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Abstract. We introduce a uniform way of classifying thin sets of harmonic

analysis related to absolute convergence of trigonometric series. This classifi-

cation covers classical classes (D, PD, A, N0, N ) and yields two new ones (B0

and B). We study interrelations between these classes concerning combinato-

rial structure of thin sets.

In 1938 J. Marcinkiewicz [8] introduced the notion of N-set (in honour of V. V.
Niemytzki): a set X ⊆ [0, 1] is an N-set iff there is a trigonometric series

a0

2
+
∞∑
n=1

(an cos 2πnx+ bn sin 2πnx)

absolutely converging on X with
∑∞
n=1(|an| + |bn|) = ∞ (i. e. not converging

absolutely everywhere).
We can equivalently define the N-sets assuming that an = 0 for all n.
Modifying this definition we obtain a number of types of trigonometrical thin

sets, depending on the form of terms in the series and on the convergence used. All
but two of the considered classes are equal to the classes of D-, PD-, A-, N0- and
N-sets, known from the literature (e. g. [1], [3], [7]). We introduce the classes of
B0- and B-sets, which are new, although already implicitly considered.

It is known that all the classes mentioned above differ from each other (see
e. g. [7]). In section 2 we generalize this fact. We get an estimation for the minimum
size of a family of sets from one class which covers any set belonging to the other
one.

Our notation follows that of [4]. Concerning historical notes we refer again to
[4].

The author would like to express his thanks to L. Bukovský, who supervised his
master thesis [6] on which this paper is based, and to M. Repický, who helped him
with infinite combinatorics.

1. Classification

Let {nk}k∈ω denote an increasing sequence of positive integers and {%k}k∈ω a
sequence of positive reals. We denote by ‖x‖ the distance of a real x to the nearest
integer. Since 2‖x‖ ≤ | sinπx| ≤ π‖x‖, we can in our considerations replace | sinπx|
and ‖x‖ one by another.

Let us recall the definitions of classical thin sets, related to absolute convergence
of trigonometric series:

Definition 1.1. A set X ⊆ [0, 1] is

This work was supported by grant 2/1224/94 of Slovak Grant Agency.

1



2 PETER ELIAŠ

(1) a D-set (a Dirichlet set) iff there exists a sequence {nk}k∈ω such that ‖nkx‖
converges uniformly to 0 on X,

(2) a PD-set (a pseudo-Dirichlet set) iff there exists a sequence {nk}k∈ω such
that ‖nkx‖ converges quasinormally to 0 on X,

(3) an A-set (an Arbault set) iff there exists a sequence {nk}k∈ω such that
‖nkx‖ converges pointwise to 0 on X,

(4) an N0-set iff there exists a sequence {nk}k∈ω such that
∑∞
k=0 ‖nkx‖ < ∞

for x ∈ X,
(5) an N-set iff there exist sequences {%k}k∈ω, {nk}k∈ω such that

∑∞
k=0 %k =∞

and
∑∞
k=0 %k‖nkx‖ <∞ for x ∈ X.

Now define two new classes.

Definition 1.2. A set X ⊆ [0, 1] is

(6) a B0-set iff there exist a sequence {nk}k∈ω and a real constant c such that∑∞
k=0 ‖nkx‖ ≤ c for x ∈ X,

(7) a B-set iff there exist sequences {%k}k∈ω, {nk}k∈ω and a real constant c
such that

∑∞
k=0 %k =∞ and

∑∞
k=0 %k‖nkx‖ ≤ c for x ∈ X.

The classes of all D-, PD-, A-, N0-, N-, B0- and B-sets will be denoted by D,
PD, A, N0, N , B0 and B, respectively.

We can see that all definitions above have the same form. Only two parameters
are changing: the type of convergence and the condition put on the coefficiets %k.
We will study also some other possibilities for these parameters.

Let us consider the following conditions for the sequence {%k}k∈ω:

(i)
∑∞
k=0 %k =∞,

(ii) %k does not tend to 0,
(iii) %k tends to infinity.

Let us consider also the following types of convergence, where {fk}k∈ω is a
sequence of non-negative functions defined on a set X:

(P) {fk}k∈ω converges pointwise to 0 on X;
(QN) {fk}k∈ω converges quasinormally to 0 on X;

(U) {fk}k∈ω converges uniformly to 0 on X;
(PS)

∑∞
k=0 fk(x) converges pointwise on X, i. e.

