COVERING FOR CATEGORY AND TRIGONOMETRIC
THIN SETS

PETER ELIAS

ABSTRACT. In this work we consider several combinatorial principles satisfied
for cardinals smaller than cov(M), the covering number of the ideal of first
category sets on real line. Using these principles we prove that there exist Ng-
sets (similarly N-sets, A-sets) which cannot be covered by fewer than cov(M)
pD-sets (A-sets, N-sets, respectively). This improves the results of our previous
paper [7].

The study of special sets of reals related to the convergence of trigonometric
series, generally called ‘trigonometric thin sets’, was one of the classical topics of
harmonic analysis (see e. g. [4]). Recently, many investigations were made concern-
ing the set-theoretic properties of such sets. A serious interest turns on the cardinal
characteristics of structures related to trigonometric thin sets (see e. g. [3], [5], [6],
[8], (10], [11}).

This paper has two parts. In the first part we present two new combinatorial
characterizations of the cardinal cov(M), the covering number of the ideal of first
category sets (Corollary 5). We use these characterizations in the second part to
prove some theorems about trigonometric thin sets (Theorems 12, 13, and 16).

1. COMBINATORICS

We use the standard set-theoretic notation. Hence, w is the set of all natural
numbers, [w]|<¥ and [w]“ denote the sets of all finite and infinite subsets of w,
AP is the set of all functions from B to A, and |A| is the cardinality of a set A.
Quantifiers 3*° and V*° stand for ‘there are infinitely many’ and ‘for all but finitely
many’, respectively.

Let M denote the ideal of first category (meager) sets on real line. Let us recall
that cov(M), the covering number of M, is the minimum size of a family F C M
such that [JF = R. We will use the following combinatorial characterizations of
this cardinal, due to Bartoszyniski ([1], [2]).

Lemma 1. Let k be a cardinal. The following conditions are equivalent.

(1) k < cov(M),

(2) for every family F C w*, |F| < K, there exists a function g € w* such that
(Vf € F)F*n) g(n) = [(n),

(3) for every family F C w¥, |F| < k, and for every family X C [w]“, |X| < &,
there exists g € w® such that (Vf € F)(VX € X)(3%n € X) g(n) = f(n),
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(4) for every family F C w¥, |F| < k, there exists a function S € ([w]<*)%,
such that (Vn) |S(n)| =n+1, and (Vf € F)(3®°n) f(n) € S(n).

We will add two more conditions to this list. First, we need to prove some
lemmas.

Lemma 2. For every family F C [w]*, |F| < cov(M), and for every h € w*, there
exists g € w* such that (¥Yn)g(n+ 1) > h(g(n)), and (VX € F) |rng(g) N X| = w.

Proof. Let F = {X, : a < k}, k < cov(M). Without loss of generality, we assume
that h is non-decreasing and h(n) > n for all n.

Put kg = 0, ki1 = h(k,) for n € w. For @ < k and n € w, let fo(n) € w be
such that

{507 < fa(n) A k) kjz1) N Xo # 0} =3n+ 1.

Put fi(n) = [0,ks (n)) N Xa. Since fi-s can be coded as elements of w*, by
Lemma 1 there exists g* such that (Va < k)(3°n)g*(n) = fi(n). Moreover, we
may assume that (Vn)(3a < k) g*(n) = fi(n). Thus for each n,

G+ Ty, y0) N g™ () £ 0} = 3+ 1,
and we can take m,, € g*(n) such that for every i < n and j € w, if m; € [k, kj11)
then my ¢ [kj—la kj+2).

Let g € w* be an increasing function such that rng(g) = {m, : n € w}. For
every n, if g(n) € [kj, kjy1) then [kj11,k;j42) Nrng(g) = 0, and thus g(n + 1) >
kjto = h(kj11) > h(g(n)), since kj;1 > g(n). Moreover, if g*(n) = fi(n) then
m, € X,. Hence rng(g) N X, is infinite for every o < k. O

Lemma 3. Let F Cw®, |F| < cov(M), and let every f € F be increasing. Then
for every h € w* there exists g € w® such that (Vn)g(n + 1) > h(g(n)), and
(Vf € F)(3*n)(3k < n)g(k) = f(n).

