A CLASSIFICATION OF TRIGONOMETRICAL THIN SETS
AND THEIR INTERRELATIONS

PETER ELIAS

ABSTRACT. We introduce a uniform way of classifying thin sets of harmonic
analysis related to absolute convergence of trigonometric series. This classifi-
cation covers classical classes (D, PD, A, No, N) and yields two new ones (Bo
and B). We study interrelations between these classes concerning combinato-
rial structure of thin sets.

In 1938 J. Marcinkiewicz [8] introduced the notion of N-set (in honour of V. V.
Niemytzki): a set X C [0, 1] is an N-set iff there is a trigonometric series

o0
% + ;(an cos 2mnax + by, sin 2mna)

absolutely converging on X with >.>° (|a,| + |by]) = oo (i. e. not converging
absolutely everywhere).

We can equivalently define the N-sets assuming that a,, = 0 for all n.

Modifying this definition we obtain a number of types of trigonometrical thin
sets, depending on the form of terms in the series and on the convergence used. All
but two of the considered classes are equal to the classes of D-, PD-; A-) Ny- and
N-sets, known from the literature (e. g. [1], [3], [7]). We introduce the classes of
Bo- and B-sets, which are new, although already implicitly considered.

It is known that all the classes mentioned above differ from each other (see
e. g. [7]). In section 2 we generalize this fact. We get an estimation for the minimum
size of a family of sets from one class which covers any set belonging to the other
one.

Our notation follows that of [4]. Concerning historical notes we refer again to
[4].
The author would like to express his thanks to L. Bukovsky, who supervised his
master thesis [6] on which this paper is based, and to M. Repicky, who helped him
with infinite combinatorics.

1. CLASSIFICATION

Let {ny}recw denote an increasing sequence of positive integers and {ox }recw a
sequence of positive reals. We denote by ||z|| the distance of a real x to the nearest
integer. Since 2||z|| < |sinwz| < 7||x||, we can in our considerations replace | sin 7z|
and ||z|| one by another.

Let us recall the definitions of classical thin sets, related to absolute convergence
of trigonometric series:

Definition 1.1. A set X C [0,1] is

This work was supported by grant 2/1224/94 of Slovak Grant Agency.
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(1) a D-set (a Dirichlet set) iff there exists a sequence {ng }rew such that ||ngx||
converges uniformly to 0 on X,

(2) a PD-set (a pseudo-Dirichlet set) iff there exists a sequence {ng}reo such
that ||ngz|| converges quasinormally to 0 on X,

(3) an A-set (an Arbault set) iff there exists a sequence {ny}re., such that
|Inkz|| converges pointwise to 0 on X,

(4) an Ny-set iff there exists a sequence {ny}re., such that >, |nez|| < oo
forxze X,

(5) an N-set iff there exist sequences { o frew, {1k }rew such that Y p- o o) = 0
and Y52 okllnkz| < oo for x € X.

Now define two new classes.

Definition 1.2. A4 set X C [0,1] is

(6) a By-set iff there exist a sequence {ny}rew and a real constant ¢ such that
Yoreollnkz| < ¢ forx e X,

(7) a B-set iff there exist sequences {0k tkew, {Mk}kew and a real constant c
such that Y ;- ok = 00 and > poy oklnkz|| < ¢ for z € X.

The classes of all D-, PD-, A-, Ng-, N-, Bg- and B-sets will be denoted by D,
PD, A, Ny, N, By and B, respectively.

We can see that all definitions above have the same form. Only two parameters
are changing: the type of convergence and the condition put on the coefficiets gy.
We will study also some other possibilities for these parameters.

Let us consider the following conditions for the sequence {ok }rew:

(1) 2Zx=o or = o0,
(ii) ox does not tend to 0,
(iii) or tends to infinity.

