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Abstract. In this work we consider several combinatorial principles satisfied
for cardinals smaller than cov(M), the covering number of the ideal of first
category sets on real line. Using these principles we prove that there exist N0-
sets (similarly N-sets, A-sets) which cannot be covered by fewer than cov(M)
pD-sets (A-sets, N-sets, respectively). This improves the results of our previous
paper [7].

The study of special sets of reals related to the convergence of trigonometric
series, generally called ‘trigonometric thin sets’, was one of the classical topics of
harmonic analysis (see e. g. [4]). Recently, many investigations were made concern-
ing the set-theoretic properties of such sets. A serious interest turns on the cardinal
characteristics of structures related to trigonometric thin sets (see e. g. [3], [5], [6],
[8], [10], [11]).

This paper has two parts. In the first part we present two new combinatorial
characterizations of the cardinal cov(M), the covering number of the ideal of first
category sets (Corollary 5). We use these characterizations in the second part to
prove some theorems about trigonometric thin sets (Theorems 12, 13, and 16).

1. Combinatorics

We use the standard set-theoretic notation. Hence, ω is the set of all natural
numbers, [ω]<ω and [ω]ω denote the sets of all finite and infinite subsets of ω,
AB is the set of all functions from B to A, and |A| is the cardinality of a set A.
Quantifiers ∃∞ and ∀∞ stand for ‘there are infinitely many’ and ‘for all but finitely
many’, respectively.

Let M denote the ideal of first category (meager) sets on real line. Let us recall
that cov(M), the covering number of M, is the minimum size of a family F ⊆M
such that

⋃F = R. We will use the following combinatorial characterizations of
this cardinal, due to Bartoszyński ([1], [2]).

Lemma 1. Let κ be a cardinal. The following conditions are equivalent.
(1) κ < cov(M),
(2) for every family F ⊆ ωω, |F| ≤ κ, there exists a function g ∈ ωω such that

(∀f ∈ F)(∃∞n) g(n) = f(n),
(3) for every family F ⊆ ωω, |F| ≤ κ, and for every family X ⊆ [ω]ω, |X | ≤ κ,

there exists g ∈ ωω such that (∀f ∈ F)(∀X ∈ X )(∃∞n ∈ X) g(n) = f(n),
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(4) for every family F ⊆ ωω, |F| ≤ κ, there exists a function S ∈ ([ω]<ω)ω,
such that (∀n) |S(n)| = n + 1, and (∀f ∈ F)(∃∞n) f(n) ∈ S(n).

We will add two more conditions to this list. First, we need to prove some
lemmas.

Lemma 2. For every family F ⊆ [ω]ω, |F| < cov(M), and for every h ∈ ωω, there
exists g ∈ ωω such that (∀n) g(n + 1) ≥ h(g(n)), and (∀X ∈ F) |rng(g) ∩X| = ω.

Proof. Let F = {Xα : α < κ}, κ < cov(M). Without loss of generality, we assume
that h is non-decreasing and h(n) > n for all n.

Put k0 = 0, kn+1 = h(kn) for n ∈ ω. For α < κ and n ∈ ω, let fα(n) ∈ ω be
such that ∣∣{j : j < fα(n) ∧ [kj , kj+1) ∩Xα 6= ∅}∣∣ = 3n + 1.

Put f∗α(n) =
[
0, kfα(n)

) ∩ Xα. Since f∗α-s can be coded as elements of ωω, by
Lemma 1 there exists g∗ such that (∀α < κ)(∃∞n) g∗(n) = f∗α(n). Moreover, we
may assume that (∀n)(∃α < κ) g∗(n) = f∗α(n). Thus for each n,∣∣{j : [kj , kj+1) ∩ g∗(n) 6= ∅}

∣∣ = 3n + 1,

and we can take mn ∈ g∗(n) such that for every i < n and j ∈ ω, if mi ∈ [kj , kj+1)
then mn /∈ [kj−1, kj+2).

