, and for every i ∈ I, let Gi ⊆ C(R,R) be

nonempty. We say that indexed system {Gi : i ∈ I} is sliced if for every i ∈ I
there exist functions g−i , g

+
i ∈ C(R,R∗) such that⋃

j<i

Gj ⊆ (−∞, g−i ), Gi ⊆ (g−i , g
+
i ) and

⋃
j>i

Gj ⊆ (g+i ,∞).

Let us note that the assumption Gi 6= ∅ implies that g−i < g+i , for every i ∈ I.

Lemma 5.3. Let {Gi : i ∈ I} be a sliced system. Then for each i ∈ I there exist
functions h−i , h

+
i ∈ C(R,R∗) such that Gi ⊆ (h−i , h

+
i ) and h+i ≤ h−j whenever

i < j.

Proof. For every i, let g−i , g
+
i ∈ C(R,R∗) be such that

⋃
j<i Gj ⊆ (−∞, g−i ),

Gi ⊆ (g−i , g
+
i ), and

⋃
j>i Gj ⊆ (g+i ,∞). It is clear that if

⋃
j<i Gj 6= ∅ then

g−i ∈ C(R,R) and, similarly, if
⋃
j>i Gj 6= ∅ then g+i ∈ C(R,R). Since each

interval (g−i (0), g+i (0)) contains a rational number, I is at most countable.
For simplicity let us assume that I is infinite. In the finite case the proof

will be the same. Let {i(n) : n < ω} be a one-to-one enumeration of I. By
induction let us define

h−i(n)(x) = max
({
h+i(m)(x) : m < n and i(m) < i(n)

}
∪
{
g−i(n)(x)

})
,

h+i(n)(x) = min
({
h−i(m)(x) : m < n and i(m) > i(n)

}
∪
{
g+i(n)(x)

})
.

It is clear that h−i , h
+
i ∈ C(R,R∗), and Gi ⊆ (h−i , h

+
i ). Moreover, if m < n

then either i(m) < i(n) and then h+i(m) ≤ h−i(n) by the definition of h−i(n), or

i(m) > i(n) and then h+i(n) ≤ h−i(m) by the definition of h+i(n). Hence, h+i ≤ h−j
for any i < j.

Lemma 5.4. Let G ⊆ C(R,R) be a complete, transitive and sequential family.
Then there exists a sliced system {Gi : i ∈ I} such that G =

⋃
i∈I Gi and each Gi

is complete and connected.
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Proof. We may assume that G is nonempty. Denote H =
⋃
G. For a, b ∈ R2,

let us write a ≈ b if there exists c such that a ∼ c ∼ b. We prove that ≈ is
an equivalence relation on H. The symmetry and the reflexivity of ≈ is clear.
For the transitivity it suffices to prove that a ∼ b ∼ c ∼ d implies a ≈ d.
Let a = (a1, a2), b = (b1, b2), c = (c1, c2), d = (d1, d2). We may assume that
a 6= b 6= c 6= d, hence a1 6= b1 6= c1 6= d1. If a1 6= c1 then by transitivity of G
we have a ∼ c, and we are done. A similar argument works if b1 6= d1, so we
may assume that a1 = c1 and b1 = d1. Without a loss of generality, let a1 < b1.
Let f ∈ G be such that f(b1) = b2, and let b′ = (b′1, b

′
2) be such that b′1 > b1

and b′2 = f(b′1). Then we have a ∼ b′ and b′ ∼ c. Since b′1 6= d1, it follows that
b′ ∼ d, and thus a ≈ d.

Let {Hi : i ∈ I} be the partition of H corresponding to the equivalence ≈,
and for every i ∈ I let Gi = {f ∈ G : f ⊆ Hi}. Let f ∈ G be arbitrary. For
all points a, b ∈ f we have a ≈ b, hence f ⊆ Hi for some i. It follows that
G =

⋃
{Gi : i ∈ I}. By the definition of ≈ and the completeness of G, each Gi

is connected and complete, and we have
⋃
Gi = Hi. Clearly, if Gi 6= Gj then

(∀f ∈ Gi)(∀g ∈ Gj) f < g or (∀f ∈ Gi)(∀g ∈ Gj) f > g. Thus there exists a
linear order on I such that i < j if and only if f < g for all f ∈ Gi and g ∈ Gj .