Let us consider also the following types of convergence, where {f;}recw is a
sequence of non-negative functions defined on a set X:

(P) {fr}rew converges pointwise to 0 on X;
(QN) {fk}rew converges quasinormally to 0 on X;
(U) {fk}rew converges uniformly to 0 on X;
(PS) >po fe(x) converges pointwise on X, i. e. >~ fr(z) < oo for z € X;
(QNS) Y72, fr(z) converges quasinormally on X, i. e. the sequence of its partial
sums Y ;_, fr(x) converges quasinormally on X;
(US) Y-io fr(z) converges uniformly on X, i. e. the sequence of its partial sums
> i fe(z) converges uniformly on X;
(PNS) Y72 fe(x) converges pseudonormally on X, i. e. there is a sequence of
positive reals {ej }xew such that -7 ex < oo and Vo € X V°Fk fi(z) < ex;
(NS) Y7, fe(z) normally converges on X, i. e. there is a sequence of positive
reals {e }rew such that >°p° jep < 0o and Va € X Vk fi(x) < ex;
(BS) > pe fr(x) is bounded on X, i. e. there is a real ¢ such that > 7 fe(z) < ¢
for z € X.

Let us note that the following implications hold true and that in general case no
other one can be added:
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(NS)—» (PNS)  (BS)

(US)—(QNS) — (PS)

| | |

(U) — (QN) — (P)
Our aim is to examine all combinations of the properties (i)—(iii), (P)—-(BS).

Definition 1.3. Let (a) be one of the conditions (i)—(iil) and (b) one of the con-
vergences (P)—(BS). Denote C¢ the class of all sets X C [0, 1] for which there exists
a sequence of the terms fr(x) = og||nex| such that the sequences {ok}rewn and
{fx}rew satisfy the conditions (a) and (b).

It is easy to see that replacing the condition (i) by liminfg .. g > 0 or
Vk € w g = 1 leaves the corresponding classes unchanged. Similarly we may
replace the condition (iii) by lim sup,,_, ., ox = 0.

The following simple facts hold true:

Proposition 1.4. Let {h;}rew denote a sequence of non-negative functions and
{0k }kew a sequence of positive reals.

(1) There exists a sequence {gk}kew Such that > o = oo and lim g, = 0. If
lim o, = 0 and there is a real ¢ such that Vo € X Vk € w hi(z) < ¢ then
oxhi(x) converges uniformly to 0 on every set X.

(2) If Y o = oo (resp. lim g, = o0) then there exists a sequence {0y rew such
that limoy, =0 and > opor = 0o (resp. limogpr = 00).

(3) If ophi(z) converges pointwise to 0 on X and limoy = 0 then orophi(x)
converges quasinormally to 0 on X.

(4) If > oxhi(x) converges pointwise on X and limoy, = 0 then Y o orhi(z)
converges quasinormally on X.

(5) If > orhi(x) is bounded on X and lim oy, = 0 then Y ororhi(x) converges
uniformly on X.

(6) If orhi(x) converges quasinormally (resp. uniformly) to 0 on X then there
exists an increasing sequence {k;}je. such that ) or;hy; () converges pseudo-
normally (resp. normally) on X.

(7) If > or = 00 and . ophr(x) converges pseudonormally (resp. normally)
on X then there exists an increasing sequence {k;}jc. such that hy,(x)
converges quasinormally (resp. uniformly) to 0 on X.

(8) If hi(x) converges quasinormally (resp. uniformly) to 0 on X then there
exists a sequence {0k }rew Such that lim g, = oo and ophy(x) converges
quasinormally (resp. uniformly) to 0 on X.

Put hy(x) = |ngzl|. Then (1) implies that the classes Cp, Cfyy, Ciy consist
of all subsets of [0,1]. ;From (2) and (3) we get C}i' = Cfy, from (2) and (4)
Chs = Cons: Cps = _Cé;iziNsv ﬁ_fom (2)“and (5) Chs = Cus: Cﬁls = Cﬁls éFrom_(G) we
can conclude that Cin = Cins = Cpns: Con = Cons = Cpns» Cuy = Ciig = Cxg and
Cy' = Cig = Cyg- The assertion (7) implies that Cpxg = Cons Cng = Cyy and the
assertion (8) that Cix = Con, Ct = Cif'-

Hence every class Cy is equal to one from Definitions 1.1, 1.2. In the following
table all denotes the class of all subsets of [0, 1]:
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(P) | (QN) | (U) | (PS) | (QNS) | (US) | (PNS) | (NS) | (BS)
()| all | all | all | N N B PD D B
i) A|PD | D| Ny | PD | D | PD | D | B,
Gi)|PD| PD | D |PD| PD | D | PD | D | D

The inclusions between these classes are the following (— means C):

A

7
(D) PD — Ny — N
T 7 T

D—>BQ—>B

It is known that all these inclusions are proper and that no other one holds.