Let g ∈ ωω be an increasing function such that rng(g) = {mn : n ∈ ω}. For
every n, if g(n) ∈ [kj , kj+1) then [kj+1, kj+2) ∩ rng(g) = ∅, and thus g(n + 1) ≥
kj+2 = h(kj+1) ≥ h(g(n)), since kj+1 > g(n). Moreover, if g∗(n) = f∗α(n) then
mn ∈ Xα. Hence rng(g) ∩Xα is infinite for every α < κ. ¤
Lemma 3. Let F ⊆ ωω, |F| < cov(M), and let every f ∈ F be increasing. Then
for every h ∈ ωω there exists g ∈ ωω such that (∀n) g(n + 1) ≥ h(g(n)), and
(∀f ∈ F)(∃∞n)(∃k ≤ n) g(k) = f(n).

Proof. By Lemma 1, there exists g′ such that (∀f ∈ F)(∃∞n) g′(n) = f(n). More-
over, we may assume that (∀n)(∃f ∈ F) g′(n) = f(n), and hence g′(n) ≥ n for
all n. For f ∈ F , put Xf = {n : g′(n) = f(n)} and h∗(n) = max{n + 1, h(g′(n))}.
By Lemma 2 there exists g∗ ∈ ωω such that (∀n) g∗(n + 1) ≥ h∗(g∗(n)), and
(∀f ∈ F) |rng(g∗) ∩Xf | = ω. Clearly g∗ is increasing.

For n ∈ ω, let g(n) = g′(g∗(n)). Then for every n, g(n + 1) = g′(g∗(n + 1)) ≥
g∗(n+1) ≥ h∗(g∗(n)) ≥ h(g′(g∗(n)) = h(g(n)). Moreover, if n ∈ rng(g∗)∩Xf then
n = g∗(k) for some k ≤ n, and g(k) = g′(g∗(k)) = g′(n) = f(n). ¤
Lemma 4. Let F ⊆ ωω, |F| < cov(M). Then there exists a function g ∈ ωω such
that (∀n)(∃f ∈ F) g(n + 1) = f(g(n)), and (∀f ∈ F)(∃∞n) g(n + 1) = f(g(n)).

Proof. First, we show the existence of g′ ∈ ωω such that (∀n)(∃f ∈ F) g′(n + 1) ≥
f(g′(n)), and (∀f ∈ F)(∃∞n) g′(n + 1) ≥ f(g′(n)). Using Lemma 1, we can find
h ∈ ωω such that h(n) > n for all n, and the set Xf = {n : f(n) ≤ h(n)}
is infinite for every f ∈ F . By Lemma 2, there exists g′ ∈ ωω such that for
all n, g′(n + 1) ≥ h(g′(n)), and for all f ∈ F , |rng(g′) ∩Xf | = ω. Moreover, we
may assume that (∀n)(∃f ∈ F) g′(n) ∈ Xf . Since g′ is increasing, we have (∀f ∈
F)(∃∞n) g′(n) ∈ Xf . Clearly, if g′(n) ∈ Xf then f(g′(n)) ≤ h(g′(n)) ≤ g′(n + 1).
Thus g′ is as we have expected.

For f ∈ F , n ∈ ω, denote f∗(n) = max{f(0), . . . , f(n)}. As we have just proved,
there exists g∗ ∈ ωω such that for all f ∈ F , the set Yf = {n : g∗(n+1) ≥ f∗(g∗(n))}
is infinite, and

⋃
f∈F Yf = ω.
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For given f ∈ F and n ∈ ω, put Hf (n) = f ¹ {0, . . . , g∗(n)}. Since Hf (n)-s
can be coded as elements of ω, by Lemma 1 there exists a function H such that
(∀f ∈ F)(∃∞n ∈ Yf )H(n) = Hf (n). Without loss of generality we may assume
also that (∀n)(∃f ∈ F)(n ∈ Yf ∧H(n) = Hf (n)).

Put g(0) = 0, g(n + 1) = H(n)(g(n)). For every n, we have H(n) = Hf (n)
for some f ∈ F such that n ∈ Yf , and hence if k ∈ dom(H(n)) then k ≤ g∗(n),
and H(n)(k) = Hf (n)(k) = f(k) ≤ f∗(g∗(n)) ≤ g∗(n + 1). Thus H(n)(k) ∈
dom(H(n + 1)), and the definition of g makes sense. Moreover, if H(n) = Hf (n)
then g(n + 1) = Hf (n)(g(n)) = f(g(n)). Hence g has the required properties. ¤

Corollary 5. Let κ be a cardinal. The following conditions are equivalent to (1)–(4)
from Lemma 1.