For every i that is not a maximal element of I, let us define h1(x) =
inf{supAx,ε : ε > 0} and h2(x) = sup{inf Bx,ε : ε > 0}, where Ax,ε =
Hi∩

(
(x−ε, x+ε)×R

)
and Bx,ε =

⋃
j>iHj∩

(
(x−ε, x+ε)×R

)
. Then h1 is up-

per semi-continuous, h2 is lower semi-continuous, and we have f ≤ h1 ≤ h2 ≤ g
for all f ∈ Gi and g ∈

⋃
j>i Gj . For x ∈ R denote a = (x, h1(x)) and assume

that a ∈ H. Then there exists a sequence {an : n ∈ ω} in Hi converging
to a and such that each an’s first coordinate is distinct from x. Let b ∈ Hi

be such that for every n, first coordinates of a, b, and an are distinct. We
have an ∼ b for every n. Since G is sequential, it follows that a ∼ b, hence
a ∈ Hi. Similarly, if b = (x, h2(x)) and b ∈ H then there exists k ∈ I such that
k = min{j ∈ I : j > i}, and b ∈ Hk. It follows that if h1(x) = h2(x) = y then
(x, y) /∈ H.

By a theorem of Michael (see [3], Exercise 1.7.15 (d)), there exists a con-
tinuous function h+ : R → R such that h1 ≤ h+ ≤ h2 and for every x ∈ R, if
h1(x) < h2(x) then h1(x) < h+(x) < h2(x). It follows that f < h+ < g for
any f ∈ Gi and g ∈

⋃
j>i Gj . A similar argument shows that if

⋃
j<i Gj 6= ∅

then there exists h− ∈ C(R,R) such that f < h− < g for any f ∈
⋃
j<i Gj and

g ∈ Gi. Hence, {Gi : i ∈ I} is a sliced system.

Theorem 5.5. Let G ⊆ C(R,R) be nonempty. Then the following conditions
are equivalent.

(1) KG ⊆
{
CL(R) ∩

⋃
X∈X P(X) : X is separated

}
.

(2) There exists a sliced system {Gi : i ∈ I} of complete connected families such
that G =

⋃
i∈I Gi.

Proof. (1) ⇒ (2). Denote H =
⋃
G. Let g ∈ C(R,R) and g ⊆ H. Since

EG({g}) ∈ KG , there exists a separated family X ⊆ P(R) such that EG({g}) =
CL(R) ∩

⋃
X∈X P(X). For every x ∈ R we have g(x) ∈ G[x], hence {x} ∈
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EG({g}), and thus
⋃
X = R. For any disjoint open sets U, V ⊆ R, if U ∪V = R

then either U = R or V = R. It follows that X = {R}, hence R ∈ EG({g}) and
thus g ∈ G. Hence, G = {g ∈ C(R,R) : g ⊆ H}, so G is complete.

Let us show that G is transitive. Let a = (a1, a2), b = (b1, b2), c = (c1, c2)
be such that a1, b1, c1 are distinct, and let a ∼ b ∼ c. Since for any (x, y) ∈ H
there exists g ∈ G such that g(x) = y, we can find g, h ∈ G such that g(a1) = a2,
g(b1) = h(b1) = b2, and h(c1) = c2. Let f ∈ C(R,R) be any function such that
f(a1) = a2, f(b1) = b2, and f(c1) = c2. Then {a1, b1} ∈ EG({f}), {b1, c1} ∈
EG({f}), and thus also {a1, c1} ∈ EG({f}). It follows that there exists f ′ ∈ G
such that f ′(a1) = a2 and f ′(c1) = (c2), hence a ∼ c.

To show that G is also sequential, assume that a, b ∈ H and there exists a
sequence {an : n ∈ ω} in H such that an → a , an ∼ b, and first coordinates
of points a, b, and an, n ∈ ω, are pairwise distinct. We have to prove that
a ∼ b. There exists a function f ∈ C(R,R) such that f(x) = y, f(u) = v,
and f(xn) = yn for all n, where (x, y) = a, (u, v) = b, and (xn, yn) = an.
Since EG({f}) ∈ KG , by (1) there exists a separated family X ⊆ P(R) such
that EG({f}) = CL(R) ∩

⋃
X∈X P(X). We have {x} ∈ EG({f}) and {xn, u} ∈

EG({f}), for every n.
It suffices to show that {x, u} ∈ EG({f}). If this is not the case then there

exist distinct sets X,Y ∈ X such that x ∈ X and u ∈ Y . Since X is separated,
there exist disjoint open sets U, V such that X ⊆ U , Y ⊆ V , and (∀Z ∈ X )(Z ⊆
U or Z ⊆ V ). Since xn → x, there exists n such that xn ∈ U . But then xn /∈ Y ,
and this is in contradiction with {xn, u} ∈ EG({f}).

