A Galois connection related to restrictions of continuous real functions

Peter Eliaš
Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 04001 Košice, Slovakia

Abstract

Given a family of continuous real functions \mathcal{G}, let $R_{\mathcal{G}}$ be a binary relation defined as follows: a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is in the relation with a closed set $E \subseteq \mathbb{R}$ if and only if there exists $g \in \mathcal{G}$ such that $f \upharpoonright E=g \upharpoonright E$. We consider a Galois connection between families of continuous functions and hereditary families of closed sets of reals naturally associated to $R_{\mathcal{G}}$. We study complete lattices determined by this connection and prove several results showing the dependence of the properties of these lattices on the properties of \mathcal{G}. In some special cases we obtain exact description of these lattices.

Keywords: Galois connection, complete lattice, real function, restriction, continuity
2010 MSC: 26A03; 26A15; 54C40

1. Introduction and statement of main results

Let X and Y be topological spaces. Denote by $C L(X)$ the family of all closed subsets of X, and by $C(X, Y)$ the family of all continuous functions $f: X \rightarrow Y$. Given a fixed family $\mathcal{G} \subseteq C(X, Y)$, let $R_{\mathcal{G}}$ be the binary relation defined by

$$
R_{\mathcal{G}}=\{(f, E) \in C(X, Y) \times C L(X):(\exists g \in \mathcal{G}) f \upharpoonright E=g \upharpoonright E\}
$$

For $\mathcal{F} \subseteq C(X, Y)$ and $\mathcal{E} \subseteq C L(X)$ denote

$$
\begin{aligned}
& E_{\mathcal{G}}(\mathcal{F})=\left\{E \in C L(X):(\forall f \in \mathcal{F})(f, E) \in R_{\mathcal{G}}\right\} \\
& F_{\mathcal{G}}(\mathcal{E})=\left\{f \in C(X, Y):(\forall E \in \mathcal{E})(f, E) \in R_{\mathcal{G}}\right\}
\end{aligned}
$$

The mappings

$$
E_{\mathcal{G}}: \mathcal{P}(C(X, Y)) \rightarrow \mathcal{P}(C L(X)) \quad \text { and } \quad F_{\mathcal{G}}: \mathcal{P}(C L(X)) \rightarrow \mathcal{P}(C(X, Y))
$$

[^0]form a Galois connection between the partially ordered sets $(\mathcal{P}(C(X, Y)), \subseteq)$ and $(\mathcal{P}(C L(X)), \subseteq)$. This means that $E_{\mathcal{G}}$ and $F_{\mathcal{G}}$ are inclusion-reversing mappings such that for any $\mathcal{F} \subseteq C(X, Y)$ and $\mathcal{E} \subseteq C L(X)$ one has
$$
\mathcal{E} \subseteq E_{\mathcal{G}}(\mathcal{F}) \quad \text { if and only if } \quad F_{\mathcal{G}}(\mathcal{E}) \supseteq \mathcal{F}
$$

The compond mappings

$$
E_{\mathcal{G}} F_{\mathcal{G}}: \mathcal{P}(C L(X)) \rightarrow \mathcal{P}(C L(X)) \quad \text { and } \quad F_{\mathcal{G}} E_{\mathcal{G}}: \mathcal{P}(C(X, Y)) \rightarrow \mathcal{P}(C(X, Y))
$$

are closure operators on $\mathcal{P}(C L(X))$ and $\mathcal{P}(C(X, Y))$, respectively. Hence, for any $\mathcal{E} \subseteq C L(X), \mathcal{E} \subseteq E_{\mathcal{G}} F_{\mathcal{G}}(\mathcal{E})$ and $E_{\mathcal{G}} F_{\mathcal{G}}(\mathcal{E})=\mathcal{E}$ if and only if $\mathcal{E}=E_{\mathcal{G}}(\mathcal{F})$ for some $\mathcal{F} \subseteq C(X, Y)$. Similarly, for any $\mathcal{F} \subseteq C(X, Y), \mathcal{F} \subseteq F_{\mathcal{G}} E_{\mathcal{G}}(\mathcal{F})$ and $F_{\mathcal{G}} E_{\mathcal{G}}(\mathcal{F})=\mathcal{F}$ if and only if $\mathcal{F}=F_{\mathcal{G}}(\mathcal{E})$ for some $\mathcal{E} \subseteq C L(X)$. Let us denote

$$
\begin{aligned}
\mathcal{K}_{\mathcal{G}} & =\left\{\mathcal{E} \subseteq C L(X): E_{\mathcal{G}} F_{\mathcal{G}}(\mathcal{E})=\mathcal{E}\right\}=\left\{E_{\mathcal{G}}(\mathcal{F}): \mathcal{F} \subseteq C(X, Y)\right\} \\
\mathcal{L}_{\mathcal{G}} & =\left\{\mathcal{F} \subseteq C(X, Y): F_{\mathcal{G}} E_{\mathcal{G}}(\mathcal{F})=\mathcal{F}\right\}=\left\{F_{\mathcal{G}}(\mathcal{E}): \mathcal{E} \subseteq C L(X)\right\}
\end{aligned}
$$

the classes of all closed families with respect to the closure operators associated with the relation $R_{\mathcal{G}}$. The families $\mathcal{K}_{\mathcal{G}}$ and $\mathcal{L}_{\mathcal{G}}$ are in a one-to-one correspondence and, when ordered by inclusion, form dually isomorphic complete lattices. In fact, the mapping $\mathcal{E} \mapsto F_{\mathcal{G}}(\mathcal{E})$ is an isomorphism $\left(\mathcal{K}_{\mathcal{G}}, \subseteq\right) \rightarrow\left(\mathcal{L}_{\mathcal{G}}, \supseteq\right)$ and its inverse is the mapping $\mathcal{F} \mapsto E_{\mathcal{G}}(\mathcal{F})$. Moreover, the infimum in both lattices coincides with the set-theoretic intersection. Let us note that in a complete lattice there exist the least and the greatest elements.

For a history of Galois connections and their applications we refer the reader to 4]. For more on their relations to complete lattices and formal concept analysis see [2]. Let us note that Galois connections occur naturally in various settings; for some examples related to analysis and topology see [6] or [8]. For applications of Galois connections in the theory of cardinal characteristics see [1]. Our study of restrictions of continuous functions was loosely motivated by classical notions of Kronecker and Dirichlet sets from harmonic analysis, see [7] and [5].

In the present paper we deal with the case $X=Y=\mathbb{R}$. Our aim is to analyze the structure of the lattices $\mathcal{K}_{\mathcal{G}}$ and $\mathcal{L}_{\mathcal{G}}$ for certain simple families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. In Section 2 we characterize the elements of the lattices $\mathcal{K}_{\mathcal{G}}$ and $\mathcal{L}_{\mathcal{G}}$. We prove that every element of $\mathcal{K}_{\mathcal{G}}$ is a hereditary family of closed sets and that each hereditary family of closed sets is the least element of some lattice $\mathcal{K}_{\mathcal{G}}$. We also find a family \mathcal{G} such that $\mathcal{K}_{\mathcal{G}}$ is the lattice of all nonempty hereditary families of closed sets. In Sections $3-5$ we describe the lattice $\mathcal{K}_{\mathcal{G}}$ for three families \mathcal{G} determined by a single continuous function g : the singleton $\{g\}$, the family of all functions f such that $f(x)<g(x)$ for all x, and the family of all functions f satisfying $f(x) \neq g(x)$ for all x. In each case we characterize all families that yield the same lattice $\mathcal{K}_{\mathcal{G}}$.

1.1. Notation and terminology.

For $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ and $E \subseteq \mathbb{R}$ we denote $\mathcal{F} \upharpoonright E=\{f \upharpoonright E: f \in \mathcal{F}\}$. For $x \in \mathbb{R}$ we also denote $\mathcal{F}[x]=\{f(x): f \in \mathcal{F}\}$. If $\mathcal{H} \subseteq C(E, \mathbb{R})$, we denote $[\mathcal{H}]=\{f \in C(\mathbb{R}, \mathbb{R}): f \upharpoonright E \in \mathcal{H}\}$. We write $[h]$ instead of $[\{h\}]$ for $h \in C(E, \mathbb{R})$.

For $E \subseteq \mathbb{R}$ let $C L(E)$ denote the family of all closed subsets of E. To avoid ambiguity, we use notation $C L(E)$ only if E is closed; otherwise the family of all subsets of E that are closed in \mathbb{R} is expressed by the term $C L(\mathbb{R}) \cap \mathcal{P}(E)$. Denote $E q_{f, g}=\{x \in \mathbb{R}: f(x)=g(x)\}$ for $f, g \in C(\mathbb{R}, \mathbb{R})$. Then for any $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ and $\mathcal{E} \subseteq C L(\mathbb{R})$ we have $E_{\mathcal{G}}(\mathcal{F})=\bigcap_{f \in \mathcal{F}} \bigcup_{g \in \mathcal{G}} C L\left(E q_{f, g}\right)$ and $F_{\mathcal{G}}(\mathcal{E})=\bigcap_{E \in \mathcal{E}} \bigcup_{g \in \mathcal{G}}[g \upharpoonright E]$.

We shall identify a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and its graph $\left\{(x, y) \in \mathbb{R}^{2}: f(x)=\right.$ $y\}$. We say that a family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ is complete if $g \in \mathcal{G}$ holds for every $g \in C(\mathbb{R}, \mathbb{R})$ satisfying $g \subseteq \bigcup \mathcal{G}$. A family \mathcal{G} is connected if for any $f, g \in \mathcal{G}$ and $x \neq y$ there exists $h \in \mathcal{G}$ such that $h(x)=f(x)$ and $h(y)=g(y)$.

Let $\mathbb{R}^{*}=\mathbb{R} \cup\{-\infty, \infty\}$. For $f, g \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$, define inequalities $f<g$ and $f \leq g$ by $(\forall x \in \mathbb{R}) f(x)<g(x)$ and $(\forall x \in \mathbb{R}) f(x) \leq g(x)$, respectively. Further, let $(f, g)=\{h \in C(\mathbb{R}, \mathbb{R}): f<h<g\}$ and $[f, g]=\{h \in C(\mathbb{R}, \mathbb{R}): f \leq h \leq g\}$. If there is no ambiguity we denote the constant function $f: x \mapsto z \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ simply by z.

Let \mathcal{X} be a family of subsets of a topological space. We say that \mathcal{X} is separated if for any distinct sets $X, Y \in \mathcal{X}$ one can find disjoint open sets U, V such that $X \subseteq U, Y \subseteq V$ and $(\forall Z \in \mathcal{X})(Z \subseteq U$ or $Z \subseteq V)$.