Proof. By Lemma 1, there exists ¢’ such that (Vf € F)(3°n) ¢'(n) = f(n). More-
over, we may assume that (Vn)(3f € F)g¢'(n) = f(n), and hence ¢'(n) > n for
all n. For f € F, put Xy = {n:¢'(n) = f(n)} and h*(n) = max{n + 1, (g’ (n))}.
By Lemma 2 there exists ¢* € w“ such that (Vn)g*(n +1) > h*(g*(n)), and
(Vf € F) Irng(¢g*) N Xf| = w. Clearly g* is increasing.

For n € w, let g(n) = ¢’(¢*(n)). Then for every n, g(n+1) = ¢'(¢*(n+ 1)) >
g*(n+1) > h*(g*(n)) > h(g'(g*(n)) = h(g(n)). Moreover, if n € rng(g*) N X then
n = g*(k) for some k < n, and g(k) = ¢'(¢*(k)) = ¢'(n) = f(n). O

Lemma 4. Let F Cw¥, |F| < cov(M). Then there exists a function g € w* such
that (Vn)(3f € F)g(n+1) = f(g(n)), and (Vf € F)(3*n) g(n +1) = f(g(n)).

Proof. First, we show the existence of ¢’ € w* such that (Vn)(3f € F)g'(n+1) >
f(g'(n)), and (Vf € F)(3*°n)g'(n+1) > f(¢'(n)). Using Lemma 1, we can find
h € w* such that h(n) > n for all n, and the set Xy = {n : f(n) < h(n)}
is infinite for every f € F. By Lemma 2, there exists ¢’ € w* such that for
all n, ¢'(n+ 1) > h(g’(n)), and for all f € F, |rng(¢’) N X;| = w. Moreover, we
may assume that (Vn)(3f € F)g¢'(n) € Xy. Since ¢’ is increasing, we have (Vf €
F)(3>°n)g'(n) € Xy. Clearly, if ¢'(n) € Xy then f(¢'(n)) < h(g'(n)) < ¢'(n+1).
Thus ¢’ is as we have expected.

For f € F, n € w, denote f*(n) = max{f(0),..., f(n)}. As we have just proved,
there exists g* € w* such that for all f € F, theset Yy = {n: g*(n+1) > f*(¢*(n))}
is infinite, and Uz Y7 = w.
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For given f € F and n € w, put Hf(n) = f [ {0,...,9*(n)}. Since Hy(n)-s
can be coded as elements of w, by Lemma 1 there exists a function H such that
(Vf € F)(3*°n € Yy) H(n) = Hf(n). Without loss of generality we may assume
also that (Vn)(3f € F)(n € Yy AN H(n) = H¢(n)).

Put ¢g(0) = 0, g(n+ 1) = H(n)(g(n)). For every n, we have H(n) = Hy(n)
for some f € F such that n € Yy, and hence if k& € dom(H(n)) then k < g (n),
and H(n)(k) = Hf(n)(k) = f(k) < f*(g"(n)) < g"(n+1). Thus H(n)(k) €
dom(H (n + 1)), and the definition of g makes sense. Moreover, if H(n) = H¢(n)
then g(n +1) = H¢(n)(g9(n)) = f(g(n)). Hence g has the required properties. [

Corollary 5. Let k be a cardinal. The following conditions are equivalent to (1)—(4)
from Lemma 1.

(5) for every family F C w*, |F| < k, such that every f € F is increasing, and
for every h € w*, there exists g € w* such that (¥n)g(n + 1) > h(g(n)),
and (Yf € F)(3=n)(3k < n) g(k) = f(n),

(6) for every family F C w¥, |F| < k, there exists g € w* such that (Yn)(3f €
F)g(n+1) = f(g(n)), and (7f € F)(Fn) g(n + 1) = f(g(n)).

Proof. As we have shown in the previous two lemmas, (1) implies both (5) and (6).
We will prove that (5) implies (4), and (6) implies (2).

Assume that (5) holds. Let F C w*, |F| < k, and let h(n) = n+ 1 for all
n € w. Clearly if g € w* satisfies the conditions of (5) then g is increasing, and the
function S such that S(n) = {g(0),...,9(n)}, n € w, satisfies the condition of (4).
Thus (5) implies (4).