The following fact was proved by R. Salem [10] for N-sets. However, it holds for
other classes too.

Proposition 1.5. In Definition 1.3 we may replace |ngz|| by ||[vkx + akll, where
{Vk }kew s an unbounded sequence of positive reals, {a }rew s a sequence of reals.

Proof. Applying Proposition 1.4 to the functions hy(x) = ||vgz + ag|| we obtain an
identical table for classes defined using ||vix + k|| instead of ||ngx|. Therefore it
is enough to consider the classes from Definitions 1.1 and 1.2. We give the proof
only for case of A- and N-sets; for other classes it goes similarly.

(1) Suppose that limy_,o ||vx + ai|| = 0 for z € X. There exists an increasing
sequence {k;} e, such that lim; o [[vg,,, —vk, || = 0 and lim; . ||k, , —au, || = 0.
Let n; be the nearest integer to vg,,, — v, We may suppose that {n;};c. is an
increasing sequence of positive integers. For all z € [0,1] and j € w we have
[njzl < lve, o+ oyl + vk + arg |+ lve, 0 — iy llz + (o, — x|, and
therefore lim;_, o ||njz| = 0 for z € X.

(2) Assume that Y, or = oco. There exists a sequence {sj}recn of positive
integers such that > o, oksy > = oo, while S°77  oks,® < oo. For every k € w
there is an integer pr such that 1 < pg < si, Pkl < s,?l and ||prak| < s,;l. Let
ny be the nearest integer to prr. We have [|ngz| < prllvee + okl + |lprvelz +
|prak| and hence gxs; ||niz| < okllvex + ax| + ors; *(z + 1). We can see that
Sr o 085 k|| < oo, whenever "3 oxllvkz + ai|| < oo. O

i+ i+l

2. INTERRELATIONS BETWEEN THE CLASSES

Notice that all non-inclusions in the diagram (D) are based on the following four:
By ¢ PD, PD ¢ B, B¢ Aand AZ N. Non-inclusion PD ¢ B is easy because
B-sets are always nowhere dense, while there are PD-sets dense in [0, 1] (e. g. every
countable set is a PD-set). In [7] S. Kahane gave examples of an Ng-set (actually
Bo-set) which is not a countable union of PD-sets, an N-set (actually B-set) which
is not a countable union of A-sets, and an A-set which is not a countable union of
N-sets. Using the idea contained in his constructions we prove more informative
facts about interrelations between these classes.

Let us start with some simple observations.

Lemma 2.1. Let x € [0,1], n be a positive integer and € be a real, 0 < ¢ < 1.

2
Then the following conditions are equivalent:



A CLASSIFICATION OF TRIGONOMETRICAL THIN SETS 5

(1) |sinmnz| < sinwe,
() Inel <=, o
B)zelUy [Li+2]u[Hl - &,

n’n n n n’ n

By an interval we mean a closed, nonempty subinterval of [0,1]. The length of
an interval I we denote by |I].

Corollary 2.2. Let I be an interval, n be a positive integer, € be a real, 0 < e < %
(1) If |I| > L then there exists an interval J C I such that Vz € J |nz|| < e
and |J| > £.
(2) If |I| > % then there exists an interval J C I such that Vo € J |nz| > ¢
and |J| > min{%‘ — £, =2

n’ n
Lemma 2.3. Letn, n’ > 2n be positive integers and I be an interval with |I| > %
Then there exists an interval J C I such that Vo € J |nz|| < % and |J| > .

Proof. Take ¢ = 2 < 1 in Corollary 2.2 (1). O

n/
Let us note that T. Viola in his paper [12] using a similar fact proved that if
Y oreo 7eis < oo then the set of all x, such that the series Yoo cos 2wy (z + o)
absolutely converges, is of the cardinality continuum.

