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Abstract
We study notions of conditional probability and stochastic dependence/independence in an upgraded probability model in
which the space of events is modeled by a full Łukasiewicz tribe of all measurable functions from some measurable space into
[0, 1]. Our study is based on properties of joint experiments and the notion of stochastic channel, a construct equivalent to
the notion of Markov kernel between two measurable spaces. Using the notion of a degenerated stochastic channel, a channel
transmitting no stochastic information between two spaces, we define an asymmetrical independence of random experiments.
Finally, we define the notion of conditional probability on full Łukasiewicz tribes.

Keywords Random experiment · Stochastic channel · Joint experiment · Fuzzified probability theory · Observable ·
Probability integral · Statistical map · g-joint experiment · Independence · Conditional probability · Łukasiewicz tribe

1 Introduction

Stochastic channel is a channel through which a stochas-
tic information is transmitted from one random experiment
to another one. We study independence/dependence of two
experiments based on stochastic channels and joint exper-
iments, both for classical random experiments and for
fuzzified random experiments. The latter case is devel-
oped within a categorical model of upgraded probability,
where the classical outcomes are extended to fuzzified out-
comes, Boolean events are extended to measurable fuzzy
events (full Łukasiewicz tribes), and probability measures
are extended to probability integrals. Stochastic channels are
defined via observables (morphisms), and probability inte-
grals are observables into [0,1], viewed as the trivial object.
The degenerated channel transmitting no relevant stochas-
tic information defines an asymmetrical independence. The
dependence is modeled via the uniquely determined joint
experiment, called g-joint, and leads to a canonical con-
ditional probability. Each observable g can be interpreted

Communicated by A. Di Nola.

B Peter Eliaš
elias@saske.sk

Roman Frič
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as a conditional probability. Asymmetrical independence
means that the classical outcomes of one experiment do
not discriminate the classical outcomes of the other experi-
ment.

Conditional probabilities for σ -complete MV-algebras
were studied by Dvurečenskij and Pulmannová and for σ -
completeMV-algebras with products byKroupa. This yields,
as a special case, conditional probabilities on Łukasiewicz
tribes, where the product is the usual product of func-
tions. Our construction of conditional probability sheds light
to this special case (interpretation and the role of prod-
uct).

2 Classical stochastic channel

Stochastic channel is a channel through which a stochas-
tic information is transmitted from one random experiment
into another one. In the classical case, each random variable
f models a stochastic channel from the original (sample)
probability space (Ω,A, p) to the one induced by f on real
numbers. This way, the original stochastic information p is
transmitted to the distribution of the random variable f , rep-
resented by the corresponding distribution function of f .
Further, two random experiments draw the stochastic infor-
mation from the same given source (Ω,A, p); hence, any
stochastic information between the two experiments origi-
nates in (Ω,A, p) (Kolmogorov 1933).
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We take a different approach. We do not assume any sam-
ple space as a source of all stochastic information. Instead,
we shall consider one-way stochastic channels. From the
viewpoint of category theory, a one-way stochastic chan-
nel is determined by a morphism (arrow) going from one
object into another object. As we shall show, within the
upgraded probability theory, this enables us to develop an
asymmetrical independence of one fuzzified random exper-
iment on another one in terms of morphisms and outcomes.
Observe that this is not possible when the stochastic chan-
nel is based on classical measurable maps. Indeed, if f is
a measurable and measure preserving map from (Ω,A, p)
into another probability space (Ξ,B, q), then the “stochas-
tics of the latter space is determined by the stochastics of the
former one.”

We start with some simple observations. Each classical
probability space (Ω,A, p) has an “algebraic” compo-
nent: a measurable space (Ω,A) (an event space) and a
“random” component: a probability measure p. Here, Ω

represents experimental outcomes, A represents random
events—measurable sets of outcomes;we identify A ∈ A and
its indicator function χA : Ω → {0, 1}, χA(ω) = 1 if ω ∈ A
and χA(ω) = 0 otherwise, and we consider A as the truth set
of propositional function “outcome ω supports event A.” In
what follows, we shall assume that if ω1, ω2 ∈ Ω , ω1 �= ω2,
then there exists A ∈ A such that ω1 ∈ A, ω2 ∈ (Ω \ A)

and all singletons are events, i.e., {ω} ∈ A, ω ∈ Ω . Further,
p represents the choice of one probability measure (from all
possible) the one that “describes the randomness of experi-
ment in the best possible way” and p(A) tells us “how p-big”
A ∈ A is when compared with the sure eventΩ ∈ A. In what
follows, classical probability spaces will be called classical
(random) experiments.