(5) for every family F ⊆ ωω, |F| ≤ κ, such that every f ∈ F is increasing, and
for every h ∈ ωω, there exists g ∈ ωω such that (∀n) g(n + 1) ≥ h(g(n)),
and (∀f ∈ F)(∃∞n)(∃k ≤ n) g(k) = f(n),

(6) for every family F ⊆ ωω, |F| ≤ κ, there exists g ∈ ωω such that (∀n)(∃f ∈
F) g(n + 1) = f(g(n)), and (∀f ∈ F)(∃∞n) g(n + 1) = f(g(n)).

Proof. As we have shown in the previous two lemmas, (1) implies both (5) and (6).
We will prove that (5) implies (4), and (6) implies (2).

Assume that (5) holds. Let F ⊆ ωω, |F| ≤ κ, and let h(n) = n + 1 for all
n ∈ ω. Clearly if g ∈ ωω satisfies the conditions of (5) then g is increasing, and the
function S such that S(n) = {g(0), . . . , g(n)}, n ∈ ω, satisfies the condition of (4).
Thus (5) implies (4).

Let F ⊆ ωω, |F| ≤ κ, and let (6) hold true. Fix a bijection p ∈ (ω × ω)ω.
For f ∈ F , let f∗ ∈ ωω be such that for all k, l ∈ ω, f∗(p(k, l)) = p(k + 1, f(k)).
By (6), there exists g∗ ∈ ωω such that (∀n)(∃f ∈ F) g∗(n + 1) = f∗(g∗(n)),
and (∀f ∈ F)(∃∞n) g∗(n + 1) = f∗(g∗(n)). For n ∈ ω, let kn, ln be such that
g∗(n) = p(kn, ln). Now, if g∗(n + 1) = f∗(g∗(n)) for some f ∈ F and n ∈ ω
then p(kn+1, ln+1) = f∗(p(kn, ln)) = p(kn + 1, f(kn)). It follows that for all n,
kn = n + k0 and f(kn) = ln+1. If we put g(n) = 0 for n < k0, and g(n + k0) = ln+1

for all n ∈ ω, then g will satisfy the condition of (2). Thus (6) implies (2). ¤

An open problem is whether the condition from Lemma 2 is equivalent to (1)–(6).
It can be formulated as follows.

Problem 6. Let κ be the minimum cardinality of a family F ⊆ [ω]ω for which
there exists h ∈ ωω such that for all g ∈ ωω, if (∀n) g(n + 1) ≥ h(g(n)) then
(∃X ∈ F) |rng(g) ∩X| < ω. Is it consistent that κ > cov(M)?

2. Trigonometric thin sets

From many types of trigonometric thin sets, we will consider the following four:
N-sets, N0-sets, A-sets, and pD-sets. A set X of real numbers is called an N-set if
there exists a trigonometric series absolutely converging on X while not absolutely
converging everywhere, or equivalently, if there exists a sequence of positive reals
{an}∞n=1 such that

∑∞
n=1 an = ∞, and for all x ∈ X,

∑∞
n=1 an |sin πnx| < ∞. It

is called an N0-set (or an A-set, a pD-set) if there exists an increasing sequence
of natural numbers {nk}∞k=0 such that for all x ∈ X,

∑∞
k=0 |sin πnkx| < ∞ (or

limk→∞ |sin πnkx| = 0, |sinπnkx| ≤ 2−k for almost all k, respectively). Let us note
that in the definitions above, we can use the distance of x to the nearest integer,
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i. e. the function ‖x‖ = min{x− k : k ∈ Z}, instead of the function |sin πx|. More
about these types of sets can be found e. g. in [6], [7].