1.2. Main results

We will prove the following equalities and inclusions.
Theorem 1.1. Let $g \in C(\mathbb{R}, \mathbb{R})$ and let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty.
(1a) $\mathcal{K}_{\{g\}}=\{C L(E): E \in C L(\mathbb{R})\}$.
(1b) $\mathcal{K}_{\{g\}} \subseteq \mathcal{K}_{\mathcal{G}}$ if and only if $\mathcal{G}[x] \neq \mathbb{R}$ for every $x \in \mathbb{R}$.
(1c) $\mathcal{K}_{\{g\}} \supseteq \mathcal{K}_{\mathcal{G}}$ if and only if $\mathcal{G}=[f, h]$ for some $f, h \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ such that $f \leq h,-\infty<h$, and $f<\infty$.
(2a) $\mathcal{K}_{(g, \infty)}=\{C L(\mathbb{R}) \cap \mathcal{P}(X): X \subseteq \mathbb{R}\}$.
(2b) $\mathcal{K}_{(g, \infty)} \subseteq \mathcal{K}_{\mathcal{G}}$ if and only if for every $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $E_{\mathcal{G}}(\{f\})=\{E \in C L(\mathbb{R}): x \notin E\}$.
(2c) $\mathcal{K}_{(g, \infty)} \supseteq \mathcal{K}_{\mathcal{G}}$ if and only if \mathcal{G} is complete and connected.
(3a) $\mathcal{K}_{(-\infty, g) \cup(g, \infty)}=\left\{C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}}: \mathcal{X} \subseteq \mathcal{P}(\mathbb{R})\right.$ is separated $\}$.
(3b) $\mathcal{K}_{(-\infty, g) \cup(g, \infty)} \subseteq \mathcal{K}_{\mathcal{G}}$ if and only if $C L(\mathbb{R}) \cap \mathcal{P}(\mathbb{R} \backslash\{x\}) \in \mathcal{K}_{\mathcal{G}}$ for every $x \in \mathbb{R}$ and $C L(\mathbb{R}) \cap(\mathcal{P}(U) \cup \mathcal{P}(\mathbb{R} \backslash \operatorname{cl} U)) \in \mathcal{K}_{\mathcal{G}}$ for every regular open set $U \subseteq \mathbb{R}$.
(3c) $\mathcal{K}_{(-\infty, g) \cup(g, \infty)} \supseteq \mathcal{K}_{\mathcal{G}}$ if and only if $\mathcal{G}=\bigcup_{i \in I} \mathcal{G}_{i}$ for some linearly ordered set $(I,<)$ and an indexed system of complete connected families $\left\{\mathcal{G}_{i}: i \in I\right\}$ such that for every $i \in I$ there exist functions $f_{i}, h_{i} \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ satisfying

$$
\bigcup_{j<i} \mathcal{G}_{j} \subseteq\left(-\infty, f_{i}\right), \quad \mathcal{G}_{i} \subseteq\left(f_{i}, h_{i}\right) \quad \text { and } \quad \bigcup_{j>i} \mathcal{G}_{j} \subseteq\left(h_{i}, \infty\right)
$$

First three statements are proved in Section 3 (Theorems 3.1, 3.2 and 3.3), statements (2a)-(2c) in Section 4 (Theorems 4.1, 4.2 and 4.5), and (3a)-(3c) in Section 5 (Theorems 5.1, 5.2 and 5.5).

2. The elements of lattices $\mathcal{K}_{\mathcal{G}}$ and \mathcal{L}_{G}

We begin with two extremal cases.
Proposition 2.1. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$.
(1) $\mathcal{K}_{\emptyset}=\{\emptyset, C L(\mathbb{R})\}, \mathcal{L}_{\emptyset}=\{\emptyset, C(\mathbb{R}, \mathbb{R})\}$.
(2) $\mathcal{K}_{C(\mathbb{R}, \mathbb{R})}=\{C L(\mathbb{R})\}, \mathcal{L}_{C(\mathbb{R}, \mathbb{R})}=\{C(\mathbb{R}, \mathbb{R})\}$.

If $\mathcal{G} \neq \emptyset$ then every family $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ is nonempty because it contains \emptyset, and every $\mathcal{F} \in \mathcal{L}_{\mathcal{G}}$ is nonempty because $\mathcal{G} \subseteq \mathcal{F}$. Hence, $\emptyset \in \mathcal{K}_{\mathcal{G}}$ if and only if $\emptyset \in \mathcal{L}_{\mathcal{G}}$ if and only if $\mathcal{G}=\emptyset$.

Proposition 2.2. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R}), \mathcal{G} \neq \emptyset$.
(1) The least element of $\mathcal{K}_{\mathcal{G}}$ is $E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))=\{E \in C L(\mathbb{R}): \mathcal{G} \upharpoonright E=C(E, \mathbb{R})\}$.
(2) The least element of $\mathcal{L}_{\mathcal{G}}$ is $F_{\mathcal{G}}(C L(\mathbb{R}))=F_{\mathcal{G}}(\{\mathbb{R}\})=\mathcal{G}$.

It follows that the lattices $\mathcal{K}_{\mathcal{G}}$ and $\mathcal{L}_{\mathcal{G}}$ have at least two elements if and only if $\mathcal{G} \neq C(\mathbb{R}, \mathbb{R})$.

By Proposition 2.2 (2), every family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ is the least element of $\mathcal{L}_{\mathcal{G}}$. Now we are going to characterize families $\mathcal{E} \subseteq C L(\mathbb{R})$ that can be least elements of lattices $\mathcal{K}_{\mathcal{G}}$.

We say that a family $\mathcal{E} \subseteq C L(\mathbb{R})$ is hereditary if for any $D, E \in C L(\mathbb{R})$, if $D \subseteq E$ and $E \in \mathcal{E}$ then $D \in \mathcal{E}$. We show that the elements of lattices $\mathcal{K}_{\mathcal{G}}$ are exactly hereditary subfamilies of $C L(\mathbb{R})$ and every hereditary family $\mathcal{E} \subseteq C L(\mathbb{R})$ is the least element of some lattice $\mathcal{K}_{\mathcal{G}}$.

Proposition 2.3. Let $\mathcal{E} \subseteq C L(\mathbb{R})$. The following conditions are equivalent.
(1) There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
(2) \mathcal{E} is hereditary.

Proof. (1) $\Rightarrow(2)$. If $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ then $\mathcal{E}=E_{\mathcal{G}}(\mathcal{F})$ for some $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$. It follows from the definition that the family $E_{\mathcal{G}}(\mathcal{F})$ is hereditary.
$(2) \Rightarrow(1)$. Fix $f \in C(\mathbb{R}, \mathbb{R})$. For every $E \in \mathcal{E}$, fix $g_{E} \in C(\mathbb{R}, \mathbb{R})$ such that $E q_{f, g_{E}}=E$ and let $\mathcal{G}=\left\{g_{E}: E \in \mathcal{E}\right\}$. Then $\mathcal{E}=E_{\mathcal{G}}(\{f\}) \in \mathcal{K}_{\mathcal{G}}$.

Lemma 2.4. Let $I, J \subseteq \mathbb{R}$ be non-degenerate, bounded, closed intervals. For every $n \in \omega$, let $x_{n} \in \operatorname{int} I$ be distinct and $A_{n} \subseteq J$ be dense in J. Then there exists an increasing bijection $f: I \rightarrow J$ such that $(\forall n \in \omega) f\left(x_{n}\right) \in A_{n}$.

Proof. Let us note that any increasing bijection from I to J is necessarily continuous. Define a sequence of increasing bijections $f_{n}: I \rightarrow J$ by induction as follows. Let f_{0} be linear. For every n, let a_{0}, \ldots, a_{n+1} be the increasing enumeration of the set $\{a, b\} \cup\left\{x_{j}: j<n\right\}$, where $I=[a, b]$. Assume that $f_{n}: I \rightarrow J$ is an increasing bijection which is linear on each interval $\left[a_{j}, a_{j+1}\right.$] and moreover the function $f_{n}-\frac{1}{2} f_{0}$ is strictly inceasing. For every $j \leq n$, if $x_{n} \notin\left(a_{j}, a_{j+1}\right)$ then let $f_{n+1}(x)=f_{n}(x)$ for every $x \in\left[a_{j}, a_{j+1}\right]$. If $x_{n} \in\left(a_{j}, a_{j+1}\right)$, let f_{n+1} be defined linearly on intervals $\left[a_{j}, x_{n}\right]$ and $\left[x_{n}, a_{j+1}\right]$, where $f_{n+1}\left(a_{j}\right)=f_{n}\left(a_{j}\right)$,
$f_{n+1}\left(a_{j+1}\right)=f_{n}\left(a_{j+1}\right)$, and $f_{n+1}\left(x_{n}\right) \in A_{n}$ is chosen so that $f_{n+1}-\frac{1}{2} f_{0}$ is strictly increasing and for every $x \in\left(a_{j}, a_{j+1}\right),\left|f_{n+1}(x)-f_{n}(x)\right|<2^{-n}$. We obtain a uniformly convergent sequence of increasing bijections $f_{n}: I \rightarrow J$. Its limit $f: I \rightarrow J$ is continuous and surjective. Function $f-\frac{1}{2} f_{0}$, being a limit of a sequence of strictly increasing functions, is non-decreasing, hence f is strictly increasing. For every n we have $f\left(x_{n}\right)=f_{n+1}\left(x_{n}\right) \in A_{n}$.

Theorem 2.5. Let $\mathcal{E} \subseteq C L(\mathbb{R})$ be hereditary. Then there exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that \mathcal{E} is the least element of $\mathcal{K}_{\mathcal{G}}$.

Proof. Fix disjoint countable dense sets $D_{0}, D_{1} \subseteq \mathbb{R}$ and $h: \mathbb{R} \rightarrow\{0,1\}$ such that both $h^{-1}[\{0\}]$ and $h^{-1}[\{1\}]$ are dense. Given a hereditary family $\mathcal{E} \subseteq C L(\mathbb{R})$, let \mathcal{G} be the family of all functions $g \in C(\mathbb{R}, \mathbb{R})$ such that $E_{g} \in \mathcal{E}$, where $E_{g}=\operatorname{cl}\left\{x \in \mathbb{R}: g(x) \in D_{h(x)}\right\}$. We prove that $\mathcal{E}=E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$.

Let $E \in \mathcal{E}$ and $f \in C(\mathbb{R}, \mathbb{R})$ be arbitrary. We will find $g \in[f \upharpoonright E]$ such that $E_{g} \subseteq E$. Without a loss of generality we may assume that the complement of E is a disjoint union of bounded open intervals and that the values of f at the endpoints of each of these intervals are different. We can accomplish this by adding to E an unbounded discrete set $Z \subseteq \mathbb{R} \backslash E$ dividing each interval adjacent to E, and suitably modifying the values of f outside E to ensure that $f(z) \notin D_{h(z)}$ for $z \in Z$ and $f(a) \neq f(b)$ for each interval $[a, b]$ adjacent to $E \cup Z$.

Let $[a, b]$ be a closed interval adjacent to E. Assume that $f(a)<f(b)$. Let $I=[f(a), f(b)], J=[a, b],\left\{x_{n}: n \in \omega\right\}=\left(D_{0} \cup D_{1}\right) \cap$ int I, and for every n, let $A_{n}=J \cap h^{-1}[\{i\}]$ where $i \in\{0,1\}$ is such that $x_{n} \notin D_{i}$. Let $g_{J}: I \rightarrow J$ be the increasing bijection obtained in Lemma 2.4. Its inverse $g_{J}^{-1}:[a, b] \rightarrow[f(a), f(b)]$ is an increasing bijection as well and for every $x \in(a, b)$ we have $g_{J}^{-1}(x) \notin D_{h(x)}$. Similarly, if $f(b)<f(a)$ then there exists a decreasing bijection $g_{J}^{-1}:[a, b] \rightarrow[f(b), f(a)]$ such that $g_{J}^{-1}(x) \notin D_{h(x)}$ for all $x \in(a, b)$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}f(x), & \text { if } x \in E \\ g_{J}^{-1}(x) & \text { if } J \text { is a closed interval adjacent to } E \text { and } x \in \operatorname{int} J\end{cases}
$$

Obviously, g is continuous and $E_{g} \subseteq E$. Since $E \in \mathcal{E}$ and \mathcal{E} is hereditary, we have $E_{g} \in \mathcal{E}$, hence $g \in \mathcal{G}$.

We have shown that for every $E \in \mathcal{E}$ and $f \in C(\mathbb{R}, \mathbb{R})$ there exists $g \in \mathcal{G}$ such that $g \upharpoonright E=f \upharpoonright E$, hence $\mathcal{E} \subseteq E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$. To prove the opposite inclusion, let us take $E \in C L(\mathbb{R}) \backslash \mathcal{E}$. Let $\left\{x_{n}: n \in \omega\right\}$ be a countable dense subset of E, and for every n, let $A_{n}=D_{h\left(x_{n}\right)}$. By repeated use of Lemma 2.4 we can find $f \in C(\mathbb{R}, \mathbb{R})$ such that $f\left(x_{n}\right) \in A_{n}$ for all n. Since \mathcal{E} is hereditary and $E \notin \mathcal{E}$, for every $g \in \mathcal{G}$ we have $E \nsubseteq E_{g}$, hence there exists n such that $x_{n} \in E \backslash E_{g}$. We have $f\left(x_{n}\right)=D_{h\left(x_{n}\right)}$ and $g\left(x_{n}\right) \notin D_{h\left(x_{n}\right)}$, hence $f \upharpoonright E \neq g \upharpoonright E$. It follows that $f \upharpoonright E \notin \mathcal{G} \upharpoonright E$, thus $E \notin E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$.