Let (Ω,A) and (Ξ,B) be measurable spaces and let
f : Ω → Ξ be a measurable map . Then, the preimage map
f ← : B → A, f ←(B) = {ω ∈ Ω ; f (ω) ∈ B}, B ∈ B,
is a sequentially continuous (with respect to the pointwise
convergence of indicator functions) Boolean homomorphism
and it defines the so-called push-forward map D f on the set
P(A) of all probability measures on A into the set P(B) of
all probability measures on B, D f (t) = t ◦ f ←, t ∈ P(A).
As a rule, we identify each outcome o and the corresponding
Dirac probability measure δo concentrated at the outcome o
and then the restriction of D f toΩ , sending δω to δ f (ω), coin-
cides with f . The relationship between f ← and D f yields a
duality (dual equivalence) and leads to a better understand-
ing of stochastic channels. Without going into details, by
a stochastic information we understand information related
to outcomes, events, and probabilities of events. Indeed, if
p ∈ P(A) and q = D f (p) = p ◦ f ←, then all stochas-
tic information about (Ξ,B, q) is contained in (Ω,A, p).
The information about outcomes ξ ∈ Ξ is transmitted via
f : Ω → Ξ , the information about events B ∈ B is transmit-

ted via f ← : B → A, and the information about probability
measure p ∈ P(A) is transmitted via the push-forward map
D f : P(A) → P(B). Since D f (δω) = δω◦ f ← = δ f (δω), the
transmission of stochastic information is completely deter-
minedby f ←. Push-forwardmaps in the fuzzifiedprobability
theory are called statistical maps.

If (Ω,A, p) and (Ξ,B, q) are classical experiments and
f : Ω → Ξ is a measurable map such that D f (p) = q,
then an outcome ξ ∈ Ξ appears iff some outcome ω ∈ Ω

appears, an event B ∈ B appears iff the event f ←(B) ∈ A
appears, and q(B) = p( f ←(B)). It is natural to say that
( f ←, D f ) is a classical stochastic channel from (Ω,A, p)
to (Ξ,B, q).

In the next sections, we outline the theory of one-way
stochastic channels, joint experiments, and asymmetrical
independence/dependence within upgraded (fuzzified) prob-
ability theory (Zadeh 1968; Mesiar 1992; Dvurečenskij and
Pulmannová 2000; Foulis and Bennett 1994; Papčo 2004,
2005, 2008; Frič and Papčo 2015, 2017a, b; Babicová 2018).
The outline is based on results contained inBabicová andFrič
(2019).

3 Classical joint experiment

Intuitively, a joint experiment is an experiment which “from
one side looks like one constituent and from the other side
looks like the other one.” Of course, each viewpoint repre-
sents a stochastic channel.

In this section, we analyze what stochastic information
is transmitted from one constituent of the joint experiment
to the other one. We show that classical stochastic channels
do not model such one-way transmissions (via a measur-
able map) and that the transition from classical probability
to fuzzified probability is exactly what is needed. Recall that
the transition from (Ω,A, p) to (Ω,M(A),

∫
(·) dp), where

M(A) is the full Łukasiewicz tribe of all measurable fuzzy
events, can be best described in terms of an epireflection (cf.
Babicová 2018). Further, the transition from transmission of
stochastic information from classical joint experiment to the
transmission of stochastic information from fuzzified joint
experiment is canonical in the sense that the involved clas-
sical stochastic channels are fuzzified via the corresponding
epireflections. Hence, the classical transmission is uniquely
extended to fuzzified transmission. The added value of fuzzi-
fication is that the one-way transmission of no relevant
stochastic information from one fuzzified constituent to the
other fuzzified constituent can be explicitly formalized via
a degenerated observable, i.e., via a degenerated fuzzified
stochastic channel.

Let (Ω,A, p) and (Ξ,B, q) be classical random exper-
iments. Then, the product Ω × Ξ models the outcomes
(ω, ξ) of joint experiment, the product σ -field A × B mod-
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els the events of joint experiment, and a probability measure
r ∈ P(A × B) describes the “randomness related to the
joint events.” Let pr1 : Ω × Ξ → Ω , pr1(ω, ξ) = ω,
pr2 : Ω × Ξ → Ξ , pr2(ω, ξ) = ξ , be the usual pro-
jections. Then, the preimage maps pr←

1 : A → A × B,
pr←

1 (A) = A× Ξ , pr←
2 : B → A×B, pr←

2 (B) = Ω × B,
are sequentially continuous Boolean homomorphisms and
define stochastic channels through which r ∈ P(A × B) is
transmitted to lateral (marginal) probabilities L1(r) ∈ P(A),
(L1(r))(A) = r(pr←

1 (A)) = r(A × Ξ), A ∈ A, resp.
L2(r) ∈ P(B), (L2(r))(B) = r(pr←

2 (B)) = r(Ω×B), B ∈
B. Denote L1 : P(A×B) → P(A), resp. L2 : P(A×B) →
P(B), the corresponding lateral statistical maps. Schemati-
cally,

Ω
pr1←−− Ω × Ξ

pr2−−→ Ξ,

A
pr←

1−−→ A × B
pr←

1←−− B,

P(A)
L1←− P(A × B)

L2−→ P(B).