Let F C w¥, |F| < kK, and let (6) hold true. Fix a bijection p € (w x w)*.
For f € F, let f* € w¥ be such that for all k,l € w, f*(p(k,l)) = p(k + 1, f(k)).
By (6), there exists g* € w¥ such that (Yn)(3f € F)g*(n+1) = f*(g*(n)),
and (Vf € F)(3*°n)g*(n+ 1) = f*(9*(n)). For n € w, let ky, 1, be such that
g*(n) = p(kn,l,). Now, if g* (n—l— 1) = f*(¢g*(n)) for some f € F and n € w
then p(kpni1, n+1) = f* ( (kny1n)) = plkn + 1, f(ky)). It follows that for all n,
kn =n+koand f(ky) = lpy1. Ifwe put g(n) = 0 for n < kg, and g(n+ ko) = lp41
for all n € w, then g will satisfy the condition of (2). Thus (6) implies (2). O

An open problem is whether the condition from Lemma 2 is equivalent to (1)—(6).
It can be formulated as follows.

Problem 6. Let x be the minimum cardinality of a family F C [w]¥ for which
there exists h € w® such that for all g € w*, if (Vn)g(n + 1) > h(g(n)) then
(3X € F) |rng(g) N X| < w. Is it consistent that x > cov(M)?

2. TRIGONOMETRIC THIN SETS

From many types of trigonometric thin sets, we will consider the following four:
N-sets, Np-sets, A-sets, and pD-sets. A set X of real numbers is called an N-set if
there exists a trigonometric series absolutely converging on X while not absolutely
converging everywhere, or equivalently, if there exists a sequence of positive reals
{a,}52, such that Y2 a, = oo, and for all z € X, > a, [sinmnz| < co. It
is called an Ny-set (or an A-set, a pD-set) if there exists an increasing sequence
of natural numbers {n;}°, such that for all z € X, Y 7 |sinmngz| < oo (or
limy oo [sin mngx| = 0, [sinwngz| < 27F for almost all k, respectively). Let us note
that in the definitions above, we can use the distance of x to the nearest integer,
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i. e. the function ||z|| = min{z — k : k € Z}, instead of the function |sinwz|. More
about these types of sets can be found e. g. in [6], [7].

We denote by N, Ny, A, and pD the families of all N-sets, Ny-sets, A-sets,
and pD-sets, respectively. Directly from the definitions we can see that Ny C N,
No C A, and pD C Ny. In [9], S. Kahane showed that there exist Ny-sets which
cannot be covered by countably many pD-sets, N-sets which cannot be covered by
countably many A-sets, and A-sets which cannot be covered by countably many
N-sets. In [7] we have proved that ‘countably many’ can be replaced by ‘fewer
than add(M)’, where add(M) is the additivity of the ideal M of all first category
sets. Now, we will improve these results to ‘fewer than cov(M)’ (Theorems 12, 13,
and 16). Let us note that it is consistent with ZFC that add(M) < cov(M); the
consistency is established by the Cohen model (see e. g. [2]).

By an interval we will mean a set of the form {z € R : a < z < b}, for some
a < b. Thus an interval will always be compact and have non-empty interior. The
length of an interval I, denoted by A(I), is the value b — a.

Lemma 7. Let n > 1, 0 < e < 1. For every interval I such that \(I) = 1/n there
exists an interval J C I such that ||nz| < e for all x € J, and \(J) =¢/n.

Proof. Since \(I) = 1/n, there exists x¢g € I such that ||nzg|| = 0. Let J be any
sub-interval of I such that z¢ € J and A(J) = ¢/n. O

Lemma 8. Letn > 1, 0 < e < 1/2. For every interval I such that \(I) > 2¢/n
there exists an interval J C I such that ||nx|| > € for all x € J, and

AMI) e 1—2¢
2 n }

n n

A(J) = min{

Proof. Assume that I = [a — b,a + b], thus b = A\(I)/2 > ¢/n. If ||nzy| = 0 for
some xg € [a — b — e/n,a] then let us take

1 —
J:|:.%‘0+€,.%‘0+min{b, E}:|
n n

Clearly J C I, A(J) = min{b—¢/n,(1 —2¢)/n}, and if z € J then ¢/n <
|z —x0] < (1 —¢€)/n, thus ||nz|| > e. Similarly, if |[nzo|| = 0 for some zy €
[a,a + b+ €/n| then we can take

1_
J = [:Uo—min{b,g},:ro—g}.
n n

Finally, if ||nx| > 0 for all x € [a —b—¢/n,a+b+¢e/n] then clearly ||nz|| > ¢ for all
x € I. We can take arbitrary interval J C I with A\(J) = min {b —¢/n, (1 — 2¢)/n}.
U

Corollary 9. Let 1 < n < n'. For every interval I such that \(I) = 1/n, there
exists an interval J C I such that \(J) =1/n’, and if x € J then ||nz| <n/n’.