Theorem 2.6. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{K}_{\mathcal{G}}$ contains every nonempty hereditary family $\mathcal{E} \subseteq C L(\mathbb{R})$.

Proof. Let $\left\{E_{\alpha}: \alpha<2^{\omega}\right\}$ be a one-to-one enumeration of all nonempty closed subsets of \mathbb{R}. For each $\alpha<2^{\omega}$ fix some $x_{\alpha} \in E_{\alpha}$. Using transfinite induction for $\alpha<2^{\omega}$ we define $y_{\alpha} \in \mathbb{R}$ and a sequence of functions $\left\{g_{\alpha, n}: n \in \omega\right\} \subseteq C(\mathbb{R}, \mathbb{R})$.

We proceed as follows. If y_{β} and $g_{\beta, n}$ are defined for all $\beta<\alpha$ and $n \in \omega$, find $y_{\alpha} \notin\left\{y_{\beta}: \beta<\alpha\right\} \cup\left\{g_{\beta, n}\left(x_{\alpha}\right): \beta<\alpha, n \in \omega\right\}$. Let $\left\{I_{\alpha, n}: n \in \omega\right\}$ be the family of all nonempty open intervals with rational endpoints having nonempty intersection with E_{α}. For every n, there exists a function $g_{\alpha, n} \in C(\mathbb{R}, \mathbb{R})$ such that $g_{\alpha, n}(x)=y_{\alpha}$ if and only if $x \notin I_{\alpha, n}$, and $g_{\alpha, n}\left(x_{\beta}\right) \neq y_{\beta}$ for all $\beta<\alpha$.

Let $\mathcal{G}=\left\{g_{\alpha, n}: \alpha<2^{\omega}, n \in \omega\right\}$. For every $\alpha<2^{\omega}$, let f_{α} be the constant function with value y_{α}. We show that $f_{\alpha} \upharpoonright E_{\alpha} \notin \mathcal{G} \upharpoonright E_{\alpha}$. If $g \in \mathcal{G}$ then $g=g_{\beta, n}$ for some $\beta<2^{\omega}$ and $n \in \omega$. If $\beta<\alpha$ then $g_{\beta, n}\left(x_{\alpha}\right) \neq y_{\alpha}$ by the definition of y_{α}. Since $x_{\alpha} \in E_{\alpha}$, we have $f_{\alpha} \upharpoonright E_{\alpha} \neq g \upharpoonright E_{\alpha}$. If $\beta=\alpha$ then there exists $x \in E_{\alpha} \cap I_{\alpha, n}$. We have $g_{\alpha, n}(x) \neq y_{\alpha}$, hence $f_{\alpha} \upharpoonright E_{\alpha} \neq g \upharpoonright E_{\alpha}$. Finally, if $\beta>\alpha$ then $g_{\beta, n}\left(x_{\alpha}\right) \neq y_{\alpha}$ by the definition of $g_{\beta, n}$. Again, $f_{\alpha} \upharpoonright E_{\alpha} \neq g \upharpoonright E_{\alpha}$.

Let \mathcal{E} be a nonempty hereditary family of closed subsets of \mathbb{R}. Then $\emptyset \in \mathcal{E}$, hence each $E \in C L(\mathbb{R}) \backslash \mathcal{E}$ is nonempty. Denote $\mathcal{F}=\left\{f_{\alpha}: E_{\alpha} \in C L(\mathbb{R}) \backslash \mathcal{E}\right\}$. If $E \in \mathcal{E}$ and $f \in \mathcal{F}$ then $f=f_{\alpha}$ for some $\alpha<2^{\omega}$ such that $E_{\alpha} \in C L(\mathbb{R}) \backslash \mathcal{E}$, hence $E_{\alpha} \nsubseteq E$. There exists n such that $E \subseteq \mathbb{R} \backslash I_{\alpha, n}$. By the definition of $g_{\alpha, n}$ we have $f_{\alpha} \upharpoonright E=g_{\alpha, n} \upharpoonright E$, hence $f_{\alpha} \upharpoonright E \in \mathcal{G} \upharpoonright E$. It follows that $E \in E_{\mathcal{G}}(\mathcal{F})$, and we conclude that $\mathcal{E} \subseteq E_{\mathcal{G}}(\mathcal{F})$. Conversely, if $E \in C L(R) \backslash \mathcal{E}$ then $E=E_{\alpha}$ for some $\alpha<2^{\omega}$. Since $f_{\alpha} \upharpoonright E_{\alpha} \notin \mathcal{G} \upharpoonright E_{\alpha}$ and $f_{\alpha} \in \mathcal{F}$, we have $E \notin E_{\mathcal{G}}(\mathcal{F})$. It follows that $\mathcal{E}=E_{\mathcal{G}}(\mathcal{F})$, hence $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.

3. Results for family $\mathcal{G}=\{g\}$

We show that if \mathcal{G} is a singleton then the latice $\mathcal{K}_{\mathcal{G}}$ is isomorphic to the complete lattice $(C L(\mathbb{R}), \subseteq)$ of all closed subsets of \mathbb{R}. Let us note that in $(C L(\mathbb{R}), \subseteq)$ we have $\bigwedge \mathcal{E}=\bigcap \mathcal{E}$ and $\bigvee \mathcal{E}=\operatorname{cl}(\bigcup \mathcal{E})$, for any $\mathcal{E} \subseteq C L(\mathbb{R})$.

Theorem 3.1. Let $\mathcal{G}=\{g\}, g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{\mathcal{G}}=\{C L(E): E \in C L(\mathbb{R})\}$ and $\mathcal{L}_{\mathcal{G}}=\{[g \upharpoonright E]: E \in C L(\mathbb{R})\}$.

Proof. It is clear that $(f, E) \in R_{\mathcal{G}}$ if and only if $E \subseteq E q_{f, g}$, for any $f \in C(\mathbb{R}, \mathbb{R})$ and $E \in C L(\mathbb{R})$. Hence, for any $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ we have

$$
E_{\mathcal{G}}(\mathcal{F})=\bigcap_{f \in \mathcal{F}} C L\left(E q_{f, g}\right)=C L\left(\bigcap_{f \in \mathcal{F}} E q_{f, g}\right)
$$

Since for any set $E \in C L(\mathbb{R})$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $E=E q_{f, g}$, we obtain that $\mathcal{K}_{\mathcal{G}}=\left\{E_{\mathcal{G}}(\mathcal{F}): \mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})\right\}=\{C L(E): E \in C L(\mathbb{R})\}$. For any $\mathcal{E} \subseteq C L(\mathbb{R})$ we also have

$$
F_{\mathcal{G}}(\mathcal{E})=\bigcap_{E \in \mathcal{E}}[g \upharpoonright E]=[g \upharpoonright \mathrm{cl}(\bigcup \mathcal{E})],
$$

hence $\mathcal{L}_{\mathcal{G}}=\left\{F_{\mathcal{G}}(\mathcal{E}): \mathcal{E} \subseteq C L(\mathbb{R})\right\}=\{[g \upharpoonright E]: E \in C L(\mathbb{R})\}$.

It can be easily seen that if $\mathcal{G}=\{g\}$ then each element $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ can be generated by a family consisting of a single function f : if $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ then there exists $E \in C L(\mathbb{R})$ such that $\mathcal{E}=C L(E)$, for any $f \in C(\mathbb{R}, \mathbb{R})$ satisfying $E q_{f, g}=$ E we then have $\mathcal{E}=E_{\mathcal{G}}(\{f\})$. Similarly, each $\mathcal{F} \in \mathcal{L}_{\mathcal{G}}$ can be expressed as $F_{\mathcal{G}}(\{E\})$ for some $E \in C L(\mathbb{R})$. Moreover, this set E is unique; if $D, E \in C L(\mathbb{R})$ are distinct then $F_{\mathcal{G}}(\{D\}) \neq F_{\mathcal{G}}(\{E\})$ by the normality of \mathbb{R}.

The next two results allows us to characterize families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ for which the lattice $\mathcal{K}_{\mathcal{G}}$ is the same as in Theorem 3.1.

Theorem 3.2. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. The following conditions are equivalent.
(1) $\{C L(E): E \in C L(\mathbb{R})\} \subseteq \mathcal{K}_{\mathcal{G}}$.
(2) The least element of $\mathcal{K}_{\mathcal{G}}$ is $\{\emptyset\}$.
(3) For each $x \in \mathbb{R}, \mathcal{G}[x] \neq \mathbb{R}$.

Proof. (1) \Rightarrow (2) is trivial.
$(2) \Rightarrow(3)$. If $E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))=\{\emptyset\}$ then for each nonempty $E \in C L(\mathbb{R})$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $f \upharpoonright E \notin \mathcal{G} \upharpoonright E$. In particular, for every $x \in \mathbb{R}$ there exists $y \in \mathbb{R}$ such that if $f(x)=y$ then $f \upharpoonright\{x\} \notin \mathcal{G} \upharpoonright\{x\}$, hence $y \notin \mathcal{G}[x]$.
$(3) \Rightarrow(1)$. Fix a function $h \in \mathcal{G}$. For every $E \in C L(\mathbb{R})$ and $x \notin E$ let us take $y \notin \mathcal{G}[x]$ and a function $f_{x} \in\left[h\lceil E]\right.$ such that $f_{x}(x)=y$. Let $\mathcal{F}=\left\{f_{x}: x \notin E\right\}$. If $D \in E_{\mathcal{G}}(\mathcal{F})$ then for any $x \notin E$ we have $f_{x} \upharpoonright D \in \mathcal{G} \upharpoonright D$, hence $x \notin D$. It follows that $D \subseteq E$ and thus $E_{\mathcal{G}}(\mathcal{F}) \subseteq C L(E)$. The opposite inclusion is clear, hence we obtain $C L(E)=E_{\mathcal{G}}(\mathcal{F}) \in \mathcal{K}_{\mathcal{G}}$.

Theorem 3.3. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. The following conditions are equivalent.
(1) $\mathcal{K}_{\mathcal{G}} \subseteq\{C L(E): E \in C L(\mathbb{R})\}$.
(2) There exist $h_{1}, h_{2} \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ such that $\mathcal{G}=\left\{g \in C(\mathbb{R}, \mathbb{R}): h_{1} \leq g \leq h_{2}\right\}$.

Proof. (1) $\Rightarrow(2)$. Denote $H=\bigcup \mathcal{G}$. Let us first show that H is a closed subset of \mathbb{R}^{2}. Assume that $(x, y) \in \operatorname{cl} H$. Since \mathcal{G} is a nonempty family of continuous functions, there exists in H a sequence of points $\left\{\left(x_{n}, y_{n}\right): n \in \omega\right\}$ converging to (x, y) and such that all x_{n} are distinct. Let $f \in C(\mathbb{R}, \mathbb{R})$ be such that $f\left(x_{n}\right)=y_{n}$ for every n and $f(x)=y$. Then $\left\{x_{n}\right\} \in E_{\mathcal{G}}(\{f\})$ for every n. Since $E_{\mathcal{G}}(\{f\}) \in \mathcal{K}_{\mathcal{G}}$, it follows from (1) that $\operatorname{cl}\left\{x_{n}: n \in \omega\right\} \in E_{\mathcal{G}}(\{f\})$, hence $\{x\} \in E_{\mathcal{G}}(\{f\})$ and so $(x, y) \in H$.

We show that $\mathcal{G}[x]=\{g(x): g \in \mathcal{G}\}$ is connected, for every $x \in \mathbb{R}$. Otherwise we can find $g_{1}, g_{2} \in \mathcal{G}$ and $y \notin \mathcal{G}[x]$ such that $g_{1}(x)<y<g_{2}(x)$. Since H is closed, there exist $a, b, c, d \in \mathbb{R}$ such that $x \in(a, b), y \in(c, d)$, and $((a, b) \times(c, d)) \cap H=\emptyset$. Let $f \in C(\mathbb{R}, \mathbb{R})$ be such that $f(a)=g_{1}(a)$ and $f(b)=g_{2}(b)$. Then $\{a\},\{b\} \in E_{\mathcal{G}}(\{f\})$, hence also $\{a, b\} \in E_{\mathcal{G}}(\{f\})$, and thus there exists $g \in \mathcal{G}$ such that $g(a)=g_{1}(a)$ and $g(b)=g_{2}(b)$. By Intermediate Value Theorem there is $z \in(a, b)$ such that $g(z) \in(c, d)$, which contradicts the assumption that $((a, b) \times(c, d)) \cap H$ is empty. So $\mathcal{G}[x]$ is a connected closed set, that is, a closed interval.