We have proved that G is complete, transitive and sequential. Then condi-
tion (2) follows from Lemma 5.4.

(2)⇒ (1). Let {Gi : i ∈ I} be a sliced system of complete connected families
such that G =

⋃
i∈I Gi. By Lemma 5.3, for every i there exist h−i , h

+
i ∈ C(R,R∗)

such that Gi ⊆ (h−i , h
+
i ) and h+i ≤ h

−
j whenever i < j.

Let f ∈ C(R,R) be arbitrary. For every i, denote Xi = {x ∈ R : f(x) ∈
G[x] and h−i (x) < f(x) < h+i (x)}, and let X = {Xi : i ∈ I}. For every i ∈ I,
let us take Ui = {x ∈ R : h−i (x) < f(x) < h+i (x)} and Vi = {x ∈ R : f(x) <
h−i (x) or h+i (x) < f(x)}. Then Ui, Vi are disjoint open sets such that Xi ⊆ Ui
and Xj ⊆ Vi for every j 6= i. It follows that X is a separated family.

We will prove that EG({f}) = CL(R) ∩
⋃
X∈X P(X). If E ∈ EG({f}) then

there exists g ∈ G such that f �E = g�E. We have g ∈ Gi for some i ∈ I, and it
easy to see that E ⊆ Xi. We can conclude that EG({f}) ⊆CL(R)∩

⋃
X∈X P(X).

To prove the opposite inclusion, assume that E /∈ EG({f}), hence f �E 6=
g�E for every g ∈ G. If there exists x ∈ E such that f(x) /∈ G[x] then x /∈

⋃
X ,

and hence E /∈CL(R)∩
⋃
X∈X P(X). Assume further that E ⊆ {x ∈ R : f(x) ∈

G[x]}. If there exists i ∈ I such that f �E ⊆
⋃
Gi, then by Lemma 4.4 there

exists g ∈ Gi such that f �E = g �E, which is impossible. Hence, there exist
i 6= j and x, y ∈ E such that (x, f(x)) ∈

⋃
Gi and (y, f(y)) ∈

⋃
Gj . It follows

that x ∈ Xi and y ∈ Xj , hence E /∈CL(R) ∩
⋃
X∈X P(X).

We have proved that for every f ∈ C(R,R) there exists a separated family
Xf ⊆ P(R) such that EG({f}) = CL(R) ∩

⋃
X∈Xf

P(X). For arbitrary F ⊆
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C(R,R), we have EG(F) =
⋂
f∈F EG({f}). Let us take

X =

{ ⋂
f∈F

Xf : 〈Xf : f ∈ F〉 ∈
∏
f∈F

Xf

}
.

We show that X is separated. Let 〈Xf : f ∈ F〉, 〈Yf : f ∈ F〉 ∈
∏
f∈F Xf be

such that
⋂
f∈F Xf 6=

⋂
f∈F Yf . Then there exists h ∈ F such that Xh 6= Yh.

Since Xh is separated, there exist disjoint open sets U, V ⊆ R such that Xh ⊆ U ,
Yh ⊆ V , and (∀Z ∈ Xh)(Z ⊆ U or Z ⊆ V ). It follows that

⋂
f∈F Xf ⊆ U and⋂

f∈F Yf ⊆ V . For every 〈Zf : f ∈ F〉 ∈
∏
f∈F Xf we have Zh ⊆ U or Zh ⊆ V ,

hence also
⋂
f∈F Zf ⊆ U or

⋂
f∈F Zf ⊆ V .

For E ∈CL(R), we have E ∈ EG(F) if and only if (∀f ∈ F)(∃X ∈ Xf )E ⊆
X if and only if (∃X ∈ X )E ⊆ X. Hence, EG(F) = CL(R) ∩

⋃
X∈X P(X) and

condition (1) follows.
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