Provided that L1(r) = p and L2(r) = q, it is natural
to call (Ω × Ξ,A × B, r) a classical joint experiment.
Indeed, (pr←

1 , L1) yields a stochastic channel from (Ω ×
Ξ,A×B, r) to (Ω,A, p), resp. (pr←

2 , L2) yields a stochas-
tic channel from (Ω × Ξ,A × B, r) to (Ξ,B, q), and any
joint experiment provides (via the corresponding stochastic
channel) complete stochastic information about each of the
two constituents. Naturally, as we shall see, each particular
r ∈ P(A × B) provides additional stochastic information
transmitted between the constituent experiments.

Let us denote J (p, q) = {r ∈ P(A × B) ; L1(r) =
p, L2(r) = q}. Clearly, p × q ∈ J (p, q). If r = p × q,
then (Ω,A, p) and (Ξ,B, q) are said to be stochastically
independent in (Ω × Ξ,A × B, r).
Question. Let (Ω × Ξ,A × B, r) be a joint experiment
of (Ω,A, p) and (Ξ,B, q). What stochastic information
about (Ω,A, p) is transmitted from (Ω × Ξ,A × B, r) to
(Ξ,B, q) via the stochastic channel (pr←

2 , L2)? Similarly,
what stochastic information about (Ξ,B, q) is transmitted
from (Ω×Ξ,A×B, r) to (Ω,A, p) via the stochastic chan-
nel (pr←

1 , L1)?
Observations. 1. The occurrence of an event B ∈ B in
(Ξ,B, q) amounts to the occurrence of pr←

2 (B) = Ω × B
in (Ω × Ξ,A × B, r) and from L2(r) = q we get q(B) =
r(pr←

2 (B)) = r(Ω ×B). Hence, with respect to (pr←
2 , L2),

q(B)does not dependon p. Evenmore,q(B)will be the same
if, instead of (Ω,A, p) some other constituent in the joint
experiment is considered.

2. If an outcome ξ ∈ Ξ occurs in (Ξ,B, q), then the
occurrence yields via (pr←

2 , L2) no information about out-
comes ω ∈ Ω in (Ω,A, p), meaning that pr2(ω, ξ) = ξ for
all ω ∈ Ω .

3. If an event B ∈ B occurs in (Ξ,B, q), i.e., if some
outcome ξ ∈ B occurs, then the occurrence yields via
(pr←

2 , L2) no information about outcomes ω ∈ Ω in
(Ω,A, p) and hence, without additional assumptions, about
events A ∈ A in (Ω,A, p).

4. Clearly, analogous observations hold about the chan-
nel (pr←

1 , L1). To sum up, a classical joint experiment
(Ω ×Ξ,A×B, r) contains all stochastic information about
both constituent experiments but, without additional assump-
tions, the constituent experiments do not influence each other.
Moreover, simple example of a joint experiment (of two
discrete probability spaces having different number of out-
comes) shows that in general no measure preserving map of
one constituent experiment to the other one exists. As we
shall show, the situation in the fuzzified probability theory is
different (cf. Frič and Papčo 2010c).
Answer. For each joint experiment (Ω × Ξ,A × B, r) of
(Ω,A, t) and (Ξ,B, q), t ∈ P(A), no relevant informa-
tion about (Ω,A, t) is transmitted from the joint experiment
to (Ξ,B, q) via (pr←

2 , L2) and the information about q
obtained from the joint experiment via (pr←

2 , L2) is the
same (does not depend on t ∈ P(A)): pr←

2 (B) = Ω × B,
L2(r) = q, q(B) = r(pr←

2 (B)) = r(Ω × B), B ∈ B.
Vice versa, for each joint experiment (Ω × Ξ,A × B, r)
of (Ω,A, p) and (Ξ,B, s), s ∈ P(B), no relevant informa-
tion about (Ξ,B, q) is transmitted from the joint experiment
to (Ω,A, p) via (pr←

1 , L1) and the information about p
obtained from the joint experiment via (pr←

1 , L1) is the
same (does not depend on s ∈ P(B)): pr←

1 (A) = A × Ξ ,
L1(r) = p, p(A) = r(pr←

1 (A)) = r(A × Ξ), A ∈ A.
Let us note that in classical probability an exceptional

situation occurs if f : Ω → Ξ , resp. g : Ξ → Ω , is a
degenerated measurable map, i.e., f maps each ω ∈ Ω

to a fixed ξ ∈ Ξ , resp. g maps each ξ ∈ Ξ to a fixed
ω ∈ Ω . Then, f ←(B) = Ω for ξ ∈ B and f ←(B) = ∅
for ξ /∈ B, B ∈ B, resp. g←(A) = Ξ for ω ∈ A and
g←(A) = ∅ for ω /∈ A, A ∈ A; the corresponding indicator
functions χ f ←(B) ∈ M(A) and χg←(A) ∈ M(B) are con-
stant functions. But degenerated measurable maps describe
deterministic (not stochastic) classical experiments: all out-
comes in one experiment are transmitted to a fixed outcome
in the other experiment.