We denote by N , N0, A, and pD the families of all N-sets, N0-sets, A-sets,
and pD-sets, respectively. Directly from the definitions we can see that N0 ⊆ N ,
N0 ⊆ A, and pD ⊆ N0. In [9], S. Kahane showed that there exist N0-sets which
cannot be covered by countably many pD-sets, N-sets which cannot be covered by
countably many A-sets, and A-sets which cannot be covered by countably many
N-sets. In [7] we have proved that ‘countably many’ can be replaced by ‘fewer
than add(M)’, where add(M) is the additivity of the ideal M of all first category
sets. Now, we will improve these results to ‘fewer than cov(M)’ (Theorems 12, 13,
and 16). Let us note that it is consistent with ZFC that add(M) < cov(M); the
consistency is established by the Cohen model (see e. g. [2]).

By an interval we will mean a set of the form {x ∈ R : a ≤ x ≤ b}, for some
a < b. Thus an interval will always be compact and have non-empty interior. The
length of an interval I, denoted by λ(I), is the value b− a.

Lemma 7. Let n ≥ 1, 0 < ε ≤ 1. For every interval I such that λ(I) = 1/n there
exists an interval J ⊆ I such that ‖nx‖ ≤ ε for all x ∈ J , and λ(J) = ε/n.

Proof. Since λ(I) = 1/n, there exists x0 ∈ I such that ‖nx0‖ = 0. Let J be any
sub-interval of I such that x0 ∈ J and λ(J) = ε/n. ¤

Lemma 8. Let n ≥ 1, 0 < ε < 1/2. For every interval I such that λ(I) > 2ε/n
there exists an interval J ⊆ I such that ‖nx‖ ≥ ε for all x ∈ J , and

λ(J) = min
{

λ(I)
2

− ε

n
,
1− 2ε

n

}
.

Proof. Assume that I = [a − b, a + b], thus b = λ(I)/2 > ε/n. If ‖nx0‖ = 0 for
some x0 ∈ [a− b− ε/n, a] then let us take

J =
[
x0 +

ε

n
, x0 + min

{
b,

1− ε

n

}]
.

Clearly J ⊆ I, λ(J) = min {b− ε/n, (1− 2ε)/n}, and if x ∈ J then ε/n ≤
|x− x0| ≤ (1 − ε)/n, thus ‖nx‖ ≥ ε. Similarly, if ‖nx0‖ = 0 for some x0 ∈
[a, a + b + ε/n] then we can take

J =
[
x0 −min

{
b,

1− ε

n

}
, x0 − ε

n

]
.

Finally, if ‖nx‖ > 0 for all x ∈ [a− b−ε/n, a+ b+ε/n] then clearly ‖nx‖ ≥ ε for all
x ∈ I. We can take arbitrary interval J ⊆ I with λ(J) = min {b− ε/n, (1− 2ε)/n}.

¤

Corollary 9. Let 1 ≤ n ≤ n′. For every interval I such that λ(I) = 1/n, there
exists an interval J ⊆ I such that λ(J) = 1/n′, and if x ∈ J then ‖nx‖ ≤ n/n′.

Proof. Use Lemma 7 with ε = n/n′. ¤

Corollary 10. Let 1 ≤ n ≤ 2m ≤ n′, 0 < ε ≤ 1/4, and n/n′ ≤ ε. For every
interval I such that λ(I) = 1/n, there exists an interval J ⊆ I such that λ(J) =
1/n′, and if x ∈ J then ‖nx‖ ≤ 4ε, and ‖mx‖ ≥ ε/2.



COVERING FOR CATEGORY AND TRIGONOMETRIC THIN SETS 5

Proof. By Lemma 7 there exists an interval I ′ ⊆ I such that ‖nx‖ ≤ 4ε for all
x ∈ I ′, and λ(I ′) = 4ε/n. By Lemma 8 there exists an interval J ′ ⊆ I ′ such that
‖mx‖ ≥ ε/2 for all x ∈ J ′, and

λ(J ′) = min
{

2ε

n
− ε

2m
,
1− ε

m

}
≥ min

{
ε

n
,

1
2m

}
≥ 1

n′
.