Lemma 2.4. Let n, n/, m be positive integers and € be a real such that 0 < ¢ < %,

n <2m < n' and n < en’. Let I be an interval with |I| > % Then there
exist intervals Jo, JJu C I with disjoint interiors, such that Yo € Jo U Jy ||nz|| <
8 A |lmz|| > § and |Jol, |J1| > %

Proof. By Corollary 2.2 (1) used for I, n and 8¢ there is an interval I’ C I such
that Vo € I’ ||naz| < 8¢ and [I'| > 5. Let Ij and I be the left and the right
half of I’. By Corollary 2.2 (2) used for Iy, m and § there is Jy C I such that
Vo € Jo ||mz| > § and
[Jol 2 min {35 — 55, 55} 2 min {35 = 5,50} > min{F, 50} = 5

Similarly there is J; C I such that Vo € Jy [jmz|| > £ and |J;| > L. O

We will need the following characterizations of two cardinal invariants of the
ideal K of meager sets, due to J. Truss, A. W. Miller [9] and T. Bartoszyiiski [2]:

add(K) = min{b, cov(K)},
cov(K) = min{|X|: X CYwAVz € “w Iy € X V°n c w y(n) # z(n)}.
Let us recall that
b=min{|X|: X CwAVz €“wIyec X I®°n cwy(n)>z(n)}

For basic information see e. g. [5], [11].

Theorem 2.5. Assume that Y, o -~ < oo. Let X be the Ny-set {z € [0,1] :

Nk+1
Y oreo lInkz]| < oo}, Y be a family of PD-sets of size |Y| < add(K), and Iy be an
interval with nonempty interior. Then the set (X \ Uy) N Iy has a perfect subset.

Proof. Omitting finitely many terms from the sequence {ny}rc., we can ensure
that |Iy| > % and ngp1 > 2ny for all k € w. Fix a sequence {¢;};c, such that

0<ej < qq forall j €wand Y77 e; < oo.
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Suppose that ¥ = {Y¢ : £ < k}, k < add(K). For ¢ < & let {mf}lew be an
increasing sequence of positive integers and {Qf}lew a sequence of positive reals
such that lim;_, (‘)f =0 and Vz € Y, V™I HmlgacH < 0?. For m € w let k(m) be
such that ny(,) < 2m < nk(m)ﬂ For any i,j € wand £ < & find an integer l¢(4, j)
such that k(mi(i,j)) > ¢ and 91 (i) < F. Put pe(i,j) = k(ng(”)) + 1

Since k < b, there exists p € “*“w such that V& < k V*°(4,7) p(i,7) > pe(i, j),
i. e. for every £ < k there is j¢ € w such that if min{i, j} > je then p(4, j) > pe(4, j)
Put po = 0, pj+1 = p(pj,7) for j € w. Clearly if j > j¢ then p; < k;(mli(pj7j)) <
pe(psd) < p(pj,J) = pj1-

Since k < cov(K), there exists a sequence {m,} e, such that V¢ < x 3%°j m; =
mli(pj,j). Denote M¢ = {j € w: j > je Am; = mli(pj’j)}7 M = U, M¢ and
N = {k(m;) : j € M}. The sets M¢, M, N are infinite and m is increasing on M.

Now let us construct our perfect set by an induction on k. Put 7o = {Io}.
Suppose that 7 is a family of intervals with pairwise disjoint interiors and that
|| > rle for every I € 7y,

If k € W\N then ngy1 > 2n; and by Lemma 2 3 for any I € 7j, there exists J! C T
such that Vo € JI ||ngz| < k- and |JI| > = Put Tpy1 = {J' : T € T}

If k € N then k = k(m;) for some j € M nk < 2m; < npyq and g < €Np41.
By Lemma 2.4 for any I € 7}, there eXist JE JI C I'such that Vo € JIUJE ||npz| <
8¢; A |mjz|| = F and |J{|, |J{| = —=. Put Toq = {J§, J{ : I € T,}.

The set P = ﬂ cw U7k is perfect subset of Iy. If z € P then Y o ||npz| =
ZkEUJ\N ||nkx|| + ZjeM an(mj-)x” < ZkEw\N % + ZjEM 88]‘ < 00, and hence
x € X. Moreover, for any £ < k and j € M we have m; = mli(pj,j), |m;z| >

E’ > 0? (03.7)’ and therefore z ¢ Y. Hence P C X \ J V. O

Theorem 2.6. Assume that Y ,o ok < oo. Let X be the Bo-set {z €10,1] :
Yoo lnkz|| < ¢}, where ¢ is a sufficiently big real, and Y be a family of PD-sets
of size |Y| < add(K). Then the set X \ |JY has a perfect subset.