4 Asymmetrical independence/dependence
via g-joint experiment

In this section, we briefly recall (cf. Frič and Papčo
2010a, b, c, 2011, 2015, 2016; Babicová 2018; Papčo 2013;
Babicová andFrič 2019) the transition fromclassical to fuzzi-
fied (random) experiments and show that in the fuzzified
probability theory an experiment can transmit “no relevant
stochastic information” to another experiment via a fuzzified
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stochastic channel. Our main goal is to discuss the notion of
g-joint experiment, a mathematical construct on which the
asymmetrical independence and conditional probability on
full Łukasiewicz tribes is based.

Let (Ω,A) be a measurable space. DenoteM(A) the sys-
tem of all measurable functions f : Ω → [0, 1], carrying the
usual partial order and pointwise sequential convergence of
functions. Consider A as a subset ofM(A). It is known that
A andM(A) can be viewed as Łukasiewicz tribes (where the
Łukasiewicz sumof two functions is definedviamin{1, a+b}
and the Łukasiewicz product of two functions is defined via
max{0, a+b−1}). IfA is the trivial field of setsT = {∅, {ω}},
then [0, 1] can be viewed as M(T). Denote ELT the cate-
gory in which objects are of the form A or M(A) (extremal
Łukasiewicz tribes) and morphisms are sequentially contin-
uous maps preserving partial order, top and bottom constant
functions, and partial addition (a+b is defined for b ≤ 1−a);
morphisms are called observables. Let (Ξ,B) be another
measurable space. Then:

– Observables from B to A are exactly Boolean homomor-
phisms from B to A;

– Observables from A to M(T) are exactly probability
measures on A;

– Observables fromM(A) toM(T) are exactly probability
integrals on M(A) (p = ∫

(·) dp);
– Each observable from B to A (from B to M(A)) can

be uniquely extended to an observable from M(B) to
M(A).

Accordingly (cf. Babicová 2018), the (full) subcategory
FLT of full Łukasiewicz tribes (objects of the form M(A))
is epireflective in ELT, M(A) is the epireflection of A, p =∫
(·) dp is the epireflection of p : A → M(T).
Let (Ω × Ξ,A × B) be the product of two measurable

spaces (Ω,A) and (Ξ,B). Clearly, the canonical embed-
dings (constant prolongations) e1 : M(A) → M(A × B)

and e2 : M(B) → M(A × B) defined by ṽ(ω, ξ) =
(e1(v))(ω, ξ) = v(ω), ω ∈ Ω , ξ ∈ Ξ , v ∈ M(A),
resp. ũ(ω, ξ) = (e2(u))(ω, ξ) = u(ξ), ω ∈ Ω , ξ ∈ Ξ ,
u ∈ M(B), are observables and the unique extensions of
coprojections pr←

1 and pr←
2 , respectively.

Definition 1 Let (Ω,A, p) be a classical random experi-
ment. Then, (Ω,M(A), p) is said to be an experiment;
it will be called the fuzzification of (Ω,A, p). Let (Ω ×
Ξ,A × B, r) be a classical joint experiment of (Ω,A, p)
and (Ξ,B, q). Then, (Ω × Ξ,M(A × B), r), is said to be
a joint experiment of (Ω,M(A), p), and (Ξ,M(B), q).

Let (Ω,M(A),
∫
(·) dp) be an experiment. Usually, the

probability integral p = ∫
(·) dp is called a state. In what fol-

lows, the elements of M(A) will be called fuzzy events, or

simply events, probability integral will be condensed to prob-
ability, and p(v) = ∫

(v) dp will be called the probability of
event v.

Let (Ω,M(A), p) and (Ξ,M(B), q) be experiments,
and let g : M(B) → M(A) be an observable. The corre-
sponding statistical map Tg : P(A) → P(B) is defined as
follows: for t ∈ P(A) put Tg(t) = s, where s = t ◦ g.
Observation. It is known (cf. Frič 2005; Bugajski 2001a, b;
Gudder 1998) that a statisticalmap is uniquely determined by
the restriction to point (Dirac) measures. More precisely, the
following holds. Let g : M(B) → M(A), f : M(B) →
M(A) be observables, and let Tg : P(A) → P(B) and
T f : P(A) → P(B) be corresponding statistical maps. If
Tg(δω) = T f (δω) for each ω ∈ Ω , then g = f .

For u ∈ M(B) and ω ∈ Ω , put (g(u))(ω) = ∫
u dq. This

defines a mapping g of M(B) into [0, 1]Ω . It is known (cf.
Babicová and Frič 2019) that g is an observable (intoM(A))
and Tg(s) = q for all s ∈ P(A). Further, if h : M(B) →
M(A) is an observable such that each h(u) ∈ M(A), u ∈
M(B), is a constant function, then Th maps each t ∈ P(A) to
qh ∈ P(B), where for B ∈ B we have qh(B) = (h(χB))(ω),
ω ∈ Ω . Such observables and statistical maps are called
degenerated.