Let J be any interval such that J ⊆ J ′ and λ(J) = 1/n′. ¤
Lemma 11. Let {nk}k∈ω, {mi}i∈ω be increasing sequences of natural numbers,
{εi}i∈ω be a sequence of reals, and k ∈ ωω be such that for all i,

(1) nk(i) ≤ 2mi < nk(i)+1,
(2) k(i + 1) > k(i),
(3) nk(i)/nk(i)+1 ≤ εi ≤ 1/4.

Then there exists a real x such that

(4) for all k, ‖nkx‖ ≤
{

4εi if k = k(i) for some i,

nk/nk+1 if k /∈ {k(i) : i ∈ ω},
(5) for all i, ‖mix‖ ≥ εi/2.

Proof. We take x ∈ ⋂
k∈ω Ik where {Ik}k∈ω is a nested sequence of intervals defined

as follows. Let I0 be such that λ(I0) = 1/n0. For every k, assume that λ(Ik) = 1/nk.
If k /∈ {k(i) : i ∈ ω} then by Corollary 9 there exists an interval Ik+1 ⊆ Ik such that
λ(Ik+1) = 1/nk+1 and ‖nkx‖ ≤ nk/nk+1 for all x ∈ Ik+1. If k = k(i) for some i
then by Corollary 10 there exists Ik+1 ⊆ Ik such that λ(Ik+1) = 1/nk+1, and if
x ∈ Ik+1 then ‖nkx‖ ≤ 4εi, and ‖mix‖ ≥ εi/2. ¤
Theorem 12. Let {nk}k∈ω be an increasing sequence of natural numbers such that∑

k∈ω nk/nk+1 < ∞. Then the N0-set
{
x :

∑
k∈ω ‖nkx‖ < ∞}

cannot be covered
by a union of fewer than cov(M) pD-sets.

Proof. Let {Xα}α<κ be a sequence of pD-sets, κ < cov(M). We will find a real x
such that

∑
k∈ω ‖nkx‖ < ∞ and x /∈ ⋃

α<κ Xα.
Fix a monotone sequence of positive reals {εj}j∈ω such that

∑
εj < ∞, and

εj ≤ 1/4 for all j. Find an increasing function k∗ ∈ ωω such that if j ≥ k∗(i) then
nj/nj+1 ≤ εi, and put h(i) = nk∗(i+1). For α < κ, let

{
mα

j

}
j∈ω

be an increasing

sequence of natural numbers such that (∀x ∈ Xα)(∀∞j)
∥∥mα

j x
∥∥ < εj/2 and mα

0 ≥
nk∗(0)/2. By Lemma 3 there exists g ∈ ωω such that (∀i) g(i + 1) ≥ h(g(i)), and
(∀α < κ)(∃∞j)(∃i ≤ j) g(i) = 2mα

j . Without a loss of generality we may assume
that (∀i)(∃α < κ)(∃j ≥ i) g(i) = 2mα

j , thus every g(i) is even. Put mi = g(i)/2.
Let k ∈ ωω be such that for all i, nk(i) ≤ 2mi < nk(i)+1. Clearly m0 ≥ nk∗(0)/2,

and thus k(0) ≥ k∗(0). We have g(i + 1) ≥ nk′ > g(i), where k′ = k∗(g(i) + 1),
hence k(i + 1) ≥ k′ > k(i). Since g is increasing, we have k′ ≥ k∗(i + 1). Thus for
all i ∈ ω, k(i) ≥ k∗(i), and hence nk(i)/nk(i)+1 ≤ εi.

Now, for a real x obtained from Lemma 11 we have
∑

k∈ω ‖nkx‖ ≤ ∑
i∈ω 4εi +∑

k∈ω nk/nk+1 < ∞, and for every α < κ there exist infinitely many j-s such that
for some i ≤ j,

∥∥mα
j x

∥∥ = ‖mix‖ ≥ εi/2 ≥ εj/2, thus x /∈ ⋃
α<κ Xα. ¤

Theorem 13. Let {nk}k∈ω be an increasing sequence of natural numbers and let
{%k}k∈ω be a sequence of non-negative reals such that limk→∞ %k = 0,

∑
k∈ω %k =

∞, and
∑

k∈ω %knk/nk+1 < ∞. Then the N-set
{
x :