Proof. Find kg such that ngq1 > 2ny, for & > kg and take ¢ > @Jrzzo ko Tyt . Put
Iy = [0, 1] and choose {¢;};e. such that %‘J—l—zzozko v +832720¢€j < c. Similarly
as in Theorem 2.5 there is a perfect set P C Iy disjoint with every Y € ), such
that if z € P then Y72, |lngx|| < 3522, e +83 772y ¢j, and hence P C X. [

n

Theorem 2.7. Assume that limg_.o o = 0, Zk 0 0k = 00 and Zk 0 Ok nk+1
00. Let X be the N-set {xz € [0,1] : 377 or|lnez| < oo}, Y be a family of A-sets
of size |Y| < add(K) and Iy be an interval with nonempty interior. Then the set
(X\UY) NIy has a perfect subset.

Proof. Fix areal ¢, 0 < ¢ < %, and a sequence {0;};c. of positive reals such
that Z;io 0; < co. Denote S = {k € w: |Iy| > % Anp < engs1}. Clearly
> kew\s %k < 00, and hence S is infinite. Denote S(k) the k-th member of S.
Suppose that ¥ = {Y¢ : £ < k}, k < add(K). For ¢ < & let {mf}lew be an
increasing sequence of positive integers such that Vo € Y lim;_,o ||ml5:r|| = 0. For
m € w let k(m) be such that ngm)) < 2m < Ngm)+1). For any i,j € w and

<0;.

¢ < k find an integer [¢(, j) such that k(ml <, )) > i and Q5 (k(m z£<1 S
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Similarly as in Theorem 2.5 we can find an increasing sequence {p;};cw, a se-
quence {m;};c, and for any £ < k an infinite set M¢ C w, such that if £ < &
and j € Mg then m; = mli(i"jyj)’ pj < k(m]) < Pj+1 and 0S(k(m;)) < Gj. Denote
M =g, Me and N = {k(m;) : j € M}. Clearly m is increasing on M and M,
N are infinite.

We know that |Iy

construction as in Theorem 2.5 we can construct a perfect set P C Iy such that
if z € P then |ngg)z| < nS(Sk(;:)rl for k € w\ N, |[ngyz|| < 8 A |lmjz|| > § for
k=k(m;),je M.

For z € P holds Y 7o oklnez|| < %ZkEw\S Ok + Dpes Okllnrz|| < oo,
since 3 peg okllnell = Ppenn 05 Insmll + 2 e nr 05k(minInskmnzll <
Zkew\N o5k ns) djem 0 < s gk#il + 8¢ Z;’io 6;, and therefore

Ns(k)+1

and ng) < engry41 for all k € w. By a similar

1
— Ms(0)

x € X. Moreover, for £ < k and j € M¢ we have ||mli(p'_ J)x|| = [[m;z| > §, and
hence x ¢ Ye. We get PC X \UV. O

Theorem 2.8. Assume the hypotheses of Theorem 2.7. Let X be the B-set {x €
0,1] : 327 okllnwz|| < ¢}, where ¢ is a sufficiently big real, and Y be a family of
A-sets of size |Y| < add(K). Then the set X \ |JY has a perfect subset.

Proof. Fix ateal g, 0 < ¢ < 1—16, and denote S = {k € w : np < engy1}. It is
sufficient to take ¢ > %Zk@u\s Ok + D kes okpts. Put Ip = [0,1] and choose
{0,}jecw such that %Zkew\s Ok + D res Ok ik + 8¢ > =00 < c. Similarly as in
Theorem 2.7 there exists a perfect set P C I, disjoint with every Y € ), such that
if x € P then Y -, okllnez| < %Zk@)\s Ok + D hes Ok +83 7000 <c. O

Nk41

The following lemma appears in [7] in a slightly different form.

Lemma 2.9. Let {0n}ncw be a sequence of positive reals, a, b, 8 be positive reals
and I be an interval such that a < b, 8 < ﬁ and |I| > %. Then there exists an

interval J C I such that Vo € J Y .,y onlnzll > gzagn@ on and |J| > 2.