Definition 2 Let (Ω,M(A), p) and (Ξ,M(B), q)be exper-
iments. Let g : M(B) → M(A) be an observable, and let
Tg be the corresponding statistical map. Then, (g, Tg) is said
to be a stochastic channel. If Tg(p) = q, then (g, Tg)
is said to be a stochastic channel from (Ω,M(A), p) to
(Ξ,M(B), q). If g and Tg are degenerated, then (g, Tg) is
said to be degenerated.

In this sense, the interpretation of a degenerated stochastic
channel is that the classical outcomes of second experiment
do not discriminate the classical outcomes of first experi-
ment.

A construction of conditional probability for full
Łukasiewicz tribes using stochastic channels has been devel-
oped in Babicová and Frič (2019). Important assertions, on
which the construction is based, can be reformulated as fol-
lows (cf. Proposition 2.8, Proposition 2.10, and Corollary
2.11 in Babicová and Frič 2019), see Fig. 1.

Theorem 3 Let (Ω,M(A), p) and (Ξ,M(B), q) be exper-
iments. Let id : M(A) → M(A) be the identity observ-
able, let g : M(B) → M(A) be an observable, and let
Tid : P(A) → P(A) and Tg : P(A) → P(B) be the cor-
responding statistical maps.

(1) There exists a unique observable h : M(A × B) →
M(A) such that h ◦ ev1 = id and h ◦ ev2 = g, where h
is equal to the product id ⊗ g of observables id and g
defined as

123



Conditional probability on full Łukasiewicz tribes 6525

(A) (A×B) (B)

M(A)

(T)

e1 e2

id

#

h∃ ! g

#

p

Fig. 1 Commuting observables in a g-joint experiment

((id ⊗ g)(u))(ω) =
∫

u d(Tid(δω) × Tg(δω)) (⊗)

for all ω ∈ Ω , u ∈ M(A × B).
(2) Let Th : P(A) → P(A × B) be the statistical map

defined by h. Then, Th(δω) = Tid⊗g(δω) = δω × Tg(δω)

and L1 ◦ Th = Tid , L2 ◦ Th = Tg.
(3) If (g, Tg) is a degenerated stochastic channel from

(Ω,M(A), p) to (Ξ,M(B), q), i.e., Tg(t) = q for all
t ∈ P(A), then Th(t) = t × q for all t ∈ P(A) and, in
particular, Th(p) = p × q.

A joint experiment (Ω × Ξ,M(A × B), r), where r ∈
J (p, q) ⊆ P(A × B), is characterized by the require-
ment that it contains all stochastic information about its
constituents transmitted via the lateral stochastic channels
(e1, L1) and (e2, L2), respectively. Let g : M(B) → M(A)

be an observable such that q = p ◦ g. From Theorem 3,
it follows that there exists a unique joint experiment (Ω ×
Ξ,M(A × B), rp), rp = p ◦ (id ⊗ g), which is, in some
sense, “the best” of all joint experiments taking into account
g. It is determined by the observable h : M(A×B) → M(A)

and h = id ⊗ g, and h is the unique observable satisfying
two conditions: h ◦ ev1 = id and h ◦ ev2 = g. The first
condition guarantees that, for each v ∈ M(A), h does not
distort the stochastic information about e1(v) ∈ M(A × B)

(the same as the stochastic information about v = id(v)).
The second condition guarantees that, for each u ∈ M(B),
h transmits the same stochastic information about e2(u) (the
same stochastic information as about u) as g transmits about
u: for each for each u ∈ M(B), g(u) ∈ M(A) provides
stochastic information about u, e2(u) ∈ M(A×B) provides
stochastic information about u, and h(e2(u)) ∈ M(A) pro-
vides stochastic information about u. For h = id ⊗ g, we
have g(u) = h(e2(u)).

Definition 4 Let (g, Tg) be a stochastic channel from (Ω,M
(A), p) to (Ξ,M(B), q). Then, (Ω × Ξ,M(A × B), rp),
rp = p ◦ (id ⊗ g), is said to be the g-joint experiment of
(Ω,M(A), p) and (Ξ,M(B), q).

Intuitively, the g-joint experiment is “the best” joint exper-
iment which reflects the stochastic information transmitted
via channel (g, Tg) from (Ω,M(A), p) to (Ξ,M(B), q)

and, moreover, if (g, Tg) is degenerated, then rp = p × q.
The g-joint experiment is an important auxiliary mathemat-
ical tool used in the construction of conditional probability
on full Łukasiewicz tribes.

Definition 5 Let (g, Tg) be a stochastic channel from (Ω,M
(A), p) to (Ξ,M(B), q). If (g, Tg) is degenerated, then
(Ξ,M(B), q) is said to be independently joined by g to
(Ω,M(A), p).

Consider the g-joint experiment of (Ω,M(A), p), (Ξ,M
(B), q). Observe (see (2) in Proposition 2.8 in Babicová and
Frič (2019)) that for each ω ∈ Ω , Th(δω) = Tid⊗g(δω) is a
product measure of the form δω ×Tg(δω). Next, we calculate
Tid⊗g(t) for an arbitrary t ∈ P(A).