For every $x \in \mathbb{R}$ denote $h_{1}(x)=\inf \mathcal{G}[x]$ and $h_{2}(x)=\sup \mathcal{G}[x]$. We show that h_{1}, h_{2} are continuous. If $y<h_{1}(x)$ then there exist $a, b, c, d \in \mathbb{R}$ such that $x \in$ $(a, b), y \in(c, d)$, and $((a, b) \times(c, d)) \cap H=\emptyset$. It follows $((a, b) \times(-\infty, d)) \cap H=\emptyset$, otherwise one could find a contradiction using Intermediate Value Theorem, as before. We can conclude that h_{1} is lower semi-continuous. Since h_{1} is the infimum of a family of continuous functions, it is also upper semi-continuous, and hence continuous. A similar argument shows the continuity of h_{2}.

It remained to show that $\mathcal{G}=\left\{g \in C(\mathbb{R}, \mathbb{R}): h_{1} \leq g \leq h_{2}\right\}$. The inclusion from left to right is clear. If $g \in C(\mathbb{R}, \mathbb{R})$ is such that $h_{1} \leq g \leq h_{2}$, then for every $x \in \mathbb{R}$ we have $g(x) \in \mathcal{G}[x]$, hence $\{x\} \in E_{\mathcal{G}}(\{g\})$. By (1), also $\mathbb{R} \in E_{\mathcal{G}}(\{g\})$, hence $g \in \mathcal{G}$.
$(2) \Rightarrow(1)$. Let $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$, that is, $\mathcal{E}=E_{\mathcal{G}}(\mathcal{F})$ for some $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$, and let $E=\bigcup \mathcal{E}$. Then $E=\{x \in \mathbb{R}: \mathcal{F}[x] \subseteq \mathcal{G}[x]\}$. First, let us show that $E \in C L(\mathbb{R})$. If $x \in \operatorname{cl} E$ then there exists a sequence $\left\{x_{n}: n \in \omega\right\}$ in E such that $x_{n} \rightarrow x$. For any $y \in \mathcal{F}[x]$, let us take some $f \in \mathcal{F}$ such that $f(x)=y$. For every n we have $f\left(x_{n}\right) \in \mathcal{F}\left[x_{n}\right] \subseteq \mathcal{G}\left[x_{n}\right]$, hence $h_{1}\left(x_{n}\right) \leq f\left(x_{n}\right) \leq h_{2}\left(x_{n}\right)$. By the continuity of f, h_{1}, and h_{2} we obtain that $h_{1}(x) \leq f(x) \leq h_{2}(x)$, hence $y \in \mathcal{G}[x]$. We have $\mathcal{F}[x] \subseteq \mathcal{G}[x]$, hence $x \in E$, and it follows that E is closed.

We show that for every $f \in \mathcal{F}$ there exists $g \in \mathcal{G}$ such that $f \upharpoonright E=g \upharpoonright E$. Fix some $f \in \mathcal{F}$. For every $x \in E$ we have $f(x) \in \mathcal{G}[x]$, hence $h_{1}(x) \leq f(x) \leq$ $h_{2}(x)$. Let $g(x)=\min \left\{\max \left\{f(x), h_{1}(x)\right\}, h_{2}(x)\right\}$, for all $x \in \mathbb{R}$. Clearly, g is continuous and $g \upharpoonright E=f \upharpoonright E$. Since \mathcal{G} is nonempty, we have $h_{1} \leq h_{2}$, and hence also $h_{1} \leq g \leq h_{2}$. By (2), we have $g \in \mathcal{G}$. It follows that $E \in \mathcal{E}$, hence $\mathcal{E}=C L(E)$.

Now we can characterize those families \mathcal{G} for which $\mathcal{K}_{\mathcal{G}}=\{C L(E): E \in$ $C L(\mathbb{R})\}$. Let us recall that for $f, h \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ we denoted $[f, h]=\{g \in C(\mathbb{R}, \mathbb{R})$: $f \leq g \leq h\}$, where $f \leq g$ if and only if $(\forall x \in \mathbb{R}) f(x) \leq g(x)$.

Corollary 3.4. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. The following conditions are equivalent.
(1) $\mathcal{K}_{\mathcal{G}}=\{C L(E): E \in C L(\mathbb{R})\}$ 。
(2) There exist $f, h \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ such that $f \leq h$, $f^{-1}[\mathbb{R}] \cup h^{-1}[\mathbb{R}]=\mathbb{R}$, and $\mathcal{G}=[f, h]$.

It follows that the same lattice $\mathcal{K}_{\mathcal{G}}$ is obtained for families \mathcal{G} of the form $(-\infty, g]=\{f \in C(\mathbb{R}, \mathbb{R}): f \leq g\}$ and $[g, \infty)=\{f \in C(\mathbb{R}, \mathbb{R}): g \leq f\}$.

Corollary 3.5. Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{(-\infty, g]}=\mathcal{K}_{[g, \infty)}=\{C L(E): E \in$ $C L(\mathbb{R})\}$.

4. Results for family $\mathcal{G}=(g, \infty)$

Recall that for $f, h \in C\left(\mathbb{R}, \mathbb{R}^{*}\right),(f, h)=\{g \in C(\mathbb{R}, \mathbb{R}): f<g<h\}$, where $f<g$ is a shorthand for $(\forall x \in \mathbb{R}) f(x)<g(x)$.

Theorem 4.1. Let $\mathcal{G}=(g, \infty)$ where $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{\mathcal{G}}=\{C L(\mathbb{R}) \cap \mathcal{P}(X)$: $X \subseteq \mathbb{R}\}$.

Proof. If $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ then $\mathcal{E}=E_{\mathcal{G}}(\mathcal{F})$ for some $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$. Denote $X=\bigcup \mathcal{E}$. Clearly $\mathcal{E} \subseteq C L(\mathbb{R}) \cap \mathcal{P}(X)$. If $E \in C L(\mathbb{R}) \cap \mathcal{P}(X)$ then for every $x \in E$ we have $x \in D$ for some $D \in \mathcal{E}$, hence $f(x)>g(x)$ for all $f \in \mathcal{F}$. For every $f \in \mathcal{F}$ there exists $f^{\prime} \in \mathcal{G}$ such that $f^{\prime} \upharpoonright E=f \upharpoonright E$; it suffices to take $f^{\prime}=h^{\prime}+g$ where $h^{\prime}>0$ is a continuous function such that $h^{\prime} \upharpoonright E=(f-g) \upharpoonright E, h^{\prime}$ is linear on each bounded interval adjacent to E, and constant on unbounded adjacent intervals, if there are any. It follows that $E \in \mathcal{E}$, and we obtain $\mathcal{E}=C L(\mathbb{R}) \cap \mathcal{P}(X)$, hence $\mathcal{K}_{\mathcal{G}} \subseteq\{C L(\mathbb{R}) \cap \mathcal{P}(X): X \subseteq \mathbb{R}\}$.

To prove the opposite, let $X \subseteq \mathbb{R}$. Denote $\mathcal{F}=\left\{f_{a}: a \in \mathbb{R} \backslash X\right\}$, where $f_{a}(x)=g(x)+|x-a|$ for all $x \in \mathbb{R}$. If $E \in E_{\mathcal{G}}(\mathcal{F})$ then $f_{a}(x)>g(x)$ for all $x \in E$ and $a \in \mathbb{R} \backslash X$, hence $E \subseteq X$. It follows that $E_{\mathcal{G}}(\mathcal{F}) \subseteq C L(\mathbb{R}) \cap \mathcal{P}(X)$. The opposite inclusion is clear since $\mathcal{F} \subseteq F_{\mathcal{G}}(C L(\mathbb{R}) \cap \mathcal{P}(X))$. We obtain that $C L(\mathbb{R}) \cap \mathcal{P}(X)=E_{\mathcal{G}}(\mathcal{F}) \in \mathcal{K}_{\mathcal{G}}$, hence $\{C L(\mathbb{R}) \cap \mathcal{P}(X): X \subseteq \mathbb{R}\} \subseteq \mathcal{K}_{\mathcal{G}}$.

A similar argument would prove the same result for the family $\mathcal{G}=(-\infty, g)$. Nevertheless, it will also follow from Corollary 4.6 below.

We will characterize those families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ for which $\mathcal{K}_{\mathcal{G}}=\{C L(\mathbb{R}) \cap$ $\mathcal{P}(X): X \subseteq \mathbb{R}\}$. Like in the previous section, we characterize both inclusions separately. For $x \in \mathbb{R}$ denote $\mathcal{A}_{x}=C L(\mathbb{R}) \cap \mathcal{P}(\mathbb{R} \backslash\{x\})=\{E \in C L(\mathbb{R}): x \notin E\}$.

Theorem 4.2. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. The following conditions are equivalent.
(1) $\{C L(\mathbb{R}) \cap \mathcal{P}(X): X \subseteq \mathbb{R}\} \subseteq \mathcal{K}_{\mathcal{G}}$.
(2) $\left\{\mathcal{A}_{x}: x \in \mathbb{R}\right\} \subseteq \mathcal{K}_{\mathcal{G}}$.
(3) For every $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $E_{\mathcal{G}}(\{f\})=\mathcal{A}_{x}$.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(3)$. For every $x \in \mathbb{R}$, we have $\{x\} \notin \mathcal{A}_{x}=E_{\mathcal{G}}\left(F_{\mathcal{G}}\left(\mathcal{A}_{x}\right)\right)$, hence there exists $f \in F_{\mathcal{G}}\left(\mathcal{A}_{x}\right)$ such that $f \upharpoonright\{x\} \notin \mathcal{G} \upharpoonright\{x\}$. We have $\{f\} \subseteq F_{\mathcal{G}}\left(\mathcal{A}_{x}\right)$, hence $E_{\mathcal{G}}(\{f\}) \supseteq E_{\mathcal{G}}\left(F_{\mathcal{G}}\left(\mathcal{A}_{x}\right)\right)=\mathcal{A}_{x}$. Conversely, if $E \in C L(\mathbb{R}) \backslash \mathcal{A}_{x}$ then $x \in E$ and hence $f \upharpoonright E \notin \mathcal{G} \upharpoonright E$. It follows that $E \notin E_{\mathcal{G}}(\{f\})$, and we obtain $E_{\mathcal{G}}(\{f\}) \subseteq \mathcal{A}_{x}$.
$(3) \Rightarrow(1)$. Let $X \subseteq \mathbb{R}, \mathcal{E}=C L(\mathbb{R}) \cap \mathcal{P}(X)$, and $\mathcal{F}=F_{\mathcal{G}}(\mathcal{E})$. We will show that $E_{\mathcal{G}}(\mathcal{F})=\mathcal{E}$. If not, then there exists $E \in E_{\mathcal{G}}(\mathcal{F})$ such that $E \nsubseteq X$. Let $x \in E \backslash X$. By (3) there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $E_{\mathcal{G}}(\{f\})=\mathcal{A}_{x}$. Since $\mathcal{E} \subseteq \mathcal{A}_{x}$, we have $F_{\mathcal{G}}(\mathcal{E}) \supseteq F_{\mathcal{G}}\left(\mathcal{A}_{x}\right)$, hence $f \in F_{\mathcal{G}}(\mathcal{E})=\mathcal{F}$. It follows that $E \in E_{\mathcal{G}}(\{f\})$, and we come to a contradiction.