∑∞
k=0 fk(x) <∞ for x ∈ X;

(QNS)
∑∞
k=0 fk(x) converges quasinormally on X, i. e. the sequence of its partial

sums
∑n
k=0 fk(x) converges quasinormally on X;

(US)
∑∞
k=0 fk(x) converges uniformly on X, i. e. the sequence of its partial sums∑n
k=0 fk(x) converges uniformly on X;

(PNS)
∑∞
k=0 fk(x) converges pseudonormally on X, i. e. there is a sequence of

positive reals {εk}k∈ω such that
∑∞
k=0 εk <∞ and ∀x ∈ X ∀∞k fk(x) ≤ εk;

(NS)
∑∞
k=0 fk(x) normally converges on X, i. e. there is a sequence of positive

reals {εk}k∈ω such that
∑∞
k=0 εk <∞ and ∀x ∈ X ∀k fk(x) ≤ εk;

(BS)
∑∞
k=0 fk(x) is bounded on X, i. e. there is a real c such that

∑∞
k=0 fk(x) ≤ c

for x ∈ X.

Let us note that the following implications hold true and that in general case no
other one can be added:
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Our aim is to examine all combinations of the properties (i)–(iii), (P)–(BS).

Definition 1.3. Let (a) be one of the conditions (i)–(iii) and (b) one of the con-
vergences (P)–(BS). Denote Cab the class of all sets X ⊆ [0, 1] for which there exists
a sequence of the terms fk(x) = %k‖nkx‖ such that the sequences {%k}k∈ω and
{fk}k∈ω satisfy the conditions (a) and (b).

It is easy to see that replacing the condition (ii) by lim infk→∞ %k > 0 or
∀k ∈ ω %k = 1 leaves the corresponding classes unchanged. Similarly we may
replace the condition (iii) by lim supk→∞ %k =∞.

The following simple facts hold true:

Proposition 1.4. Let {hk}k∈ω denote a sequence of non-negative functions and
{σk}k∈ω a sequence of positive reals.

(1) There exists a sequence {%k}k∈ω such that
∑
%k = ∞ and lim %k = 0. If

lim %k = 0 and there is a real c such that ∀x ∈ X ∀k ∈ ω hk(x) ≤ c then
%khk(x) converges uniformly to 0 on every set X.

(2) If
∑
%k =∞ (resp. lim %k =∞) then there exists a sequence {σk}k∈ω such

that limσk = 0 and
∑
σk%k =∞ (resp. limσk%k =∞).

(3) If %khk(x) converges pointwise to 0 on X and limσk = 0 then σk%khk(x)
converges quasinormally to 0 on X.

(4) If
∑
%khk(x) converges pointwise on X and limσk = 0 then

∑
σk%khk(x)

converges quasinormally on X.
(5) If

∑
%khk(x) is bounded on X and limσk = 0 then

∑
σk%khk(x) converges

uniformly on X.
(6) If %khk(x) converges quasinormally (resp. uniformly) to 0 on X then there

exists an increasing sequence {kj}j∈ω such that
∑
%kjhkj (x) converges pseudo-

normally (resp. normally) on X.
(7) If

∑
%k = ∞ and

∑
%khk(x) converges pseudonormally (resp. normally)

on X then there exists an increasing sequence {kj}j∈ω such that hkj (x)
converges quasinormally (resp. uniformly) to 0 on X.

(8) If hk(x) converges quasinormally (resp. uniformly) to 0 on X then there
exists a sequence {%k}k∈ω such that lim %k = ∞ and %khk(x) converges
quasinormally (resp. uniformly) to 0 on X.

Put hk(x) = ‖nkx‖. Then (1) implies that the classes Ci
P, Ci

QN, Ci
U consist

of all subsets of [0, 1]. ¿From (2) and (3) we get Ciii
P = Ciii

QN, from (2) and (4)
Ci

PS = Ci
QNS, Ciii

PS = Ciii
QNS, from (2) and (5) Ci

BS = Ci
US, Ciii

BS = Ciii
US. ¿From (6) we

can conclude that Cii
QN = Cii

QNS = Cii
PNS, Ciii

QN = Ciii
QNS = Ciii

PNS, Cii
U = Cii

US = Cii
NS and

Ciii
U = Ciii

US = Ciii
NS. The assertion (7) implies that Ci

PNS = Cii
QN, Ci

NS = Cii
U and the

assertion (8) that Cii
QN = Ciii

QN, Cii
U = Ciii

U .
Hence every class Cab is equal to one from Definitions 1.1, 1.2. In the following

table all denotes the class of all subsets of [0, 1]:



4 PETER ELIAŠ

(P) (QN) (U) (PS) (QNS) (US) (PNS) (NS) (BS)
(i) all all all N N B PD D B

(ii) A PD D N0 PD D PD D B0

(iii) PD PD D PD PD D PD D D

The inclusions between these classes are the following (→ means ⊆):

(D)

A
↑

PD → N0 → N
↑ ↑ ↑
D → B0 → B

It is known that all these inclusions are proper and that no other one holds.
The following fact was proved by R. Salem [10] for N-sets. However, it holds for

other classes too.