Lemma 6 For t ∈ P(A) put rt = t ◦(id⊗g). Let A ∈ A and
B ∈ B. Then, rt (A× B) = ∫

χA · χB drt =
∫

χA · g(χB) dt .
If g is degenerated, then rt = p × q.

Proof From rt = t ◦ (id ⊗ g), it follows that

∫
χA · χB drt =

∫
(id ⊗ g)(χA · χB) dt .

From (⊗), for ω ∈ Ω we get

((id ⊗ g)(χA · χB))(ω) =
∫

χA · χB d(Tid(δω) × Tg(δω))

and, by Fubini theorem,

((id ⊗ g)(χA · χB))(ω) = χA(ω) ·
∫

χB d(Tg(δω)).

But
∫

χB d(Tg(δω)) =
∫

g(χB) d(δω).

Hence,

((id ⊗ g)(χA · χB))(ω) = (χA · g(χB))(ω)

and

rt (A × B) =
∫

χA · χB drt =
∫

χA · g(χB) dt .

The last assertion follows from the fact that if g is degener-
ated, then g(χB) is a constant function the value of which
is q(B). Indeed, then rt (A × B) = p(A) · q(B), and hence,
rt = p × q. ��
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Proposition 7 Let (Ω × Ξ,M(A × B), rp) be the g-joint
experiment of (Ω,M(A), p) and (Ξ,M(B), q).

(1) If (Ξ,M(B), q) is independently joined by g to (Ω,M
(A), p), then rp = p × q.

(2) For B ∈ B denote AB = {ω ∈ Ω ; g(χB)(ω) �= q(B)}.
If r p = p × q, then p(AB) = 0.

Proof (1) The assertion follows from Lemma 6.
(2) Let rp = p×q. FromLemma 6, it follows that for each

A ∈ A, B ∈ B we have rp(A × B) = p(A) · q(B) =
∫

χA ·
g(χB) dp. Denote A1 = {ω ∈ Ω ; (g(χB))(ω) = q(B)},
A2 = {ω ∈ Ω ; (g(χB))(ω) < q(B)}, and A3 = {ω ∈
Ω ; (g(χB))(ω) > q(B)}. Clearly, Ai ∈ M(A), i = 1, 2, 3.
From p(Ai ) · q(B) =

∫
χAi · g(χB) dp, i = 2, 3, we get

p(A2) = p(A3) = 0. Hence, p(AB) = p(A2 ∪ A3) = 0. ��

Recall that r = p × q means that the classical exper-
iments (Ω,A, p), (Ξ,B, q) are (symmetrically) stochasti-
cally independent in their joint experiment (Ω×Ξ,A×B, r).
The previous proposition provides an explicit description
of the relationships between the (symmetrical) stochastic
independence of classical experiments and the asymmetri-
cal “independence” of their fuzzifications (cf. Proposition
3.7 in Babicová and Frič 2019): in the broader context
of g-joint experiment, the asymmetrical “independence”
of (Ξ,M(B), q) on (Ω,M(A), p) implies the symmet-
rical stochastic independence of (Ω,A, p) and (Ξ,B, q)

and, conversely, the symmetrical stochastic independence
of (Ω,A, p) and (Ξ,B), q) implies p-almost asymmetrical
“independence” of (Ξ,M(B), q) on (Ω,M(A), p).

Proposition 8 Consider the g-joint of (Ω,M(A), p) and
(Ξ,M(B), q). Let w ∈ M(A × B). For ω ∈ Ω , denote
wω ∈ M(B) the ω-cut of w, wω(ξ) = w(ω, ξ), ξ ∈ Ξ .
Then,

(1) ((id ⊗ g)(w))(ω) = ∫
wω d(Tg(δω));

(2)
∫

w drp =
∫
(
∫

wω d(Tg(δω))) dp;
(3) Let A ∈ A and B ∈ B.

Then, rp(A × B) =
∫
(
∫
(χA×B)ω d(Tg(δω))) dp.

Proof (1) From (⊗), for ω ∈ Ω we get

((id ⊗ g)(w))(ω) =
∫

w d(Tid(δω) × Tg(δω))

and, by Fubini theorem,

((id ⊗ g)(w))(ω) =
∫

w(ω, ξ) d(Tg(δω)).

(2) From rp = p ◦ (id ⊗ g), it follows that

∫
w drp =

∫
(id ⊗ g)(w) dp.

Now (2) follows from (1).
(3) Clearly, (3) is a special case of (2). ��

Corollary 9 Let u ∈ M(B). Then, in the preceding propo-
sition, for w = e2(u) we have ((id ⊗ g)(w))(ω) =∫
u d(Tg(δω)) and, moreover, if g is degenerated, then

g(u) = (id ⊗ g)(e2(u)) is a constant function the value
of which is

∫
u dq.