∑
k∈ω %k ‖nkx‖ < ∞}

cannot
be covered by a union of fewer than cov(M) A-sets.
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Proof. Put K = {k : nk/nk+1 ≤ 1/4}. Since
∑

k∈ω %knk/nk+1 < ∞, we have∑
k/∈K %k < ∞, and since

∑
k∈ω %k = ∞, the set K is infinite. For j ∈ ω, let

kj denote its j-th element. Clearly limj→∞ %kj
= 0,

∑
j∈ω %kj

= ∞, and for
every x,

∑
k∈ω %k ‖nkx‖ < ∞ iff

∑
j∈ω %kj

∥∥nkj
x
∥∥ < ∞. Moreover, nkj

/nkj+1 ≤
nkj

/nkj+1 ≤ 1/4 for all j ∈ ω. Hence by taking {nkj
}j∈ω instead of {nk}k∈ω we

can ensure that nk/nk+1 ≤ 1/4 for all k ∈ ω.
Let k∗ ∈ ωω be an increasing function such that for all i, if j ≥ k∗(i) then

%j ≤ 2−i. Let {Xα}α<κ be a sequence of A-sets, κ < cov(M). For every α < κ,
let

{
mα

j

}
j∈ω

be an increasing sequence of natural numbers such that mα
0 ≥ nk∗(0),

and for all x ∈ Xα, limj→∞
∥∥mα

j x
∥∥ = 0.

Similarly as in Theorem 12, there exists an increasing sequence of natural num-
bers {mi}i∈ω and an increasing function k ∈ ωω such that for all i, nk(i) ≤ 2mi <

nk(i)+1 and k(i) ≥ k∗(i) and thus %k(i) ≤ 2−i. By putting εi = 1/4 in Lemma 11
we can find a real x such that ‖nkx‖ ≤ nk/nk+1 for all k /∈ {k(i) : i ∈ ω}, and
‖mix‖ ≥ 1/8 for all i. Clearly

∑
k∈ω %k ‖nkx‖ ≤ ∑

i∈ω 2−i+
∑

k∈ω %knk/nk+1 < ∞,

and for every α < κ there exist infinitely many j-s such that for some i,
∥∥mα

j x
∥∥ =

‖mix‖ ≥ 1/8, thus x /∈ ⋃
α<κ Xα. ¤

The following lemma is a reformulation of Lemma 2.9 in [7].

Lemma 14. Let {%n}n∈ω be a sequence of non-negative reals, let α ≤ β, 0 < θ ≤
1/7, and let I be an interval such that λ(I) ≥ 3θ/α. Then there exists an interval
J ⊆ I such that λ(J) ≥ θ/β, and if x ∈ J then

∑

α≤n≤β

%n ‖nx‖ ≥ θ

8

∑

α≤n≤β

%n.

Proof. At first let us consider the case β ≤ 3α. There exists x0 such that
[
x0 − θ

2β
, x0 +

3θ

2α
+

θ

2β

]
⊆ I.

Let K = {n ∈ ω : α ≤ n ≤ β ∧ ‖nx0‖ ≥ θ}, L = {n ∈ ω : α ≤ n ≤ β ∧ ‖nx0‖ < θ}.
If

∑

n∈K

%n ≥ 1
2

∑

n∈K∪L

%n, put J =
[
x0 − θ

2β
, x0 +

θ

2β

]
. Then for x ∈ J and

n ∈ K we obtain ‖nx‖ ≥ ‖nx0‖ − n |x− x0| ≥ θ − θ/2 = θ/2, and thus

(1)
∑

n∈K∪L

%n ‖nx‖ ≥ θ

4

∑

n∈K∪L

%n.

Otherwise, we have
∑

n∈L

%n ≥ 1
2

∑

n∈K∪L

%n. Put J =
[
x0 +

3θ

2α
, x0 +

3θ

2α
+

θ

β

]
.

For x ∈ J and n ∈ L we obtain 3θ/2 ≤ n |x− x0| ≤ 11θ/2 ≤ 1 − 3θ/2, and thus
‖nx‖ ≥ ‖n(x− x0)‖ − ‖nx0‖ ≥ 3θ/2− θ = θ/2. Hence (1) holds true again.