Note that the family $\left\{\mathcal{A}_{x}: x \in \mathbb{R}\right\}$ in condition (2) of Theorem 4.2 cannot be replaced by a smaller one. More precisely, for every $z \in \mathbb{R}$ there exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{A}_{x} \in \mathcal{K}_{\mathcal{G}}$ for all $x \neq z$ but $\mathcal{A}_{z} \notin \mathcal{K}_{\mathcal{G}}$. Indeed, let $\mathcal{G}=\{f \in C(\mathbb{R}, \mathbb{R}):(\forall x \neq z) f(x)>0\}$. For every $y \in \mathbb{R}$, let $f_{y}(x)=|x-y|$. If $y \neq z$ then $E_{\mathcal{G}}\left(\left\{f_{y}\right\}\right)=\mathcal{A}_{y}$, hence $\mathcal{A}_{y} \in \mathcal{K}_{\mathcal{G}}$. Since $F_{\mathcal{G}}\left(\mathcal{A}_{z}\right)=\{f \in C(\mathbb{R}, \mathbb{R})$: $(\forall x \neq z) f(x)>0\}=\mathcal{G}$, we obtain that $E_{\mathcal{G}}\left(F_{\mathcal{G}}\left(\mathcal{A}_{z}\right)\right)=C L(\mathbb{R})$, hence $\mathcal{A}_{z} \notin \mathcal{K}_{\mathcal{G}}$.

To characterize all families \mathcal{G} such that $\mathcal{K}_{\mathcal{G}} \subseteq\{C L(\mathbb{R}) \cap \mathcal{P}(X): X \subseteq \mathbb{R}\}$ we need the following notion. We say that a set $H \subseteq \mathbb{R}^{2}$ is functionally connected if for any two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in H$ such that $x_{1}<x_{2}$, there exists a
continuous function $h:\left[x_{1}, x_{2}\right] \rightarrow \mathbb{R}$ such that $h\left(x_{1}\right)=y_{1}, h\left(x_{2}\right)=y_{2}$, and the graph of h is included in H. If H is a functionally connected set then $\pi_{1}[H]$, the projection of H to the first coordinate, is connected. If $\pi_{1}[H]$ has at most one point then H is functionally connected. If $\pi_{1}[H]$ has more than one point and H is functionally connected then H must be pathwise connected. A connected set need not to be functionally connected, a simple example is the unit circle $\left\{(x, y): x^{2}+y^{2}=1\right\}$.
Lemma 4.3. Let $a<b$ and let $H \subseteq \mathbb{R}^{2}$ be a functionally connected set such that $[a, b] \subseteq \pi_{1}[H]$. Let $h:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $h \subseteq H$, and let $u, v \in \mathbb{R}$ be such that points $(a, u),(b, v) \in H$. Then for every open interval J such that $u, v \in J$ and $\operatorname{rng}(h) \subseteq J$, there exists a continuous function $g:[a, b] \rightarrow J$ such that $g \subseteq H, g(a)=u$, and $g(b)=v$.

Proof. Let a, b, H, h, u, v, and J be as above. There exists a continuous function $f:[a, b] \rightarrow \mathbb{R}$ such that $f \subseteq H, f(a)=u$, and $f(b)=v$. Let $a_{2}, b_{2} \in(a, b)$ be such that $a_{2}<b_{2}$ and $f(x) \in J$ for every $x \in\left[a, a_{2}\right] \cup\left[b_{2}, b\right]$.

Let us first prove that there exists some $a_{1} \in\left[a, a_{2}\right]$ and a continuous function $f_{1}:\left[a, a_{1}\right] \rightarrow J$ such that $f_{1} \subseteq H, f_{1}(a)=f(a)$, and $f_{1}\left(a_{1}\right)=h\left(a_{1}\right)$. This is clear if $f(x)=h(x)$ for some $x \in\left[a, a_{2}\right]$. If this is not the case then the values $f(a)-h(a)$ and $f\left(a_{2}\right)-h\left(a_{2}\right)$ must have the same signs. Without a loss of generality, assume that $f(a)>h(a)$ and $f\left(a_{2}\right)>h\left(a_{2}\right)$. Let $f^{\prime}:\left[a, a_{2}\right] \rightarrow \mathbb{R}$ be a continuous function such that $f^{\prime} \subseteq H, f^{\prime}(a)=f(a)$, and $f^{\prime}\left(a_{2}\right)=h\left(a_{2}\right)$. Let $a_{0}=\max \left\{x \in\left[a, a_{2}\right]: f^{\prime}(x)=f(x)\right\}$ and $a_{1}=\min \left\{x \in\left[a_{0}, a_{2}\right]: f^{\prime}(x)=h(x)\right\}$. It follows that $f^{\prime}(x) \in J$ for every $x \in\left[a_{0}, a_{1}\right]$, and we can define $f_{1}(x)=f(x)$ for $x \in\left[a, a_{0}\right]$ and $f_{1}(x)=f^{\prime}(x)$ for $x \in\left[a_{0}, a_{1}\right]$. Then f_{1} is as required.

Similarly, there exist $b_{1} \in\left[b_{2}, b\right]$ and a continuous function $f_{2}:\left[b_{1}, b\right] \rightarrow J$ such that $f_{2} \subseteq H, f_{2}\left(b_{1}\right)=h\left(b_{1}\right)$, and $f_{2}(b)=f(b)$. Let $g(x)=f_{1}(x)$ for $x \in\left[a, a_{1}\right], g(x)=h(x)$ for $x \in\left[a_{1}, b_{1}\right]$, and $g(x)=f_{2}(x)$ for $x \in\left[b_{1}, b\right]$. Then g has the required properties.

Lemma 4.4. Let $H \subseteq \mathbb{R}^{2}$ be a functionally connected set such that $\pi_{1}[H]=\mathbb{R}$. Then for every $f \in C(\mathbb{R}, \mathbb{R})$ and $E \in C L(\mathbb{R})$ such that $f \upharpoonright E \subseteq H$, there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $g \upharpoonright E=f \upharpoonright E$ and $g \subseteq H$.
Proof. Let H, f and E be as assumed. Let us note that for each point $(x, y) \in H$ there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $g(x)=y$ and $g \subseteq H$.

For every closed interval I adjacent to E there exists a continuous function $g_{I}: \mathbb{R} \rightarrow \mathbb{R}$ such that $g_{I} \subseteq H$ and g_{I} coincides with f at the endpoints of I. Let $g(x)=f(x)$ for $x \in E$ and $g(x)=g_{I}(x)$ for $x \in I$ if I is a closed interval adjacent to E. We obtain a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g \upharpoonright E=f \upharpoonright E$ and $g \subseteq H$.

It remains to show that g_{I} can be chosen so that g is continuous. This is clear if there are only finitely many such intervals, so we will assume the opposite. Let $\left\{I_{n}: n \in \omega\right\}$ be one-to-one enumeration of all closed intervals adjacent to E. We define continuous functions $g_{n}=g_{I_{n}}$ as follows.

If I_{n} is unbounded then let $g_{n}: I_{n} \rightarrow \mathbb{R}$ be arbitrary continuous function such that $g_{n} \subseteq H$ and g_{n} coincides with f at the only endpoint of I_{n}.

Assume that $I_{n}=\left[a_{n}, b_{n}\right]$. For every continuous function $h: I_{n} \rightarrow \mathbb{R}$ denote $\operatorname{osc}(h)$ its oscillation, that is, $\operatorname{osc}(h)=\max \left\{h(x)-h(y): x, y \in I_{n}\right\}$. Let $o_{n}=\inf \left\{\operatorname{osc}(h): h \in \mathcal{H}_{n}\right\}$, where \mathcal{H}_{n} is the family of all functions $h \in C\left(I_{n}, \mathbb{R}\right)$ such that $h \subseteq H$ and $h \upharpoonright\left\{a_{n}, b_{n}\right\}=f \upharpoonright\left\{a_{n}, b_{n}\right\}$. Choose $g_{n} \in \mathcal{H}_{n}$ such that $\operatorname{osc}\left(g_{n}\right) \leq o_{n}+2^{-n}$.

As above, let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a map such that $g(x)=f(x)$ for all $x \in E$ and $g(x)=g_{n}(x)$ for all $x \in I_{n}, n \in \omega$. We prove that g is continuous at every point $z \in \mathbb{R}$. Let us take a convergent sequence $z_{k} \rightarrow z$. We will assume that this sequence is increasing, as it suffices to consider only one-sided limits, and for decreasing sequences the proof is the same. We may further assume that $z_{k} \in \mathbb{R} \backslash E$ for all k since we have $g(x)=f(x)$ for $x \in E$ and f is continuous at z. For every k, let n_{k} be such that $z_{k} \in I_{n_{k}}$. If there exist m, l such that $n_{k}=m$ for all $k>l$, then $g\left(z_{k}\right)=g_{m}\left(z_{k}\right)$ for all $k>l$, hence $z \in \operatorname{cl} I_{m}$ and $g\left(z_{k}\right) \rightarrow g(z)$. So we may assume that $n_{k} \rightarrow \infty$ and $z \in E$.

To prove that $g\left(z_{k}\right) \rightarrow g(z)$, it will suffice to show that $\operatorname{osc}\left(g_{n_{k}}\right) \rightarrow 0$. Fix some $h \in C(\mathbb{R}, \mathbb{R})$ such that $h \subseteq H$ and $h(z)=g(z)$. By Lemma 4.3, for every n we have $o_{n} \leq \operatorname{diam}\left(f\left[I_{n}\right] \cup h\left[I_{n}\right]\right)$. Since both f and h is continuous at z, we have $\operatorname{diam}\left(f\left[I_{n}\right] \cup h\left[I_{n}\right]\right) \rightarrow 0$, hence $\operatorname{osc}\left(g_{n_{k}}\right) \leq o_{n_{k}}+2^{-n_{k}} \rightarrow 0$.

Recall that a family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ is said to be complete if $f \in \mathcal{G}$ for every $f \in C(\mathbb{R}, \mathbb{R})$ such that $f \subseteq \bigcup \mathcal{G}$. A complete family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ is connected if and only if $\bigcup \mathcal{G}$ is functionally connected.
Theorem 4.5. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. The following conditions are equivalent.
(1) $\mathcal{K}_{\mathcal{G}} \subseteq\{C L(\mathbb{R}) \cap \mathcal{P}(X): X \subseteq \mathbb{R}\}$.
(2) \mathcal{G} is a complete and connected family.

Proof. (1) $\Rightarrow(2)$. Denote $H=\bigcup \mathcal{G}$. Clearly, $\mathcal{G} \subseteq\{g \in C(\mathbb{R}, \mathbb{R}): g \subseteq H\}$. To prove the opposite inclusion, let $g \in C(\mathbb{R}, \mathbb{R})$ be such that $g \subseteq H$. For every $x \in \mathbb{R}$ we have $g(x) \in \mathcal{G}[x]$, hence $\{x\} \in E_{\mathcal{G}}(\{g\})$. It follows that $\mathbb{R} \in E_{\mathcal{G}}(\{g\})$, hence $g \in \mathcal{G}$. Thus, $\mathcal{G}=\{g \in C(\mathbb{R}, \mathbb{R}): g \subseteq H\}$, hence \mathcal{G} is complete.

It remains to show that H is functionally connected. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ H and $x_{1}<x_{2}$. Let $f \in C(\mathbb{R}, \mathbb{R})$ be such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since $\left\{x_{1}\right\},\left\{x_{2}\right\} \in E_{\mathcal{G}}(\{f\})$ and $E_{\mathcal{G}}(\{f\}) \in \mathcal{K}_{\mathcal{G}}$, it follows that $\left\{x_{1}, x_{2}\right\} \in E_{\mathcal{G}}(\{f\})$. Hence, there exists $g \in \mathcal{G}$ such that $g\left(x_{1}\right)=y_{1}$ and $g\left(x_{2}\right)=y_{2}$.
(2) $\Rightarrow(1)$. Let $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$, that is, there exists $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E}=$ $E_{\mathcal{G}}(\mathcal{F})$. Let $X=\bigcup \mathcal{E}$. We will show that $\mathcal{E}=C L(\mathbb{R}) \cap \mathcal{P}(X)$.

Let us take $E \in C L(\mathbb{R}) \cap \mathcal{P}(X)$ and an arbitrary $f \in \mathcal{F}$. For every $x \in E$ we have $\{x\} \in \mathcal{E}$, hence $f(x) \in \mathcal{G}[x]$. It follows that $f \upharpoonright E \subseteq \bigcup \mathcal{G}$. Since \mathcal{G} is connected, by Lemma 4.4 there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $f \upharpoonright E=g \upharpoonright E$ and $g \subseteq \bigcup \mathcal{G}$. Since \mathcal{G} is complete, we have $g \in \mathcal{G}$. This shows that $E \in E_{\mathcal{G}}(\mathcal{F})$, so $C L(\mathbb{R}) \cap \mathcal{P}(X) \subseteq \mathcal{E}$. The opposite inclusion is clear.