Observe that, in the view of Corollary 9, the asymmet-
rical independence of (Ξ,M(B), q) on (Ω,M(A), p) in
their g-joint experiment can be restated as follows: “the clas-
sical outcomes of (Ξ,M(B), q) do not discriminate the
classical outcomes of (Ω,M(A), p).” Indeed, if an out-
come ξ ∈ Ξ does occur then the degenerated observable
g : M(B) → M(A) maps each u ∈ M(B) to a constant
function and so the occurrence of ξ “does not discriminate
the outcomes of Ω .” Vice versa, the degenerated stochastic
channel from (Ω,M(A), p) to (Ξ,M(B), q) is the unique
one that “transmits no relevant stochastic information about
outcomes.”

5 Conditional probability on full Łukasiewicz
tribes

Conditional probabilities have been defined for σ -complete
MV-algebras with products by Kroupa (2005b) and for σ -
complete MV-algebras by Dvurečenskij and Pulmannová
(2005); the operation of product plays an important role.
As a special case, this yields a definition of conditional
probability for Łukasiewicz tribes, where the operation of
product coincides with the usual product of functions. Our
construction of conditional probability sheds light to this
special case. We start with a stochastic channel (g, Tg)
from (Ω,M(A), p) to (Ξ,M(B), q), then form the g-joint
experiment (Ω × Ξ,M(A × B), rp) uniquely determined
by (g, Tg), and construct the conditional probability on full
Łukasiewicz tribes (of fuzzy random events in M(B) con-
ditioned by fuzzy random events in M(A) having positive
probability) as the canonical fuzzification of classical con-
ditional probability related to the g-joint experiment. The
product of fuzzy events extends the intersection of classical
(crisp) random events.

Additional information on probability and conditional
probability can be found in Jurečková (2001), Kalina and
Nánásiová (2006), Kroupa (2005a), Navara (2005), Riečan
(1999), Riečan and Mundici (2002), Vrábelová (2000).
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We discuss how rp reflects the “dependence/indepen-
dence” of (Ξ,M(B), q) on (Ω,M(A), p). In particular,
we are interested in the construction of a “conditional prob-
ability R(u|v) of u ∈ M(B) given v ∈ M(A).” Using the
embeddings e1, e2, we consider the conditional event u|v as
the event e2(u)|e1(v) in the joint experiment (Ω×Ξ,M(A×
B), rp) and we will show that this leads to a natural construc-
tion of R(u|v). Forw ∈ M(A×B), each pair ((ω, ξ), a), 0 <

a ≤ w(ω, ξ), can be considered as a “fuzzyoutcome support-
ing w” and the set Mw = {((ω, ξ), a) ; 0 < a ≤ w(ω, ξ)}
can be considered as the fuzzy event in M(A × B) and∫

w drp measures “how big” the set Mw is. For B ∈ B, put
χ̃B = e2(χB) = χB×Ω ∈ M(A×B). Then, the set MχB ·v =
Mχ̃B ·ṽ =Mχ̃B ∩Mṽ = {((ω, ξ), a) ; 0 < a ≤ ṽ(ω, ξ), ω ∈ B}
can be considered as “the set of all fuzzy outcomes support-
ing χ̃B given ṽ.” For 0 <

∫
ṽ drp = ∫

v dp, put

R(χB |v) =
∫

χ̃B · ṽ drp∫
ṽ drp

Clearly, for each v ∈ M(A), 0 <
∫

ṽ drp = ∫
v dp,

R(χB |v) defines a probability measure R(·|v) on B. Finally,
R(·|v) is an observable into M(T), and hence, it can be
uniquely extended to an observable over M(B) intoM(T).
Then,

R(u|v) =
∫
ũ · ṽ drp∫
ṽ drp

, u ∈ M(B) (∗)

is the unique extension and it yields the only natural def-
inition of generalized conditional probability based on the
stochastic channel (g, Tg) and the corresponding g-joint
experiment. For v = χA, A ∈ A, p(A) > 0, and u = χB ,
B ∈ B, (∗) reduces to the classical conditional probability
for crisp events in (Ω × Ξ,A × B, rp).

Lemma 10 Let R(·|v) : M(B) → M(T), v ∈ M(A), 0 <∫
ṽ drp = ∫

v dp, be the observable defined by (∗). Then,
for each u ∈ M(B) we have

∫
(ũ · ṽ) drp = ∫

v · g(u) dp,∫
ṽ drp = ∫

v dp, and

R(u|v) =
∫

v · g(u) dp
∫

v dp
, u ∈ M(B). (∗∗)

Proof First, from rp = p ◦ (id ⊗ g) we get
∫
(ṽ · ũ) drp =∫

(id⊗g)(ṽ·ũ) dp. Second, from (⊗)weget (id⊗g)(ṽ·ũ) =
v · g(u). Thus,

∫
(ṽ · ũ) drp = ∫

v · g(u) dp. Now, the other
assertion follows from the fact that L1(rp) = p. ��
Definition 11 Let (Ω × Ξ,M(A × B), rp) be the g-joint
experiment of (Ω,M(A), p) and (Ξ,M(B), q). Let v ∈
M(A), 0 <

∫
ṽ drp = ∫

v dp. Then, the observable

R(·|v) : M(B) → M(T)

is said to be the conditional probability on M(B) given
v ∈ M(A).