Proposition 1.5. In Definition 1.3 we may replace ‖nkx‖ by ‖νkx + αk‖, where
{νk}k∈ω is an unbounded sequence of positive reals, {αk}k∈ω is a sequence of reals.

Proof. Applying Proposition 1.4 to the functions hk(x) = ‖νkx+αk‖ we obtain an
identical table for classes defined using ‖νkx + αk‖ instead of ‖nkx‖. Therefore it
is enough to consider the classes from Definitions 1.1 and 1.2. We give the proof
only for case of A- and N-sets; for other classes it goes similarly.

(1) Suppose that limk→∞ ‖νk + αk‖ = 0 for x ∈ X. There exists an increasing
sequence {kj}j∈ω such that limj→∞ ‖νkj+1−νkj‖ = 0 and limj→∞ ‖αkj+1−αkj‖ = 0.
Let nj be the nearest integer to νkj+1 − νkj . We may suppose that {nj}j∈ω is an
increasing sequence of positive integers. For all x ∈ [0, 1] and j ∈ ω we have
‖njx‖ ≤ ‖νkj+1x + αkj+1‖ + ‖νkjx + αkj‖ + ‖νkj+1 − νkj‖x + ‖αkj+1 − αkj‖, and
therefore limj→∞ ‖njx‖ = 0 for x ∈ X.

(2) Assume that
∑∞
k=0 %k = ∞. There exists a sequence {sk}k∈ω of positive

integers such that
∑∞
k=0 %ks

−2
k = ∞, while

∑∞
k=0 %ks

−3
k < ∞. For every k ∈ ω

there is an integer pk such that 1 ≤ pk ≤ s2
k, ‖pkνk‖ ≤ s−1

k and ‖pkαk‖ ≤ s−1
k . Let

nk be the nearest integer to pkνk. We have ‖nkx‖ ≤ pk‖νkx + αk‖ + ‖pkνk‖x +
‖pkαk‖ and hence %ks−2

k ‖nkx‖ ≤ %k‖νkx + αk‖ + %ks
−3
k (x + 1). We can see that∑∞

k=0 %ks
−2
k ‖nkx‖ <∞, whenever

∑∞
k=0 %k‖νkx+ αk‖ <∞. �

2. Interrelations between the classes

Notice that all non-inclusions in the diagram (D) are based on the following four:
B0 * PD, PD * B, B * A and A * N . Non-inclusion PD * B is easy because
B-sets are always nowhere dense, while there are PD-sets dense in [0, 1] (e. g. every
countable set is a PD-set). In [7] S. Kahane gave examples of an N0-set (actually
B0-set) which is not a countable union of PD-sets, an N-set (actually B-set) which
is not a countable union of A-sets, and an A-set which is not a countable union of
N-sets. Using the idea contained in his constructions we prove more informative
facts about interrelations between these classes.

Let us start with some simple observations.

Lemma 2.1. Let x ∈ [0, 1], n be a positive integer and ε be a real, 0 ≤ ε ≤ 1
2 .

Then the following conditions are equivalent:
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(1) | sinπnx| ≤ sinπε,
(2) ‖nx‖ ≤ ε,
(3) x ∈

⋃n−1
i=0

[
i
n ,

i
n + ε

n

]
∪
[
i+1
n −

ε
n ,

i+1
n

]
.

By an interval we mean a closed, nonempty subinterval of [0, 1]. The length of
an interval I we denote by |I|.

Corollary 2.2. Let I be an interval, n be a positive integer, ε be a real, 0 ≤ ε ≤ 1
2 .

(1) If |I| ≥ 1
n then there exists an interval J ⊆ I such that ∀x ∈ J ‖nx‖ ≤ ε

and |J | ≥ ε
n .

(2) If |I| ≥ 2ε
n then there exists an interval J ⊆ I such that ∀x ∈ J ‖nx‖ ≥ ε

and |J | ≥ min
{ |I|

2 −
ε
n ,

1−2ε
n

}
.

Lemma 2.3. Let n, n′ ≥ 2n be positive integers and I be an interval with |I| ≥ 1
n .

Then there exists an interval J ⊆ I such that ∀x ∈ J ‖nx‖ ≤ n
n′ and |J | ≥ 1

n′ .

Proof. Take ε = n
n′ ≤ 1

2 in Corollary 2.2 (1). �

Let us note that T. Viola in his paper [12] using a similar fact proved that if∑∞
k=0

nk
nk+1

< ∞ then the set of all x, such that the series
∑∞
k=0 cos 2πnk(x + αk)

absolutely converges, is of the cardinality continuum.