From Theorems 4.2 and 4.5 we obtain the following characterization.
Corollary 4.6. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. The following conditions are equivalent.
(1) $\mathcal{K}_{\mathcal{G}}=\{C L(\mathbb{R}) \cap \mathcal{P}(X): X \subseteq \mathbb{R}\}$.
(2) \mathcal{G} is a complete and connected family, and for every $x \in \mathbb{R}$ there exists a function $f \in C(\mathbb{R}, \mathbb{R})$ such that $f \backslash \bigcup \mathcal{G}=f \upharpoonright\{x\}$.

5. Results for family $(-\infty, g) \cup(g, \infty)$

For $f, g \in C(\mathbb{R}, \mathbb{R})$, if $f(x) \neq g(x)$ for every x then either $f<g$ or $f>g$. Hence, $\{f \in C(\mathbb{R}, \mathbb{R}):(\forall x \in \mathbb{R}) f(x) \neq g(x)\}=(-\infty, g) \cup(g, \infty)$.

Recall that a family \mathcal{X} of subsets of a topological space is said to be separated if for every distinct $X, Y \in \mathcal{X}$ there exist disjoint open sets U, V such that $X \subseteq U, Y \subseteq V$ and $(\forall Z \in \mathcal{X})(Z \subseteq U$ or $Z \subseteq V)$.

Theorem 5.1. Let $g \in C(\mathbb{R}, \mathbb{R}), \mathcal{G}=(-\infty, g) \cup(g, \infty)$. Then

$$
\mathcal{K}_{\mathcal{G}}=\left\{C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X): \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text { is separated }\right\}
$$

Proof. Let $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$, that is, $\mathcal{E}=E_{\mathcal{G}}(\mathcal{F})$ for some $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$. For $x \in \bigcup \mathcal{E}$, denote $\mathcal{E}_{x}=\{E \in \mathcal{E}: x \in E\}$, and let $\mathcal{X}=\left\{\bigcup \mathcal{E}_{x}: x \in \bigcup \mathcal{E}\right\}$. We will show that \mathcal{X} is separated and $\mathcal{E}=C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$. Let us note that for every $x, y \in \mathbb{R},\{x, y\} \in \mathcal{E}$ if and only if for every $f \in \mathcal{F}$,

$$
(f(x)>g(x) \text { and } f(y)>g(y)) \text { or }(f(x)<g(x) \text { and } f(y)<g(y))
$$

Hence, the relation \sim, defined by $x \sim y \Leftrightarrow\{x, y\} \in \mathcal{E}$, is an equivalence relation on $\bigcup \mathcal{E}$, and \mathcal{X} is the corresponding partition of $\bigcup \mathcal{E}$ into equivalence classes.

Let $X=\bigcup \mathcal{E}_{x}$ and $Y=\bigcup \mathcal{E}_{y}$ be distinct elements of \mathcal{X}. Then $\{x, y\} \notin \mathcal{E}$, hence there exists $f \in \mathcal{F}$ such that $(f(x)-g(x))(f(y)-g(y)) \leq 0$. We have $\{x\},\{y\} \in \mathcal{E}$, so $(f(x)-g(x))(f(y)-g(y)) \neq 0$. Without a loss of generality we may assume that $f(x)<g(x)$ and $f(y)>g(y)$. Let $U=\{u \in \mathbb{R}: f(u)<g(u)\}$ and $V=\{v \in \mathbb{R}: f(v)>g(v)\}$. Then U, V are disjoint open sets such that $X \subseteq U, Y \subseteq V$. Also, for every $z \in \bigcup \mathcal{E}$ we have $f(z) \neq g(z)$, hence $z \in U$ or $z \in V$. Clearly, $z \in U$ implies $\mathcal{E}_{z} \subseteq U$, and similarly $z \in V$ implies $\mathcal{E}_{z} \subseteq V$, hence the family \mathcal{X} is separated.

We show that $\mathcal{E}=C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$. The inclusion from left to right follows from the definition of \mathcal{X}. Conversely, if $E \in C L(\mathbb{R}) \cap \mathcal{P}(X)$ for some $X \in \mathcal{X}$ then we have $x \sim y$ for all $x, y \in E$, hence for every $f \in \mathcal{F}$ we have either $f<_{E} g$ or $g<_{E} f$, where $f<_{E} g$ is a shorthand for $(\forall x \in E) f(x)<g(x)$. It follows that $f \upharpoonright E \in \mathcal{G} \upharpoonright E$, thus $E \in E_{\mathcal{G}}(\mathcal{F})=\mathcal{E}$.

We have proved that $\mathcal{K}_{\mathcal{G}} \subseteq\left\{C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}}: \mathcal{X} \subseteq \mathcal{P}(\mathbb{R})\right.$ is separated $\}$. For the reverse inclusion, let us take $\mathcal{E}=C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$ for some separated family $\mathcal{X} \subseteq \mathcal{P}(\mathbb{R})$, and let $\mathcal{F}=F_{\mathcal{G}}(\mathcal{E})$. Then $f \in \mathcal{F}$ if and only if $f \in C(\mathbb{R}, \mathbb{R})$ and $f \upharpoonright E \in \mathcal{G} \upharpoonright E$ for every $E \in \mathcal{E}$. Hence, $\mathcal{F}=\left\{f \in C(\mathbb{R}, \mathbb{R}):(\forall X \in \mathcal{X})\left(f<_{X}\right.\right.$ g or $\left.\left.g<_{X} f\right)\right\}$.

Let us further show that $E_{\mathcal{G}}(\mathcal{F})=\mathcal{E}$. Assume that $E \in C L(\mathbb{R})$ and $E \notin \mathcal{E}$. Then either $E \nsubseteq \bigcup \mathcal{X}$ or there exist distinct sets $X, Y \in \mathcal{X}$ such that E intersects
both of them. In the first case we take $z \in E \backslash \bigcup \mathcal{X}$ and $f \in C(\mathbb{R}, \mathbb{R})$ such that $f(z)=g(z)$ and $f(x)>g(x)$ for all $x \neq z$. Then $f \in \mathcal{F}$ but $f(z) \notin \mathcal{G}[z]$, hence $E \notin E_{\mathcal{G}}(\mathcal{F})$. In the second case let U, V be disjoint open sets such that $X \subseteq U$, $Y \subseteq V$ and $(\forall Z \in \mathcal{X})(Z \subseteq U$ or $Z \subseteq V)$. There exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $U=\{x \in \mathbb{R}: f(x)>g(x)\}$ and $V=\{x \in \mathbb{R}: f(x)<g(x)\}$. We have $f \in \mathcal{F}$ but $f \upharpoonright E \notin \mathcal{G} \upharpoonright E$, hence again $E \notin E_{\mathcal{G}}(\mathcal{F})$. It follows that $E_{\mathcal{G}}(\mathcal{F}) \subseteq \mathcal{E}$, hence the equality holds true, and thus $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$. Therefore, $\left\{C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X): \mathcal{X} \subseteq\right.$ $\mathcal{P}(\mathbb{R})$ is separated $\} \subseteq \mathcal{K}_{\mathcal{G}}$.

If a family $\mathcal{X} \subseteq \mathcal{P}(\mathbb{R})$ is separated then for every distinct sets $X, Y \in \mathcal{X}$ one can find regular open sets U, V such that $X \subseteq U, Y \subseteq V$ and $(\forall Z \in \mathcal{X})(Z \subseteq$ U or $Z \subseteq V)$. Indeed, if U, V are disjoint open sets then their regularizations $U^{\prime}=\operatorname{int}(\operatorname{cl} U), V^{\prime}=\operatorname{int}(\mathrm{cl} V)$ satisfy $U \subseteq U^{\prime}, V \subseteq V^{\prime}$ and are disjoint as well. We may also take $\mathbb{R} \backslash \operatorname{cl} U^{\prime}$ instead of V^{\prime}.

Let us recall that for $x \in \mathbb{R}$ we have denoted $\mathcal{A}_{x}=C L(\mathbb{R}) \cap \mathcal{P}(\mathbb{R} \backslash\{x\})$. For every open set $U \subseteq \mathbb{R}$ we also denote $\mathcal{B}_{U}=C L(\mathbb{R}) \cap(\mathcal{P}(U) \cup \mathcal{P}(\mathbb{R} \backslash \operatorname{cl} U))$.

Theorem 5.2. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. The following conditions are equivalent.
(1) $\left\{C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X): \mathcal{X} \subseteq \mathcal{P}(\mathbb{R})\right.$ is separated $\} \subseteq \mathcal{K}_{\mathcal{G}}$.
(2) $\left\{\mathcal{A}_{x}: x \in \mathbb{R}\right\} \cup\left\{\mathcal{B}_{U}: U \subseteq \mathbb{R}\right.$ is regular open $\} \subseteq \mathcal{K}_{\mathcal{G}}$.
(3) For any $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $E_{\mathcal{G}}(\{f\})=\mathcal{A}_{x}$, and for any $x, y \in \mathbb{R}$ and any regular open set $U \subseteq \mathbb{R}$ such that $x \in U$ and $y \notin \operatorname{cl} U$ there exists $f \in F_{\mathcal{G}}\left(\mathcal{B}_{U}\right)$ such that $f \upharpoonright\{x, y\} \notin \mathcal{G} \upharpoonright\{x, y\}$.

Proof. (1) $\Rightarrow(2)$ is obvious.
$(2) \Rightarrow(3)$. The first part of (3) follows from Theorem 4.2. For the second part, let U be a regular open set such that $x \in U$ and $y \notin \mathrm{cl} U$. By (2), we have $\mathcal{B}_{U} \in \mathcal{K}_{\mathcal{G}}$, hence $E_{\mathcal{G}}\left(F_{\mathcal{G}}\left(\mathcal{B}_{U}\right)\right)=\mathcal{B}_{U}$. Since $\{x, y\} \notin \mathcal{B}_{U}$, there exists $f \in F_{\mathcal{G}}\left(\mathcal{B}_{U}\right)$ such that $f \upharpoonright\{x, y\} \notin \mathcal{G} \upharpoonright\{x, y\}$.
$(3) \Rightarrow(1)$. Let $\mathcal{X} \subseteq \mathcal{P}(\mathbb{R})$ be a separated family and let $\mathcal{E}=C L(\mathbb{R}) \cap$ $\bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$. Denote $\mathcal{F}=F_{\mathcal{G}}(\mathcal{E})$. We show that $\mathcal{E}=E_{\mathcal{G}}(\mathcal{F})$. Let us take $E \in C L(\mathbb{R}), E \notin \mathcal{E}$. Then either there exists $x \in E \backslash \bigcup \mathcal{X}$, or there exist $x, y \in E$ and distinct sets $X, Y \in \mathcal{X}$ such that $x \in X$ and $y \in Y$.

If $x \in E \backslash \bigcup \mathcal{X}$ then let $f \in F_{\mathcal{G}}\left(\mathcal{A}_{x}\right)$ be such that $f(x) \notin \mathcal{G}[x]$. Since $\mathcal{E} \subseteq \mathcal{A}_{x}$, we have $F_{\mathcal{G}}\left(\mathcal{A}_{x}\right) \subseteq F_{\mathcal{G}}(\mathcal{E})$, hence $f \in \mathcal{F}$. It follows that $\{x\} \notin E_{\mathcal{G}}(\mathcal{F})$, hence $E \notin E_{\mathcal{G}}(\mathcal{F})$. If $x \in X, y \in Y$ for some distinct $X, Y \in \mathcal{X}$ then there exists an open regular set U such that $X \subseteq U, Y \subseteq \mathbb{R} \backslash \operatorname{cl} U$ and each $Z \in \mathcal{X}$ is covered either by U or by $\mathbb{R} \backslash \operatorname{cl} U$. It follows that $\mathcal{E} \subseteq \mathcal{B}_{U}$. By (3), there exists $f \in F_{\mathcal{G}}\left(\mathcal{B}_{U}\right)$ such that $f \upharpoonright\{x, y\} \notin \mathcal{G} \upharpoonright\{x, y\}$. We have $f \in \mathcal{F}$, hence $\{x, y\} \notin E_{\mathcal{G}}(\mathcal{F})$, so $E \notin E_{\mathcal{G}}(\mathcal{F})$. In both cases it follows that $E_{\mathcal{G}}(\mathcal{F})=\mathcal{E}$, hence $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.