Proof. Use Lemma 7 with ¢ = n/n’. O

Corollary 10. Let 1 < n < 2m < n/, 0 < e < 1/4, and n/n’ < e. For every
interval I such that A\(I) = 1/n, there exists an interval J C I such that \(J) =
1/n/, and if x € J then ||nz|| < 4e, and |mz| > /2.
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Proof. By Lemma 7 there exists an interval I’ C I such that ||nz| < 4e for all
x € I', and A(I') = 4e/n. By Lemma 8 there exists an interval J' C I’ such that
|mz|| > /2 for all z € J', and

2e e 1l—e¢ e 1 1
Y = mind = — = >mind &, — &> =
A(J") mln{n 5’ }_mln{n,Qm}_n/

Let J be any interval such that J C J and A(J) = 1/n/. O

Lemma 11. Let {ni}rcw, {mi}icu be increasing sequences of natural numbers,
{ei}icw be a sequence of reals, and k € w® be such that for all i,

(1) npE)y < 2mi < ngy41s

(2) k(i +1) > k(i),

(3) mugy /M1 < & < 1/4.
Then there exists a real x such that

4e; if k = k(i) for some i,
) or all . limez] = {nk/nkﬂ kg (KG) i € w),
(5) for alli, |m;z|| > &;/2.

Proof. We take x € (., Ix Where {I}}rc. is a nested sequence of intervals defined
as follows. Let Iy be such that A\(Iy) = 1/ng. For every k, assume that \(I) = 1/ny.
If k ¢ {k(i) : i € w} then by Corollary 9 there exists an interval I} 11 C I, such that
AIg41) = 1/ng+1 and ||ngz|| < ng/ngsq for all @ € Iy, If kB = k(i) for some i
then by Corollary 10 there exists Ixy1 C Ii such that A(Jx4+1) = 1/ng41, and if
x € It then |[ngz|| < 4e;, and ||mz|| > €;/2. O

Theorem 12. Let {ny}reo be an increasing sequence of natural numbers such that
> kew e/Tis1 < 0o. Then the No-set {x:> ;. Inez| < oo} cannot be covered
by a union of fewer than cov(M) pD-sets.

Proof. Let {X,}a<x be a sequence of pD-sets, k < cov(M). We will find a real x
such that ), . |[nez|| < oo and x ¢ U, ., Xa-

Fix a monotone sequence of positive reals {e;};c, such that ) e; < oo, and
g; <1/4 for all j. Find an increasing function k* € w® such that if j > k*(i) then
nj/nj1 < €;, and put h(i) = N+ (i41)- For a < K, let {m?‘}jew be an increasing
sequence of natural numbers such that (Vo € X,,)(V>°j) HmjaxH < €;j/2 and m§ >
Ng+(0)/2. By Lemma 3 there exists g € w“ such that (Vi) g(i +1) > h(g(¢)), and
(Vo < k)(3%5)(3i < j) g(i) = 2m§. Without a loss of generality we may assume
that (Vi)(3a < k)(3j > i) g(i) = 2m§, thus every g(i) is even. Put m; = g(i)/2.

Let k € w* be such that for all i, ny) < 2m; < ngy41. Clearly mo > ng-(0y/2,
and thus k£(0) > £*(0). We have g(i + 1) > nir > g(i), where k' = k*(g(i) + 1),
hence k(i + 1) > k' > k(i). Since g is increasing, we have k' > k*(i 4+ 1). Thus for
all i € w, k(i) > k*(), and hence ny g /npiy+1 < -

Now, for a real  obtained from Lemma 11 we have ), . |lnex|| < >, 4es +
> kecw Mh/Mks1 < 00, and for every a < k there exist infinitely many j-s such that
for some i < 7, HmjaxH = ||miz|| > ¢€;/2 > ¢;/2, thus = ¢ |, .. Xa- O

a<k
Theorem 13. Let {ny}recn be an increasing sequence of natural numbers and let
{or}kew be a sequence of non-negative reals such that limy o0 0r = 0, > ) o, 0k =

00, and Y e, OkMk/Mie1 < 00. Then the N-set {z : >, . ok |[nxz|| < oo} cannot
be covered by a union of fewer than cov(M) A-sets.
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Proof. Put K = {k : ng/npy1 < 1/4}. Since Y, oxnp/nry1 < oo, we have
Ek:géK or < 00, and since ), or = oo, the set K is infinite. For j € w, let
k; denote its j-th element. Clearly lim; .o ox, = 0, Zjéw ok; = oo, and for
every x, Y .. Ok |[nez| < oo iff Z]Ew Ok, anij < 0o. Moreover, ng, /ny,,, <
Nk, [Nk;4+1 < 1/4 for all j € w. Hence by taking {ng,} c. instead of {nj}re. we
can ensure that ng/ng11 < 1/4 for all k € w.