Lemma 2.4. Let n, n′, m be positive integers and ε be a real such that 0 < ε ≤ 1
16 ,

n ≤ 2m < n′ and n ≤ εn′. Let I be an interval with |I| ≥ 1
n . Then there

exist intervals J0, J1 ⊆ I with disjoint interiors, such that ∀x ∈ J0 ∪ J1 ‖nx‖ ≤
8ε ∧ ‖mx‖ ≥ ε

2 and |J0|, |J1| ≥ 1
n′ .

Proof. By Corollary 2.2 (1) used for I, n and 8ε there is an interval I ′ ⊆ I such
that ∀x ∈ I ′ ‖nx‖ ≤ 8ε and |I ′| ≥ 8ε

n . Let I ′0 and I ′1 be the left and the right
half of I ′. By Corollary 2.2 (2) used for I ′0, m and ε

2 there is J0 ⊆ I ′0 such that
∀x ∈ J0 ‖mx‖ ≥ ε

2 and

|J0| ≥ min
{

2ε
n −

ε
2m ,

1−ε
m

}
≥ min

{
2ε
n −

ε
n ,

1
2m

}
≥ min

{
ε
n ,

1
n′

}
≥ 1

n′ .

Similarly there is J1 ⊆ I ′1 such that ∀x ∈ J1 ‖mx‖ ≥ ε
2 and |J1| ≥ 1

n′ . �

We will need the following characterizations of two cardinal invariants of the
ideal K of meager sets, due to J. Truss, A. W. Miller [9] and T. Bartoszyński [2]:

add(K) = min{b, cov(K)},
cov(K) = min{|X| : X ⊆ ωω ∧ ∀x ∈ ωω ∃y ∈ X ∀∞n ∈ ω y(n) 6= x(n)}.

Let us recall that

b = min{|X| : X ⊆ ωω ∧ ∀x ∈ ωω ∃y ∈ X ∃∞n ∈ ω y(n) > x(n)}.
For basic information see e. g. [5], [11].

Theorem 2.5. Assume that
∑∞
k=0

nk
nk+1

< ∞. Let X be the N0-set {x ∈ [0, 1] :∑∞
k=0 ‖nkx‖ < ∞}, Y be a family of PD-sets of size |Y| < add(K), and I0 be an

interval with nonempty interior. Then the set
(
X \

⋃
Y
)
∩ I0 has a perfect subset.

Proof. Omitting finitely many terms from the sequence {nk}k∈ω we can ensure
that |I0| ≥ 1

n0
and nk+1 ≥ 2nk for all k ∈ ω. Fix a sequence {εj}j∈ω such that

0 < εj ≤ 1
16 for all j ∈ ω and

∑∞
j=0 εj <∞.
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Suppose that Y = {Yξ : ξ < κ}, κ < add(K). For ξ < κ let {mξ
l }l∈ω be an

increasing sequence of positive integers and {θξl }l∈ω a sequence of positive reals
such that liml→∞ θξl = 0 and ∀x ∈ Yξ ∀∞l ‖mξ

l x‖ ≤ θξl . For m ∈ ω let k(m) be
such that nk(m) ≤ 2m < nk(m)+1. For any i, j ∈ ω and ξ < κ find an integer lξ(i, j)
such that k

(
mξ
lξ(i,j)

)
≥ i and θξlξ(i,j) <

εj
2 . Put pξ(i, j) = k

(
mξ
lξ(i,j)

)
+ 1.

Since κ < b, there exists p ∈ ω×ωω such that ∀ξ < κ ∀∞(i, j) p(i, j) ≥ pξ(i, j),
i. e. for every ξ < κ there is jξ ∈ ω such that if min{i, j} ≥ jξ then p(i, j) ≥ pξ(i, j).
Put p0 = 0, pj+1 = p(pj , j) for j ∈ ω. Clearly if j ≥ jξ then pj ≤ k

(
mξ
lξ(pj ,j)

)
<

pξ(pj , j) ≤ p(pj , j) = pj+1.
Since κ < cov(K), there exists a sequence {mj}j∈ω such that ∀ξ < κ ∃∞j mj =

mξ
lξ(pj ,j)

. Denote Mξ =
{
j ∈ ω : j ≥ jξ ∧ mj = mξ

lξ(pj ,j)

}
, M =

⋃
ξ<κMξ and

N = {k(mj) : j ∈M}. The sets Mξ, M , N are infinite and m is increasing on M .
Now let us construct our perfect set by an induction on k. Put T0 = {I0}.

Suppose that Tk is a family of intervals with pairwise disjoint interiors and that
|I| ≥ 1

nk
for every I ∈ Tk.

If k ∈ ω\N then nk+1 ≥ 2nk and by Lemma 2.3 for any I ∈ Tk there exists JI ⊆ I
such that ∀x ∈ JI ‖nkx‖ ≤ nk

nk+1
and |JI | ≥ 1

nk+1
. Put Tk+1 = {JI : I ∈ Tk}.