Let us note that the family $\mathcal{H}=\left\{\mathcal{A}_{x}: x \in \mathbb{R}\right\} \cup\left\{\mathcal{B}_{U}: U\right.$ is regular open $\}$ in the second condition of Theorem 5.2 is not minimal. Indeed, $\mathcal{B}_{\emptyset}=\mathcal{B}_{\mathbb{R}}=C L(\mathbb{R})$ is an element of $\mathcal{K}_{\mathcal{G}}$ for every $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, hence $\mathcal{H} \backslash\left\{\mathcal{B}_{\emptyset}\right\} \subseteq \mathcal{K}_{\mathcal{G}} \Leftrightarrow \mathcal{H} \subseteq \mathcal{K}_{\mathcal{G}}$
holds for every \mathcal{G}. We do not know whether there exists a regular open set U and a family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{H} \backslash\left\{\mathcal{B}_{U}\right\} \subseteq \mathcal{K}_{\mathcal{G}}$ and $\mathcal{B}_{U} \notin \mathcal{K}_{\mathcal{G}}$. We also do not know whether one can find a minimal family \mathcal{M} of nonempty hereditary families of closed sets having the property that for every \mathcal{G}, if $\mathcal{M} \subseteq \mathcal{K}_{\mathcal{G}}$ then $C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X) \in \mathcal{K}_{\mathcal{G}}$ for every separated family \mathcal{X}.

To characterize families \mathcal{G} such that $C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X) \in \mathcal{K}_{\mathcal{G}}$ holds for every separated family \mathcal{X}, we need few more notions. Given a fixed family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ and points $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$ in \mathbb{R}^{2}, let us write $a \sim b$ if there exists a function $f \in \mathcal{G}$ such that $f\left(a_{1}\right)=a_{2}$ and $f\left(b_{1}\right)=b_{2}$. Clearly, if $a \sim b$ and $a_{1}=b_{1}$ then $a=b$. We say that family \mathcal{G} is transitive if for any points $a, b, c \in \mathbb{R}^{2}$ having distinct first coordinates, if $a \sim b$ and $b \sim c$ then $a \sim c$. We say that family \mathcal{G} is sequential if $a \sim b$ holds true whenever $a, b \in \bigcup \mathcal{G}$ and there exists a sequence of points $\left\{a_{n}: n \in \omega\right\}$ in $\bigcup \mathcal{G}$ such that $a_{n} \rightarrow a, a_{n} \sim b$, and the first coordinates of points a, b, and $a_{n}, n \in \omega$, are pairwise distinct.

Let $(I,<)$ be a linearly ordered set, and for every $i \in I$, let $\mathcal{G}_{i} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. We say that indexed system $\left\{\mathcal{G}_{i}: i \in I\right\}$ is sliced if for every $i \in I$ there exist functions $g_{i}^{-}, g_{i}^{+} \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ such that

$$
\bigcup_{j<i} \mathcal{G}_{j} \subseteq\left(-\infty, g_{i}^{-}\right), \quad \mathcal{G}_{i} \subseteq\left(g_{i}^{-}, g_{i}^{+}\right) \quad \text { and } \quad \bigcup_{j>i} \mathcal{G}_{j} \subseteq\left(g_{i}^{+}, \infty\right)
$$

Let us note that the assumption $\mathcal{G}_{i} \neq \emptyset$ implies that $g_{i}^{-}<g_{i}^{+}$, for every $i \in I$.
Lemma 5.3. Let $\left\{\mathcal{G}_{i}: i \in I\right\}$ be a sliced system. Then for each $i \in I$ there exist functions $h_{i}^{-}, h_{i}^{+} \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ such that $\mathcal{G}_{i} \subseteq\left(h_{i}^{-}, h_{i}^{+}\right)$and $h_{i}^{+} \leq h_{j}^{-}$whenever $i<j$.

Proof. For every i, let $g_{i}^{-}, g_{i}^{+} \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ be such that $\bigcup_{j<i} \mathcal{G}_{j} \subseteq\left(-\infty, g_{i}^{-}\right)$, $\mathcal{G}_{i} \subseteq\left(g_{i}^{-}, g_{i}^{+}\right)$, and $\bigcup_{j>i} \mathcal{G}_{j} \subseteq\left(g_{i}^{+}, \infty\right)$. It is clear that if $\bigcup_{j<i} \mathcal{G}_{j} \neq \emptyset$ then $g_{i}^{-} \in C(\mathbb{R}, \mathbb{R})$ and, similarly, if $\bigcup_{j>i} \mathcal{G}_{j} \neq \emptyset$ then $g_{i}^{+} \in C(\mathbb{R}, \mathbb{R})$. Since each interval $\left(g_{i}^{-}(0), g_{i}^{+}(0)\right)$ contains a rational number, I is at most countable.

For simplicity let us assume that I is infinite. In the finite case the proof will be the same. Let $\{i(n): n<\omega\}$ be a one-to-one enumeration of I. By induction let us define

$$
\begin{aligned}
h_{i(n)}^{-}(x) & =\max \left(\left\{h_{i(m)}^{+}(x): m<n \text { and } i(m)<i(n)\right\} \cup\left\{g_{i(n)}^{-}(x)\right\}\right) \\
h_{i(n)}^{+}(x) & =\min \left(\left\{h_{i(m)}^{-}(x): m<n \text { and } i(m)>i(n)\right\} \cup\left\{g_{i(n)}^{+}(x)\right\}\right)
\end{aligned}
$$

It is clear that $h_{i}^{-}, h_{i}^{+} \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$, and $\mathcal{G}_{i} \subseteq\left(h_{i}^{-}, h_{i}^{+}\right)$. Moreover, if $m<n$ then either $i(m)<i(n)$ and then $h_{i(m)}^{+} \leq h_{i(n)}^{-}$by the definition of $h_{i(n)}^{-}$, or $i(m)>i(n)$ and then $h_{i(n)}^{+} \leq h_{i(m)}^{-}$by the definition of $h_{i(n)}^{+}$. Hence, $h_{i}^{+} \leq h_{j}^{-}$ for any $i<j$.

Lemma 5.4. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be a complete, transitive and sequential family. Then there exists a sliced system $\left\{\mathcal{G}_{i}: i \in I\right\}$ such that $\mathcal{G}=\bigcup_{i \in I} \mathcal{G}_{i}$ and each \mathcal{G}_{i} is complete and connected.

Proof. We may assume that \mathcal{G} is nonempty. Denote $H=\bigcup \mathcal{G}$. For $a, b \in \mathbb{R}^{2}$, let us write $a \approx b$ if there exists c such that $a \sim c \sim b$. We prove that \approx is an equivalence relation on H. The symmetry and the reflexivity of \approx is clear. For the transitivity it suffices to prove that $a \sim b \sim c \sim d$ implies $a \approx d$. Let $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right), c=\left(c_{1}, c_{2}\right), d=\left(d_{1}, d_{2}\right)$. We may assume that $a \neq b \neq c \neq d$, hence $a_{1} \neq b_{1} \neq c_{1} \neq d_{1}$. If $a_{1} \neq c_{1}$ then by transitivity of \mathcal{G} we have $a \sim c$, and we are done. A similar argument works if $b_{1} \neq d_{1}$, so we may assume that $a_{1}=c_{1}$ and $b_{1}=d_{1}$. Without a loss of generality, let $a_{1}<b_{1}$. Let $f \in \mathcal{G}$ be such that $f\left(b_{1}\right)=b_{2}$, and let $b^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ be such that $b_{1}^{\prime}>b_{1}$ and $b_{2}^{\prime}=f\left(b_{1}^{\prime}\right)$. Then we have $a \sim b^{\prime}$ and $b^{\prime} \sim c$. Since $b_{1}^{\prime} \neq d_{1}$, it follows that $b^{\prime} \sim d$, and thus $a \approx d$.

Let $\left\{H_{i}: i \in I\right\}$ be the partition of H corresponding to the equivalence \approx, and for every $i \in I$ let $\mathcal{G}_{i}=\left\{f \in \mathcal{G}: f \subseteq H_{i}\right\}$. Let $f \in \mathcal{G}$ be arbitrary. For all points $a, b \in f$ we have $a \approx b$, hence $f \subseteq H_{i}$ for some i. It follows that $\mathcal{G}=\bigcup\left\{\mathcal{G}_{i}: i \in I\right\}$. By the definition of \approx and the completeness of \mathcal{G}, each \mathcal{G}_{i} is connected and complete, and we have $\bigcup \mathcal{G}_{i}=H_{i}$. Clearly, if $\mathcal{G}_{i} \neq \mathcal{G}_{j}$ then $\left(\forall f \in \mathcal{G}_{i}\right)\left(\forall g \in \mathcal{G}_{j}\right) f<g$ or $\left(\forall f \in \mathcal{G}_{i}\right)\left(\forall g \in \mathcal{G}_{j}\right) f>g$. Thus there exists a linear order on I such that $i<j$ if and only if $f<g$ for all $f \in \mathcal{G}_{i}$ and $g \in \mathcal{G}_{j}$.

For every i that is not a maximal element of I, let us define $h_{1}(x)=$ $\inf \left\{\sup A_{x, \varepsilon}: \varepsilon>0\right\}$ and $h_{2}(x)=\sup \left\{\inf B_{x, \varepsilon}: \varepsilon>0\right\}$, where $A_{x, \varepsilon}=$ $H_{i} \cap((x-\varepsilon, x+\varepsilon) \times \mathbb{R})$ and $B_{x, \varepsilon}=\bigcup_{j>i} H_{j} \cap((x-\varepsilon, x+\varepsilon) \times \mathbb{R})$. Then h_{1} is upper semi-continuous, h_{2} is lower semi-continuous, and we have $f \leq h_{1} \leq h_{2} \leq g$ for all $f \in \mathcal{G}_{i}$ and $g \in \bigcup_{j>i} \mathcal{G}_{j}$. For $x \in \mathbb{R}$ denote $a=\left(x, h_{1}(x)\right)$ and assume that $a \in H$. Then there exists a sequence $\left\{a_{n}: n \in \omega\right\}$ in H_{i} converging to a and such that each a_{n} 's first coordinate is distinct from x. Let $b \in H_{i}$ be such that for every n, first coordinates of a, b, and a_{n} are distinct. We have $a_{n} \sim b$ for every n. Since \mathcal{G} is sequential, it follows that $a \sim b$, hence $a \in H_{i}$. Similarly, if $b=\left(x, h_{2}(x)\right)$ and $b \in H$ then there exists $k \in I$ such that $k=\min \{j \in I: j>i\}$, and $b \in H_{k}$. It follows that if $h_{1}(x)=h_{2}(x)=y$ then $(x, y) \notin H$.

By a theorem of Michael (see [3], Exercise 1.7.15 (d)), there exists a continuous function $h^{+}: \mathbb{R} \rightarrow \mathbb{R}$ such that $h_{1} \leq h^{+} \leq h_{2}$ and for every $x \in \mathbb{R}$, if $h_{1}(x)<h_{2}(x)$ then $h_{1}(x)<h^{+}(x)<h_{2}(x)$. It follows that $f<h^{+}<g$ for any $f \in \mathcal{G}_{i}$ and $g \in \bigcup_{j>i} \mathcal{G}_{j}$. A similar argument shows that if $\bigcup_{j<i} \mathcal{G}_{j} \neq \emptyset$ then there exists $h^{-} \in C(\mathbb{R}, \mathbb{R})$ such that $f<h^{-}<g$ for any $f \in \bigcup_{j<i} \mathcal{G}_{j}$ and $g \in \mathcal{G}_{i}$. Hence, $\left\{\mathcal{G}_{i}: i \in I\right\}$ is a sliced system.