Let k* € w* be an increasing function such that for all 4, if j > k*(i) then
0; < 27" Let {X4}a<xk be a sequence of A-sets, k < cov(M). For every a < k,
let {m]o‘ }jEW be an increasing sequence of natural numbers such that mg > ng-(q),

and for all z € X, lim;_, Hm?‘:ﬂ“ =0.

Similarly as in Theorem 12, there exists an increasing sequence of natural num-
bers {m;}ic, and an increasing function k € w* such that for all 4, Ne@) < 2m; <
ng(iy+1 and k(i) > k*(i) and thus gy < 27°. By putting &; = 1/4 in Lemma 11
we can find a real x such that ||ngz| < ng/ngyq for all & ¢ {k(i) : i € w}, and
lm;z|| > 1/8 for alli. Clearly -, . ok [[nkz]l < ey, 27 D kew Ok /M1 < 00,

|msx|| > 1/8, thus = ¢ |

a<rf

The following lemma is a reformulation of Lemma 2.9 in [7].

Lemma 14. Let {0, }new be a sequence of non-negative reals, let « < 3, 0 < 0 <
1/7, and let I be an interval such that A\(I) > 30/a. Then there exists an interval
J C I such that \(J) > 0/3, and if x € J then

0
Z On ||an > g Z On-
a<n<p a<n<p
Proof. At first let us consider the case § < 3a. There exists xy such that
0 + 30 + i cr
To — 257 Zo 23
Let K={new:a<n<pA|nz|| >0}, L={ncw:a<n<pA|nzl <6}
1 0
IfZQnZ§ Z Qn,putJ:|:x0 on%—m]Thenforerand

nekK neKUL
n € K we obtain ||nz| > ||nzo|| —n|z — x| > 6 —0/2 = 0/2, and thus

1) DN I ED S

neKUL neKUL
1 30 30 0
Otherwise, we have Z On > = Z on. Put J = |20+ —, 20+ — + —|.
2 2a 20
nerL neKUL

For z € J and n € L we obtain 30/2 < n|z —xo| < 116/2 < 1 — 360/2, and thus
|nx|| > [|[n(z — zo)|| — ||[nzol|| > 36/2 — 0 = 6/2. Hence (1) holds true again.

In the case that § > 3«, define a sequence ay < a1 < --- < «i as follows: put
ag =, aj11 =3a; for 0 <i<k,and a = < 3ap-1. Let K ={ncw:a; <
n < a;4+1 for some i even}, L' = {n € w: a; <n < a;y; for some i odd}.
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1
If Z On > 3 Z on, find a sequence of intervals I O Iy O I, O ... such

nekK’ neK/UL/
that for every i, 0 < ¢ < k, i even,

0 0
(2) A1) > > 3 , and
Q41 Q42
0
(3) Z On ||nx| > 1 E on for all x € I;.

aigngai+1 Déj,STLSOéi+1

1
Similarly, if Z On > 3 Z On, find a sequence of intervals I D [; D I3 D ...

nelL’ neK'UL’
such that (2) and (3) hold true for every i, 0 < i < k, i odd. In both cases, let J
be the last interval in the sequence, i. e. Iy if k is even, [j_q if k is odd. ]

Lemma 15. Let {ny}rec. be an increasing sequence of natural numbers and let
{0n}new be a sequence of non-negative reals such that

Let k', e <1 be such that ng/nxr1 < € for allk > k'. Then for every interval I such
that X(I) = 1/ny there exist k" > k' and an interval J C I such that A(J) = 1/ng»,
and for all x € J, |ngz| < e whenever k' <k < k", and

Y. onlnz| =1

Mgt STL<TLk//

Proof. For given reals «, 8, we denote

S(a,ﬁ) = Z On-
a<n<p
We put S(a, 3) = 0 if there is no n € w such that « <n < .

Let v = 1/7. We will consider two cases.