If k ∈ N then k = k(mj) for some j ∈ M , nk ≤ 2mj < nk+1 and nk ≤ εjnk+1.
By Lemma 2.4 for any I ∈ Tk there exist JI0 , J

I
1 ⊆ I such that ∀x ∈ JI0 ∪JI1 ‖nkx‖ ≤

8εj ∧ ‖mjx‖ ≥ εj
2 and |JI0 |, |JI1 | ≥ 1

nk+1
. Put Tk+1 = {JI0 , JI1 : I ∈ Tk}.

The set P =
⋂
k∈ω

⋃
Tk is perfect subset of I0. If x ∈ P then

∑∞
k=0 ‖nkx‖ =∑

k∈ω\N ‖nkx‖ +
∑
j∈M ‖nk(mj)x‖ ≤

∑
k∈ω\N

nk
nk+1

+
∑
j∈M 8εj < ∞, and hence

x ∈ X. Moreover, for any ξ < κ and j ∈ Mξ we have mj = mξ
lξ(pj ,j)

, ‖mjx‖ ≥
εj
2 > θξlξ(pj ,j), and therefore x /∈ Yξ. Hence P ⊆ X \

⋃
Y. �

Theorem 2.6. Assume that
∑∞
k=0

nk
nk+1

< ∞. Let X be the B0-set {x ∈ [0, 1] :∑∞
k=0 ‖nkx‖ ≤ c}, where c is a sufficiently big real, and Y be a family of PD-sets

of size |Y| < add(K). Then the set X \
⋃
Y has a perfect subset.

Proof. Find k0 such that nk+1 ≥ 2nk for k ≥ k0 and take c > k0
2 +

∑∞
k=k0

nk
nk+1

. Put

I0 = [0, 1] and choose {εj}j∈ω such that k0
2 +

∑∞
k=k0

nk
nk+1

+8
∑∞
j=0 εj ≤ c. Similarly

as in Theorem 2.5 there is a perfect set P ⊆ I0 disjoint with every Y ∈ Y, such
that if x ∈ P then

∑∞
k=k0

‖nkx‖ ≤
∑∞
k=k0

nk
nk+1

+ 8
∑∞
j=0 εj , and hence P ⊆ X. �

Theorem 2.7. Assume that limk→∞ %k = 0,
∑∞
k=0 %k = ∞ and

∑∞
k=0 %k

nk
nk+1

<

∞. Let X be the N-set {x ∈ [0, 1] :
∑∞
k=0 %k‖nkx‖ < ∞}, Y be a family of A-sets

of size |Y| < add(K) and I0 be an interval with nonempty interior. Then the set(
X \

⋃
Y
)
∩ I0 has a perfect subset.

Proof. Fix a real ε, 0 < ε ≤ 1
16 , and a sequence {θj}j∈ω of positive reals such

that
∑∞
j=0 θj < ∞. Denote S =

{
k ∈ ω : |I0| ≥ 1

nk
∧ nk ≤ εnk+1

}
. Clearly∑

k∈ω\S %k <∞, and hence S is infinite. Denote S(k) the k-th member of S.

Suppose that Y = {Yξ : ξ < κ}, κ < add(K). For ξ < κ let {mξ
l }l∈ω be an

increasing sequence of positive integers such that ∀x ∈ Yξ liml→∞ ‖mξ
l x‖ = 0. For

m ∈ ω let k(m) be such that nS(k(m)) ≤ 2m < nS(k(m)+1). For any i, j ∈ ω and
ξ < κ find an integer lξ(i, j) such that k

(
mξ
lξ(i,j)

)
≥ i and %S(k(mξ

lξ(i,j)
)) ≤ θj .



A CLASSIFICATION OF TRIGONOMETRICAL THIN SETS 7

Similarly as in Theorem 2.5 we can find an increasing sequence {pj}j∈ω, a se-
quence {mj}j∈ω and for any ξ < κ an infinite set Mξ ⊆ ω, such that if ξ < κ

and j ∈ Mξ then mj = mξ
lξ(pj ,j)

, pj ≤ k(mj) < pj+1 and %S(k(mj)) ≤ θj . Denote
M =

⋃
ξ<κMξ and N = {k(mj) : j ∈ M}. Clearly m is increasing on M and M ,

N are infinite.
We know that |I0| ≥ 1

nS(0)
and nS(k) ≤ εnS(k)+1 for all k ∈ ω. By a similar

construction as in Theorem 2.5 we can construct a perfect set P ⊆ I0 such that
if x ∈ P then ‖nS(k)x‖ ≤

nS(k)

nS(k)+1
for k ∈ ω \ N , ‖nS(k)x‖ ≤ 8ε ∧ ‖mjx‖ ≥ ε

2 for
k = k(mj), j ∈M .