In the case that β > 3α, define a sequence α0 < α1 < · · · < αk as follows: put
α0 = α, αi+1 = 3αi for 0 ≤ i < k, and αk = β ≤ 3αk−1. Let K ′ = {n ∈ ω : αi ≤
n ≤ αi+1 for some i even}, L′ = {n ∈ ω : αi ≤ n ≤ αi+1 for some i odd}.
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If
∑

n∈K′
%n ≥ 1

2

∑

n∈K′∪L′
%n, find a sequence of intervals I ⊇ I0 ⊇ I2 ⊇ . . . such

that for every i, 0 ≤ i ≤ k, i even,

(2) λ(Ii) ≥ θ

αi+1
≥ 3θ

αi+2
, and

(3)
∑

αi≤n≤αi+1

%n ‖nx‖ ≥ θ

4

∑

αi≤n≤αi+1

%n for all x ∈ Ii.

Similarly, if
∑

n∈L′
%n ≥ 1

2

∑

n∈K′∪L′
%n, find a sequence of intervals I ⊇ I1 ⊇ I3 ⊇ . . .

such that (2) and (3) hold true for every i, 0 ≤ i ≤ k, i odd. In both cases, let J
be the last interval in the sequence, i. e. Ik if k is even, Ik−1 if k is odd. ¤

Lemma 15. Let {nk}k∈ω be an increasing sequence of natural numbers and let
{%n}n∈ω be a sequence of non-negative reals such that

lim
k→∞

nk

nk+1
= 0, and

∑
n∈ω

%n = ∞.

Let k′, ε ≤ 1 be such that nk/nk+1 ≤ ε for all k ≥ k′. Then for every interval I such
that λ(I) = 1/nk′ there exist k′′ > k′ and an interval J ⊆ I such that λ(J) = 1/nk′′ ,
and for all x ∈ J, ‖nkx‖ ≤ ε whenever k′ ≤ k < k′′, and

∑

nk′≤n<nk′′

%n ‖nx‖ ≥ 1.

Proof. For given reals α, β, we denote

S(α, β) =
∑

α≤n≤β

%n.

We put S(α, β) = 0 if there is no n ∈ ω such that α ≤ n ≤ β.
Let γ = 1/7. We will consider two cases.
(a) There exists δ ≥ γ such that

∑
k∈ω S(γnk, δnk) = ∞. Then we can find

a sequence {θk}k∈ω such that limk→∞ θk = 0,
∑

k∈ω θkS(γnk, δnk) = ∞, and for
all k, θk ≥ δnk/nk+1. Put αk = γnk, βk = δnk, for k ∈ ω.

(b) For all δ ≥ γ, we have
∑

k∈ω S(γnk, δnk) < ∞. Then for all δ ≥ γ, we must
have

∑
k∈ω S(δnk, γnk+1) = ∞. Thus there exists a sequence {δk}k∈ω such that

limk→∞ δk = ∞,
∑

k∈ω S(δknk, γnk+1) = ∞, and for all k, γ < δk ≤ γnk+1/nk.
Put αk = δknk, βk = γnk+1, θk = γ, for k ∈ ω.

As can be easily checked, in both cases there exists k0 such that for all k ≥ k0,

αk ≤ βk < αk+1, 0 < θk ≤ 1/7, ε/nk ≥ 3θk/αk, and θk/βk ≥ 1/nk+1.

Moreover, we have
∑

k∈ω θkS(αk, βk) = ∞.
Find i ≥ max{k0, k

′} such that αi ≥ nk′ . There exists j ≥ i such that
∑

i≤k≤j

θkS(αk, βk) ≥ 8.

Put k′′ = j + 1. Clearly βj ≤ θjnk′′ < nk′′ .
Let us define a nested sequence of intervals {Ik}k′≤k<k′′ as follows. Put Ik′ = I.