Theorem 5.5. Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. Then the following conditions are equivalent.
(1) $\mathcal{K}_{\mathcal{G}} \subseteq\left\{C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X): \mathcal{X}\right.$ is separated $\}$.
(2) There exists a sliced system $\left\{\mathcal{G}_{i}: i \in I\right\}$ of complete connected families such that $\mathcal{G}=\bigcup_{i \in I} \mathcal{G}_{i}$.
Proof. (1) \Rightarrow (2). Denote $H=\bigcup \mathcal{G}$. Let $g \in C(\mathbb{R}, \mathbb{R})$ and $g \subseteq H$. Since $E_{\mathcal{G}}(\{g\}) \in \mathcal{K}_{\mathcal{G}}$, there exists a separated family $\mathcal{X} \subseteq \mathcal{P}(\mathbb{R})$ such that $E_{\mathcal{G}}(\{g\})=$ $C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$. For every $x \in \mathbb{R}$ we have $g(x) \in \mathcal{G}[x]$, hence $\{x\} \in$
$E_{\mathcal{G}}(\{g\})$, and thus $\bigcup \mathcal{X}=\mathbb{R}$. For any disjoint open sets $U, V \subseteq \mathbb{R}$, if $U \cup V=\mathbb{R}$ then either $U=\mathbb{R}$ or $V=\mathbb{R}$. It follows that $\mathcal{X}=\{\mathbb{R}\}$, hence $\mathbb{R} \in E_{\mathcal{G}}(\{g\})$ and thus $g \in \mathcal{G}$. Hence, $\mathcal{G}=\{g \in C(\mathbb{R}, \mathbb{R}): g \subseteq H\}$, so \mathcal{G} is complete.

Let us show that \mathcal{G} is transitive. Let $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right), c=\left(c_{1}, c_{2}\right)$ be such that a_{1}, b_{1}, c_{1} are distinct, and let $a \sim b \sim c$. Since for any $(x, y) \in H$ there exists $g \in \mathcal{G}$ such that $g(x)=y$, we can find $g, h \in \mathcal{G}$ such that $g\left(a_{1}\right)=a_{2}$, $g\left(b_{1}\right)=h\left(b_{1}\right)=b_{2}$, and $h\left(c_{1}\right)=c_{2}$. Let $f \in C(\mathbb{R}, \mathbb{R})$ be any function such that $f\left(a_{1}\right)=a_{2}, f\left(b_{1}\right)=b_{2}$, and $f\left(c_{1}\right)=c_{2}$. Then $\left\{a_{1}, b_{1}\right\} \in E_{\mathcal{G}}(\{f\}),\left\{b_{1}, c_{1}\right\} \in$ $E_{\mathcal{G}}(\{f\})$, and thus also $\left\{a_{1}, c_{1}\right\} \in E_{\mathcal{G}}(\{f\})$. It follows that there exists $f^{\prime} \in \mathcal{G}$ such that $f^{\prime}\left(a_{1}\right)=a_{2}$ and $f^{\prime}\left(c_{1}\right)=\left(c_{2}\right)$, hence $a \sim c$.

To show that \mathcal{G} is also sequential, assume that $a, b \in H$ and there exists a sequence $\left\{a_{n}: n \in \omega\right\}$ in H such that $a_{n} \rightarrow a, a_{n} \sim b$, and first coordinates of points a, b, and $a_{n}, n \in \omega$, are pairwise distinct. We have to prove that $a \sim b$. There exists a function $f \in C(\mathbb{R}, \mathbb{R})$ such that $f(x)=y, f(u)=v$, and $f\left(x_{n}\right)=y_{n}$ for all n, where $(x, y)=a,(u, v)=b$, and $\left(x_{n}, y_{n}\right)=a_{n}$. Since $E_{\mathcal{G}}(\{f\}) \in \mathcal{K}_{\mathcal{G}}$, by (1) there exists a separated family $\mathcal{X} \subseteq \mathcal{P}(\mathbb{R})$ such that $E_{\mathcal{G}}(\{f\})=C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$. We have $\{x\} \in E_{\mathcal{G}}(\{f\})$ and $\left\{x_{n}, u\right\} \in$ $E_{\mathcal{G}}(\{f\})$, for every n.

It suffices to show that $\{x, u\} \in E_{\mathcal{G}}(\{f\})$. If this is not the case then there exist distinct sets $X, Y \in \mathcal{X}$ such that $x \in X$ and $u \in Y$. Since \mathcal{X} is separated, there exist disjoint open sets U, V such that $X \subseteq U, Y \subseteq V$, and $(\forall Z \in \mathcal{X})(Z \subseteq$ U or $Z \subseteq V)$. Since $x_{n} \rightarrow x$, there exists n such that $x_{n} \in U$. But then $x_{n} \notin Y$, and this is in contradiction with $\left\{x_{n}, u\right\} \in E_{\mathcal{G}}(\{f\})$.

We have proved that \mathcal{G} is complete, transitive and sequential. Then condition (2) follows from Lemma 5.4
$(2) \Rightarrow(1)$. Let $\left\{\mathcal{G}_{i}: i \in I\right\}$ be a sliced system of complete connected families such that $\mathcal{G}=\bigcup_{i \in I} \mathcal{G}_{i}$. By Lemma 5.3 for every i there exist $h_{i}^{-}, h_{i}^{+} \in C\left(\mathbb{R}, \mathbb{R}^{*}\right)$ such that $\mathcal{G}_{i} \subseteq\left(h_{i}^{-}, h_{i}^{+}\right)$and $h_{i}^{+} \leq h_{j}^{-}$whenever $i<j$.

Let $f \in C(\mathbb{R}, \mathbb{R})$ be arbitrary. For every i, denote $X_{i}=\{x \in \mathbb{R}: f(x) \in$ $\mathcal{G}[x]$ and $\left.h_{i}^{-}(x)<f(x)<h_{i}^{+}(x)\right\}$, and let $\mathcal{X}=\left\{X_{i}: i \in I\right\}$. For every $i \in I$, let us take $U_{i}=\left\{x \in \mathbb{R}: h_{i}^{-}(x)<f(x)<h_{i}^{+}(x)\right\}$ and $V_{i}=\{x \in \mathbb{R}: f(x)<$ $h_{i}^{-}(x)$ or $\left.h_{i}^{+}(x)<f(x)\right\}$. Then U_{i}, V_{i} are disjoint open sets such that $X_{i} \subseteq U_{i}$ and $X_{j} \subseteq V_{i}$ for every $j \neq i$. It follows that \mathcal{X} is a separated family.

We will prove that $E_{\mathcal{G}}(\{f\})=C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$. If $E \in E_{\mathcal{G}}(\{f\})$ then there exists $g \in \mathcal{G}$ such that $f \upharpoonright E=g \upharpoonright E$. We have $g \in \mathcal{G}_{i}$ for some $i \in I$, and it easy to see that $E \subseteq X_{i}$. We can conclude that $E_{\mathcal{G}}(\{f\}) \subseteq C L(\mathbb{R}) \cap \bigcup_{X \in X} \mathcal{P}(X)$.

To prove the opposite inclusion, assume that $E \notin E_{\mathcal{G}}(\{f\})$, hence $f \upharpoonright E \neq$ $g \upharpoonright E$ for every $g \in \mathcal{G}$. If there exists $x \in E$ such that $f(x) \notin \mathcal{G}[x]$ then $x \notin \bigcup \mathcal{X}$, and hence $E \notin C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$. Assume further that $E \subseteq\{x \in \mathbb{R}: f(x) \in$ $\mathcal{G}[x]\}$. If there exists $i \in I$ such that $f \upharpoonright E \subseteq \bigcup \mathcal{G}_{i}$, then by Lemma 4.4 there exists $g \in \mathcal{G}_{i}$ such that $f \upharpoonright E=g \upharpoonright E$, which is impossible. Hence, there exist $i \neq j$ and $x, y \in E$ such that $(x, f(x)) \in \bigcup \mathcal{G}_{i}$ and $(y, f(y)) \in \bigcup \mathcal{G}_{j}$. It follows that $x \in X_{i}$ and $y \in X_{j}$, hence $E \notin C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$.

We have proved that for every $f \in C(\mathbb{R}, \mathbb{R})$ there exists a separated family $\mathcal{X}_{f} \subseteq \mathcal{P}(\mathbb{R})$ such that $E_{\mathcal{G}}(\{f\})=C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}_{f}} \mathcal{P}(X)$. For arbitrary $\mathcal{F} \subseteq$
$C(\mathbb{R}, \mathbb{R})$, we have $E_{\mathcal{G}}(\mathcal{F})=\bigcap_{f \in \mathcal{F}} E_{\mathcal{G}}(\{f\})$. Let us take

$$
\mathcal{X}=\left\{\bigcap_{f \in \mathcal{F}} X_{f}:\left\langle X_{f}: f \in \mathcal{F}\right\rangle \in \prod_{f \in \mathcal{F}} \mathcal{X}_{f}\right\} .
$$

We show that \mathcal{X} is separated. Let $\left\langle X_{f}: f \in \mathcal{F}\right\rangle,\left\langle Y_{f}: f \in \mathcal{F}\right\rangle \in \prod_{f \in \mathcal{F}} X_{f}$ be such that $\bigcap_{f \in \mathcal{F}} X_{f} \neq \bigcap_{f \in \mathcal{F}} Y_{f}$. Then there exists $h \in \mathcal{F}$ such that $X_{h} \neq Y_{h}$. Since \mathcal{X}_{h} is separated, there exist disjoint open sets $U, V \subseteq \mathbb{R}$ such that $X_{h} \subseteq U$, $Y_{h} \subseteq V$, and $\left(\forall Z \in \mathcal{X}_{h}\right)(Z \subseteq U$ or $Z \subseteq V)$. It follows that $\bigcap_{f \in \mathcal{F}} X_{f} \subseteq U$ and $\bigcap_{f \in \mathcal{F}} Y_{f} \subseteq V$. For every $\left\langle Z_{f}: f \in \mathcal{F}\right\rangle \in \prod_{f \in \mathcal{F}} \mathcal{X}_{f}$ we have $Z_{h} \subseteq U$ or $Z_{h} \subseteq V$, hence also $\bigcap_{f \in \mathcal{F}} Z_{f} \subseteq U$ or $\bigcap_{f \in \mathcal{F}} Z_{f} \subseteq V$.

For $E \in C L(\mathbb{R})$, we have $E \in E_{\mathcal{G}}(\mathcal{F})$ if and only if $(\forall f \in \mathcal{F})\left(\exists X \in \mathcal{X}_{f}\right) E \subseteq$ X if and only if $(\exists X \in \mathcal{X}) E \subseteq X$. Hence, $E_{\mathcal{G}}(\mathcal{F})=C L(\mathbb{R}) \cap \bigcup_{X \in \mathcal{X}} \mathcal{P}(X)$ and condition (1) follows.

Acknowledgements

This work was financially supported by the Scientific Grant Agency of the Slovak Republic (VEGA), grant No. 1/0097/16.

References

[1] A. Blass, Combinatorial cardinal characteristics of the continuum. In: Handbook of set theory, Springer, Dordrecht, 2010, pp. 395-489. https://doi. org/10.1007/978-1-4020-5764-9_7
[2] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, 2nd edition. Cambridge University Press, New York, 2002. https://doi.org/10.1017/ CB09780511809088
[3] R. Engelking, General Topology, 2nd edition. Vol. 6 of Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989.
[4] M. Erné, Adjunctions and Galois connections: origins, history and development. In: Galois connections and applications, Vol. 565 of Math. Appl. Kluwer Acad. Publ., Dordrecht, 2004, pp. 1-138. https://doi.org/10. 1007/978-1-4020-1898-5_1
[5] T.W. Körner, Some results on Kronecker, Dirichlet and Helson sets. Ann. Inst. Fourier (Grenoble) 20 (fasc. 2) (1970), 219-324.
[6] R. Lillemets, Galois connections between generating systems of sets and sequences. Positivity 21 (3) (2017), 1049-1066. https://doi.org/10.1007/ s11117-016-0451-z
[7] W. Rudin, Fourier analysis on groups. Interscience Tracts in Pure and Applied Mathematics, No. 12. Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962.
[8] Á. Szász, A natural Galois connection between generalized norms and metrics. Acta Univ. Sapientiae Math. 9 (2) (2017), 360-373. https://doi.org/ 10.1515/ausm-2017-0027

[^0]: Email address: elias@saske.sk (Peter Eliaš)