For x ∈ P holds
∑∞
k=0 %k‖nkx‖ ≤

1
2

∑
k∈ω\S %k +

∑
k∈S %k‖nkx‖ < ∞,

since
∑
k∈S %k‖nkx‖ =

∑
k∈ω\N %S(k)‖nS(k)x‖ +

∑
j∈M %S(k(mj))‖nS(k(mj))x‖ ≤∑

k∈ω\N %S(k)
nS(k)

nS(k)+1
+
∑
j∈M 8εθj ≤

∑
k∈S %k

nk
nk+1

+ 8ε
∑∞
j=0 θj , and therefore

x ∈ X. Moreover, for ξ < κ and j ∈ Mξ we have ‖mξ
lξ(pj ,j)

x‖ = ‖mjx‖ ≥ ε
2 , and

hence x /∈ Yξ. We get P ⊆ X \
⋃
Y. �

Theorem 2.8. Assume the hypotheses of Theorem 2.7. Let X be the B-set {x ∈
[0, 1] :

∑∞
k=0 %k‖nkx‖ ≤ c}, where c is a sufficiently big real, and Y be a family of

A-sets of size |Y| < add(K). Then the set X \
⋃
Y has a perfect subset.

Proof. Fix a real ε, 0 < ε ≤ 1
16 , and denote S = {k ∈ ω : nk ≤ εnk+1}. It is

sufficient to take c > 1
2

∑
k∈ω\S %k +

∑
k∈S %k

nk
nk+1

. Put I0 = [0, 1] and choose
{θj}j∈ω such that 1

2

∑
k∈ω\S %k +

∑
k∈S %k

nk
nk+1

+ 8ε
∑∞
j=0 θj ≤ c. Similarly as in

Theorem 2.7 there exists a perfect set P ⊆ I0, disjoint with every Y ∈ Y, such that
if x ∈ P then

∑∞
k=0 %k‖nkx‖ ≤

1
2

∑
k∈ω\S %k +

∑
k∈S %k

nk
nk+1

+ 8ε
∑∞
j=0 θj ≤ c. �

The following lemma appears in [7] in a slightly different form.

Lemma 2.9. Let {%n}n∈ω be a sequence of positive reals, a, b, θ be positive reals
and I be an interval such that a < b, θ ≤ 1

14 and |I| ≥ 6θ
a . Then there exists an

interval J ⊆ I such that ∀x ∈ J
∑
a≤n<b %n‖nx‖ ≥

θ
4

∑
a≤n<b %n and |J | ≥ 2θ

b .

Proof. Suppose for now that b ≤ 3a. There exists x̄ such that
[
x̄− θb , x̄+ 3θ

a + 2θ
b

]
⊆ I.

Denote A = {n ∈ ω : a ≤ n < b∧‖nx̄‖ ≥ 2θ}, B = {n ∈ ω : a ≤ n < b∧‖nx̄‖ < 2θ}.
If
∑
n∈A %n ≥

1
2

∑
n∈A∪B %n, put J =

[
x̄− θ

b , x̄+ θ
b

]
. Then for x ∈ J and n ∈ A

we have ‖nx‖ ≥ ‖nx̄‖ − ‖n(x− x̄)‖ ≥ 2θ − n|x− x̄| ≥ 2θ − θ = θ.
Otherwise, if

∑
n∈B %n >

1
2

∑
n∈A∪B %n, put J =

[
x̄+ 3θ

a , x̄+ 3θ
a + 2θ

b

]
. Then for

x ∈ J and n ∈ B we have 3θ
a ≤ |x−x̄| ≤

3θ
a + 2θ

b ≤
11θ
b , 3θ ≤ n|x−x̄| ≤ 11θ ≤ 1−3θ,

and hence ‖nx‖ ≥ ‖n(x− x̄)‖ − ‖nx̄‖ ≥ 3θ − 2θ = θ.
In both cases we get

∑
a≤n<b %n ≥

θ
2

∑
a≤n<b %n.

In case that b > 3a put a0 = a, a1 = 3a0, a2 = 3a1,. . . , ak = b ≤ 3ak−1. Denote
A = {n ∈ ω : ai ≤ n < ai+1 for i even}, B = {n ∈ ω : ai ≤ n < ai+1 for i odd}.

If
∑
n∈A %n ≥

1
2

∑
n∈A∪B %n then iterating the previous consideration we can

find intervals I ⊇ I0 ⊇ I2 ⊇ . . . such that for i even holds

(∗) |Ii| ≥ 2θ
ai+1

= 6θ
ai+2

and ∀x ∈ Ii
∑

ai≤n<ai+1

%n‖nx‖ ≥ θ
2

∑
ai≤n<ai+1

%n.