We will always have λ(Ik) = 1/nk. By Lemma 7, there exists an interval Jk ⊆ Ik

such that λ(Jk) = ε/nk, and if x ∈ Jk then ‖nkx‖ ≤ ε. If k < i, let Ik+1 be
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any interval such that Ik+1 ⊆ Jk and λ(Ik+1) = 1/nk+1. For i ≤ k ≤ j, we have
λ(Jk) ≥ 3θk/αk, and hence by Lemma 14 there exists an interval J ′k ⊆ Jk such that
λ(J ′k) ≥ θk/βk, and if x ∈ J ′k then

∑

αk≤n≤βk

%n ‖nx‖ ≥ θkS(αk, βk)/8.

Let Ik+1 be any interval such that Ik+1 ⊆ J ′k and λ(Ik+1) = 1/nk+1.
Put J = Ik′′ . For x ∈ J , we have ‖nkx‖ ≤ ε whenever k′ ≤ k < k′′, and

∑

nk′≤n<nk′′

%n ‖nx‖ ≥
∑

i≤k≤j

∑

αk≤n≤βk

%n ‖nx‖ ≥
∑

i≤k≤j

θkS(αk, βk)/8 ≥ 1.

¤

Using this lemma we can prove the last theorem.

Theorem 16. Let {nk}k∈ω be an increasing sequence of natural numbers such that
limk→∞ nk/nk+1 = 0. Then the A-set {x : limk→∞ ‖nkx‖ = 0} cannot be covered
by a union of fewer than cov(M) N-sets.

Proof. Let {Ii}i∈ω be an enumeration of all intervals of the form [m/nk, (m+1)/nk],
with integer m. Let {Xα}α<κ be a sequence of N-sets, κ < cov(M). We will find
a real x such that limk→∞ ‖nkx‖ = 0 and x /∈ ⋃

α<κ Xα.
For every α < κ, let {%α

n}n∈ω be a sequence of non-negative reals such that∑
n∈ω %α

n = ∞, and for all x ∈ Xα,
∑

n∈ω %α
n ‖nx‖ < ∞. We will define a function

fα ∈ ωω as follows.
For given i ∈ ω, let k′ be such that λ(Ii) = 1/nk′ . Put ε = max{nk/nk+1 :

k ≥ k′}. By Lemma 15, there exist k′′ > k′ and an interval J ⊆ Ii such that
λ(J) = 1/nk′′ , and for all x ∈ J , ‖nkx‖ ≤ ε whenever k′ ≤ k < k′′, and

∑

nk′≤n<nk′′

%α
n ‖nx‖ ≥ 1.

Let k∗ ≥ k′′ be such that nk∗/nk∗+1 ≤ ε/2. There exists an interval J∗ ⊆ J such
that for all x ∈ J∗, ‖nkx‖ ≤ nk/nk+1 whenever k′′ ≤ k < k∗, ‖nk∗x‖ ≤ ε, and
λ(J∗) = ε/nk∗ ≥ 2/nk∗+1. Hence we can find Ij ⊆ J∗ such that λ(Ij) = 1/nk∗+1.
We put f(i) = j.

By Lemma 4, there exists g ∈ ωω such that (∀j)(∃α < κ) g(j + 1) = fα(g(j)),
and (∀α < κ)(∃∞j) g(j + 1) = fα(g(j)). For j ∈ ω, let k(j) be such that λ(Ig(j)) =
1/nk(j). Clearly Ig(j+1) ⊆ Ig(j) and k(j + 1) > k(j) for all j, and if we put
εj = max{nk/nk+1 : k ≥ k(j)} then limj→∞ εj = 0. Let us take x ∈ ⋂

j∈ω Ig(j).
We have ‖nkx‖ ≤ εj whenever k ≥ k(j), and thus limk→∞ ‖nkx‖ = 0. Moreover, if
g(j + 1) = fα(g(j)) then

∑

nk(j)≤n<nk(j+1)

%α
n ‖nx‖ ≥ 1,

and hence for all α < κ,
∑

n∈ω %α
n ‖nx‖ = ∞, and thus x /∈ Xα. ¤

We finish with an open problem.

Problem 17. Is it possible to replace the cardinal cov(M) in Theorems 12, 13,
and 16 by some consistently greater cardinal?
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[2] Bartoszyński, T., Judah, H., Set theory. On the structure of the real line, A K Peters, Ltd.,
Wellesley, MA, 1995.
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