Let (Λ,C, P) be a classical random experiment (i.e., a
probability space), let D be a σ -field contained in C, and
let PD be the restriction of P to D. Let E be the family of
all integrable C-measurable functions. Clearly M(C) ⊂ E .
Then (cf. Loève 1963) for each w ∈ E , there exists a D-
measurable function EDw, defined up to PD-equivalence by

∫

D

(
EDw

)
dPD =

∫

D
w dP, D ∈ D;

function EDw is called the conditional expectation of w

givenD. The restriction of ED to indicator functionsχC ,C ∈
C, is called conditional probability given D and denoted
PDC = ED

χC
.

We shall deal with a special caseΛ = Ω×Ξ ,C = A×B,
D = A × {∅, Ξ}, P = rp, and w = ũ = e2(u), u ∈ M(B).
Our goal is to describe the relationship between anobservable
g : M(B) → M(A) and the conditional expectation ED.

Proposition 12 Let (Ω × Ξ,M(A × B), rp) be the g-joint
experiment of (Ω,M(A), p), (Ξ,M(B), q). For Λ = Ω ×
Ξ , C = A × B, D = A × {∅, Ξ}, P = rp, let ED be the
corresponding conditional expectation given D. Then (up to
PD-equivalence)

EDũ = ˜g(u) = e1(g(u)), ũ = e2(u), u ∈ M(B).

Proof Let u ∈ M(B). Since

∫

A×Ξ

(
EDũ

)
dPD =

∫

A×Ξ

ũ dP, A ∈ A,

it suffices to prove that for each A ∈ A we have

∫

A×Ξ

ũ drp =
∫

A×Ξ

˜g(u) dPD.

Since rp = p ◦ (id ⊗ g), we get

∫

A×Ξ

ũ drp =
∫

χA×Ξ · ũ drp =
∫

(id ◦ g)(χA · u) dp.

Using (⊗), for all ω ∈ Ω we get

((id ⊗ g)(χA · u))(ω) =
∫

χA · u d(δω × Tg(δω))

= χA(ω) ·
∫

g(u) d(δω) = (χA · g(u))(ω),

and hence
∫

A×Ξ

ũ drp =
∫

χA · g(u) dp =
∫

A×Ξ

˜g(u) dPD.

123



6528 P. Eliaš, R. Frič

Thus ˜g(u) = EDũ (up to PD-equivalence). ��
Definition 13 Let (Ω × Ξ,M(A × B), rp) be the g-joint
experiment of (Ω,M(A), p), (Ξ,M(B), q). The observ-
able g : M(B) → M(A) is then said to be the conditional
probability on M(B) given M(A).

Observe that ED is defined in terms of crisp sets (D),
hence the observable g : M(B) → M(A) might be called
the conditional probability on M(B) given A (cf. p. 380 in
Kroupa 2005b).

For generalized probability domains (MV-algebras,
Łukasiewicz tribes, D-posets, …), an additional binary oper-
ation “product” has been studied primarily in connection
with joint observables, stochastic independence, condi-
tional expectation, and conditional probability, see Riečan
(1999), Di Nola and Dvurečenskij (2001), Vrábelová (2000),
Jurečková (2001), Riečan and Mundici (2002), Kroupa
(2005a, b),Dvurečenskij andPulmannová (2005),Kalina and
Nánásiová (2006), Chovanec et al. (2014), Kôpka (2008). It
is known (Riečan and Mundici 2002; Kroupa 2005b) that in
a full Łukasiewicz tribe the “product” reduces to the usual
pointwise product of functions.

Observe that the construction of generalized conditional
probability for MV-algebras and D-posets is based on the
operation of product. In Kroupa (2005b), Dvurečenskij and
Pulmannová (2005), for u, v ∈ M(A), 0 <

∫
v dp, P(u|v)

is defined via
∫

v · u dp
∫

v dp
.

Our construction fully supports “conditioning via prod-
uct” and, what is more important, we claim that for full
Łukasiewicz tribes the “conditioning via product” is canon-
ical.

The following special case might be of interest. Let
us consider a g-joint experiment of (Ω,M(A), p) and
(Ξ,M(B), q), where the two experiments are identical and
g ≡ id is the identity observable, or B ⊂ A and g is an
embedding. Let v ∈ M(A), 0 <

∫
v dp. Then, for each

u ∈ M(A) we have

R(u|v) =
∫

v · u dp
∫

v dp

and for v = χB, a = χA, A, B ∈ A, p(A) > 0 we get

R(u|v) =
∫

v · u dp
∫

v dp
= p(A ∩ B)

p(A)
.

Finally, observe that the usual approach to independence
via conditional probability is compatible with our approach
via stochastic channels. Namely, from the equality R(v|u) =

R(v) it follows that rp = p× q and g is “p-almost degener-
ated.”
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Dvurečenskij A, Pulmannová S (2000) New trends in quantum struc-
tures. Kluwer Academic Publ. and Ister Science, Dordrecht and
Bratislava
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