Similarly, if
∑
n∈B %n >

1
2

∑
n∈A∪B %n then there exist intervals I ⊇ I1 ⊇ I3 ⊇ . . .

such that (∗) holds for i odd. In both cases let J be the last interval (Ik−2 or Ik−1).
We get |J | ≥ 2θ

b and ∀x ∈ J
∑
a≤n<b %n‖nx‖ ≥

θ
4

∑
a≤n<b %n. �
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Theorem 2.10. Assume that limk→∞
nk
nk+1

= 0. Let X be the A-set {x ∈ [0, 1] :
limk→∞ ‖nkx‖ = 0}, Y be a family of N-sets of size |Y| < add(K) and I0 be an
interval with nonempty interior. Then the set

(
X \

⋃
Y
)
∩ I0 has a perfect subset.

Proof. Omitting finitely many terms from the sequnce {nk}k∈ω we can ensure that
|I0| ≥ 1

n0
and nk+1 ≥ 2nk for all k ∈ ω. Fix a sequence {εj}j∈ω such that 0 < εj ≤ 1

2

and limj→∞ εj = 0.
Suppose that Y = {Yξ : ξ < κ}, κ < add(K). For ξ < κ let {%ξn}n∈ω be a sequence

of positive rationals such that
∑∞
n=0 %

ξ
n = ∞ and ∀x ∈ Yξ

∑∞
n=0 %

ξ
n‖nx‖ < ∞.

Denote c = 1
14 and fix ξ < κ. There are two possibilities.

(a) There exists d > c such that
∞∑
k=0

∑
cnk≤n<dnk

%ξn =∞.

Then we can choose θξk such that θξk ≥ d
nk
nk+1

, limk→∞ θξk = 0 and

∞∑
k=0

θξk

∑
cnk≤n<dnk

%ξn =∞.

Denote aξk = cnk, bξk = dnk for all k ∈ ω.
(b) For all d > c holds

∞∑
k=0

∑
cnk≤n<dnk

%ξn <∞.

Then for all d > c we have
∞∑
k=0

∑
dnk≤n<cnk+1

%ξn =∞

and hence we can choose dk such that c < dk < cnk+1
nk

, limk→∞ dk =∞ and

∞∑
k=0

∑
dknk≤n<cnk+1

%ξn =∞.

Denote aξk = dknk, bξk = cnk+1 and θξk = c for all k ∈ ω.
In both cases we have found sequences {aξk}k∈ω, {bξk}k∈ω and {θξk}k∈ω such that∑∞
k=0 θ

ξ
k

∑
aξk≤n<b

ξ
k
%ξn = ∞. Moreover, for every j ∈ ω there exists kξj ∈ ω such

that for all k ≥ kξj holds

εj
nk
≥

6θξk
aξk

,
2θξk
bξk
≥ 2
nk+1

, θξk ≤
1
14

and aξk < bξk ≤ a
ξ
k+1.

Let us note that we can choose aξk, bξk and θξk rational.
For any i, j ∈ ω and ξ < κ find integers rξ(i, j), sξ(i, j) and pξ(i, j) such that

kξj ≤ rξ(i, j) < sξ(i, j),
[
rξ(i, j), sξ(i, j)

)
⊆
[
i, pξ(i, j)

)
,⋃

rξ(i,j)≤k<sξ(i,j)

[
aξk, b

ξ
k

)
⊆
[
ni, npξ(i,j)

)
and

∑
rξ(i,j)≤k<sξ(i,j)

θξk

∑
aξk≤n<b

ξ
k

%ξn ≥ 1.
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Since κ < b, there exists p ∈ ω×ωω such that ∀ξ < κ ∀∞(i, j) p(i, j) ≥ pξ(i, j),
i. e. for every ξ < κ there is jξ ∈ ω such that if min{i, j} ≥ jξ then p(i, j) ≥ pξ(i, j).
Put p0 = 0, pj+1 = p(pj , j) for j ∈ ω and denote rξj = rξ(pj , j), s

ξ
j = sξ(pj , j). We

can see that if j ≥ jξ then
[
rξj , s

ξ
j

)
⊆
[
pj , pj+1

)
,
⋃
rξj≤k<s

ξ
j

[
aξk, b

ξ
k

)
⊆
[
npj , npj+1

)
and

∑
rξj≤k<s

ξ
j
θξk
∑
aξk≤n<b

ξ
k
%ξn ≥ 1.