(a) There exists § > ~ such that ), S(ynk,dny) = oo. Then we can find
a sequence {0 }reo such that limy oo 0 = 0, >, o, OxS(ynp, 6n) = 0o, and for
all k, 0 > ong/ngy1. Put o, = ynyg, Bx = dng, for k € w.

(b) For all 6 > v, we have ), - S(yng,dn) < co. Then for all § > v, we must
have >, . S(6ng,yniry1) = co. Thus there exists a sequence {0y }re. such that
limg oo O = 00, Y ey, S(Oknr, Yn1t1) = 00, and for all k, v < 6 < yngpy1/nk.
Put oy = dink, B = Y041, O = 7, for k € w.

As can be easily checked, in both cases there exists kg such that for all k > kg,

ap < B < apgr, 0< 0, <1/7, e/ng > 360k /oy, and 0i/Bk > 1/np41.

Moreover, we have », - 0..S(ax,Br) = oo.
Find ¢ > max{ko, k'} such that o; > nys. There exists j > i such that

> 0kS(a, Br) > 8.
i<k<j
Put k" = j+ 1. Clearly 8; < 0jnpr < ngr.
Let us define a nested sequence of intervals {Ij } i <x<i~ as follows. Put Ij; = I.
We will always have A(Ix) = 1/n;. By Lemma 7, there exists an interval J C I,
such that A(Ji) = e/ng, and if © € Ji then ||ngzx| < e. If k < 4, let Ixy1 be
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any interval such that Iy41 C Ji and A(Jg41) = 1/ng41. For i < k < j, we have
A(Jg) > 30y /ay, and hence by Lemma 14 there exists an interval J;, C Jj such that
A(J}) > 0k /B, and if z € J}, then

S onlnal = 0xS(au, B) /8.

ar<n<pB

Let I;4+1 be any interval such that 11 C J; and A(Ip11) = 1/ng41.
Put J = I». For x € J, we have ||niz|| < e whenever ¥’ < k < k", and

S alnalz Y ealnallz Y uSlar /8 = 1,

nk/§n<nku 1<k<jar<n<fi i<k<j

Using this lemma we can prove the last theorem.

Theorem 16. Let {ny}re. be an increasing sequence of natural numbers such that
limg_ o0 mg/Niy1 = 0. Then the A-set {x : limy_ o ||nrz|| = 0} cannot be covered
by a union of fewer than cov(M) N-sets.

Proof. Let {I;};c., be an enumeration of all intervals of the form [m/ng, (m+1)/ny],
with integer m. Let {X,}a<s be a sequence of N-sets, k < cov(M). We will find
a real x such that limy_.o [[ngz| =0 and z ¢ U, ., Xa-

For every a < &, let {00}, ., be a sequence of non-negative reals such that
Y new 06 = 00, and for all z € Xo, >, o, 05 ||nz| < oco. We will define a function
fa € w¥ as follows.

For given i € w, let k¥’ be such that \(I;) = 1/ng. Put ¢ = max{ng/ng+1 :
k > k'}. By Lemma 15, there exist £ > k' and an interval J C I; such that
AJ) =1/ngr, and for all x € J, ||ngz| < e whenever k¥’ < k < k", and

> onlnall> 1.

Ny <n<ngry

Let k* > k" be such that ng/ng«41 < /2. There exists an interval J* C .J such
that for all x € J*, ||ngz| < nk/ng+1 whenever ¥ < k < k*, ||ng-z| < e, and
ANJ*) =e/ng= > 2/ng+41. Hence we can find I; C J* such that A\(I;) = 1/ng-41.
We put f(i) = j.

By Lemma 4, there exists g € w® such that (Vj)(Fa < k) g(j +1) = ful9())),
and (Vo < k)(3%) g(j +1) = fa(g(j)). For j € w, let k(j) be such that A\(Iy;)) =
L/ngy. Clearly Iy 11y € Igy and k(j + 1) > k(j) for all j, and if we put
gj = max{ng/ngt1 : k > k(j)} then lim; o e; = 0. Let us take z € (), Iy(j)-
We have ||ngz|| < e; whenever k > k(j), and thus limy_.« ||ngz| = 0. Moreover, if
g(j +1) = fulg(j)) then

> dilne| =1,

M) SN<Ng(j+1)

and hence for all @ < K, > |nz|| = oo, and thus = ¢ X,. O

new Q%
We finish with an open problem.

Problem 17. Is it possible to replace the cardinal cov(M) in Theorems 12, 13,
and 16 by some consistently greater cardinal?
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