For any j ∈ ω, ξ < κ, we can code
〈
rξj , s

ξ
j , 〈a

ξ
k, b

ξ
k, θ

ξ
k〉pj≤k<pj+1 , 〈%ξn〉npj≤n<npj+1

〉
by mξ

j ∈ ω. Since κ < cov(K), there exists a sequence {mj}j∈ω such that
∀ξ < κ ∃∞j mj = mξ

j . If mj = mξ
j , let rj = rξj , sj = sξj , ak = aξk, bk = bξk, θk = θξk

for pj ≤ k < pj+1, and %n = %ξn for npj ≤ n < npj+1 . Denote Mξ =
{
j ∈ ω :

j ≥ jξ ∧mj = mξ
j

}
for ξ < κ, M =

⋃
ξ<κMξ and N = ω ∩

⋃
j∈M

[
rj , sj

)
.

Now let us construct the perfect set P by an induction on k. Put T0 = {I0}.
Suppose that Tk is a family of intervals with pairwise disjoint interiors and that
|I| ≥ 1

nk
for every I ∈ Tk.

If k ∈ ω\N then nk+1 ≥ 2nk and by Lemma 2.3 for any I ∈ Tk there exists JI ⊆ I
such that ∀x ∈ JI ‖nkx‖ ≤ nk

nk+1
and |JI | ≥ 1

nk+1
. Put Tk+1 = {JI : I ∈ Tk}.

If k ∈ N then rj ≤ k < sj for some j ∈ M . By Corollary 2.2 (1) there exists
JI ⊆ I such that ∀x ∈ JI ‖nkx‖ ≤ εj and |JI | ≥ εj

nk
. Since ak < bk, θk ≤ 1

14 and
εj
nk
≥ 6θk

ak
, by Lemma 2.9 there exists J̄I ⊆ JI such that

∀x ∈ J̄I
∑

ak≤n<bk

%n‖nx‖ ≥ θk
4

∑
ak≤n<bk

%n and |J̄I | ≥ 2θk
bk
≥ 2

nk+1
.

Denote J̄I0 and J̄I1 the left and the right half of J̄I and put Tk+1 = {J̄I0 , J̄I1 : I ∈ Tk}.
Since N is infinite, the set P =

⋂
k∈ω

⋃
Tk is a perfect subset of I0. For all x ∈ P

we have limk→∞ ‖nkx‖ = 0, and hence P ⊆ X. Moreover, if ξ < κ and j ∈ Mξ

then ∑
rξj≤k<s

ξ
j

∑
aξk≤n<b

ξ
k

%ξn‖nx‖ =
∑

rj≤k<sj

∑
ak≤n<bk

%n‖nx‖ ≥

∑
rj≤k<sj

θk
4

∑
ak≤n<bk

%n =
∑

rξj≤k<s
ξ
j

θk
4

∑
aξk≤n<b

ξ
k

%ξn ≥ 1
4 ,

and hence
∑∞
n=0 %

ξ
n‖nx‖ ≥

∑
j∈Mξ

∑
rξj≤k<s

ξ
j

∑
aξk≤n<b

ξ
k
%ξn‖nx‖ =∞, i. e. x /∈ Yξ.

We get P ⊆ X \
⋃
Y. �

It is easy to see that for any increasing sequence {nk}k∈ω of positive integers
there is a subsequence {nkj}j∈ω such that limj→∞

nkj
nkj+1

= 0, or
∑∞
j=0

nkj
nkj+1

<∞.

Hence the family F of all sets X satisfying the conditions of Theorem 2.5 (resp. 2.6,
2.10) is a basis for the class N0 (resp. B0, A), i. e. every N0-set (resp. B0-set, A-set)
is included in a set X ∈ F . As immediate consequences we get the following:

Corollary 2.11. For any N0-set X there is N0-set X ′ ⊇ X such that for any family
Y of PD-sets of size |Y| < add(K) and for any interval I0 ⊆ [0, 1] with nonempty
interior, the set

(
X ′ \

⋃
Y
)
∩ I0 has a perfect subset.

Corollary 2.12. For any B0-set X there is B0-set X ′ ⊇ X such that for any family
Y of PD-sets of size |Y| < add(K), the set X ′ \

⋃
Y has a perfect subset.



10 PETER ELIAŠ

Corollary 2.13. For any A-set X there is A-set X ′ ⊇ X such that for any family
Y of N-sets of size |Y| < add(K) and for any interval I0 ⊆ [0, 1] with nonempty
interior, the set

(
X ′ \

⋃
Y
)
∩ I0 has a perfect subset.

We do not know whether a similar result holds true in case of N-sets (resp. B-
sets). The following question is open:

Question 2.14. Is it true that for any N-set X there are sequences {%k}k∈ω and
{nk}k∈ω such that

∑∞
k=0 %k =∞,

∑∞
k=0 %k

nk
nk+1

<∞ and
∑∞
k=0 %k‖nkx‖ <∞ for

all x ∈ X?
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