Proof. Suppose for now that b < 3a. There exists Z such that [f—%,i—«—%—i—%} clI.
Denote A={nc€w:a<n<bA|nz|| > 20}, B={ncw:a<n<bA|nz| < 260}.
I ca0n > 32 caun On, PUL J = [i—%,a’c—&—%}. Then for x € Jandn € A
we have ||nz| > ||nZ| — ||n(z — Z)|| > 20 — nlxz —Z| > 20 — 0 = 4.
Otherwise, if 3°, .5 0n > 3 > ncaup On, Put J = [2+32 3‘9 T+ 22 39 + 29] Then for
x € Jand n € B we have 30 < lx—x| < 39+29 < 119 39<n|:1: :z:| <116 <1-30,

and hence ||nz| > ||n(z — :E)” - ||mv|| > 30— 29 = 0
In both cases we get Za§n<b On > 5 Za<”<b On-
In case that b > 3a put ag = a, a1 = 3ag, az = 3a1,..., ax = b < 3ai_1. Denote

A={ne€w:a; <n<aj forieven}, B={n€w:a; <n < a4 foriodd}.
If Y caln > %Zne Aup On then iterating the previous consideration we can
find intervals I O Iy O I, O ... such that for ¢ even holds

(%) |I;| > a?fl = % and Vz € I; Z onllnz| > g Z on.

a;<n<a;q1 a; <n<aiq1

Similarly, if 3 .5 on > % Y neaup On then there exist intervals I D I D I3 D
such that (%) holds for ¢ odd. In both cases let J be the last interval (I_s or I_1).
We get |J| > % and Vz € J Za§n<b Onllnz| > %Zagmb On- |
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Theorem 2.10. Assume that limy_, nZil = 0. Let X be the A-set {x € [0,1] :

limy oo ||[nkx]| = 0}, Y be a family of N-sets of size |Y| < add(K) and Iy be an
interval with nonempty interior. Then the set (X \ Uy) N Iy has a perfect subset.

Proof. Omitting finitely many terms from the sequnce {ny }rc. we can ensure that
|Io| > n%, and ng41 > 2ny for all k € w. Fix asequence {¢;};ec, such that 0 < g; < %
and hmj_wo g5 = 0.

Suppose that Y = {Y; : € < k}, k < add(K). For £ < & let {05 }new be a sequence
of positive rationals such that Y oo 0% = oo and Vo € Yz >0 o |[nz| < oc.
Denote ¢ = 7; and fix £ < k. There are two possibilities.

(a) There exists d > ¢ such that

> Y b=

k=0 cnip<n<dny

Then we can choose Hi such that 0% > d-"2 limg_ 00 Hi =0 and

Nkt1’
[eS)
13 _
E :9/@ E 05, = 0.
k=0 cenp <n<dng

Denote ai = cng, bi = dny, for all k € w.

(b) For all d > ¢ holds

o0
> Y e
k=0 cnip<n<dny
Then for all d > ¢ we have
[o ]
Y. > =
k=0 dnp<n<cngp4i

Nk+1
ngk

> Y b

k=0 dpnr<n<cng4i

and hence we can choose dj such that ¢ < dj < ¢ , im0 d, = 00 and

Denote ai = dpnk, bi = cngp4+1 and 92 =cforall k € w.
In both cases we have found sequences {ai}k@” {bi}keu and {Hi}kew such that
Yo Gi > ut <nept 05 = 00. Moreover, for every j € w there exists k:f € w such
S k

that for all k > k% holds

T

J > "k > Gkgﬁ and ap <b; <ap,.

b
Nk41

Let us note that we can choose ai, bi and Hi rational.
For any ¢,j € w and £ < k find integers r¢(4, j), se(¢,7) and pe (4, j) such that

kS <re(iy§) < se(i, 4), [re(i,5), se(i, 4)) € [i,pe(i ),

U (a5, 8%) € [ninp(iyy) and >, 0, > =1

re(1,5) <k<se(4,5) re(1,5) <k<se(i,9) ai§n<bi
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Since k < b, there exists p € “*“w such that V& < & V*°(i,7) p(3,5) > pe(3, §),
i. e. for every £ < k there is j¢ € w such that if min{é, j} > je then p(4, j) > pe(4, §).

Put po =0, pj4+1 = p(pj,J) for j € w and denote 7‘§ =re(pj,J)s s§ se(pj, 7). We
can see that if j > j¢ then [r§,s§) - [pj7pj+1), Ur§§k<s§ [ai,bi) - [np].,npjﬂ)
and ) §<k<859 > o <n<b 08 > 1.

For any j € w, £ < Kk, we can code <r§, S?, (ai, bi, 0£>pj§k<pj+l, (gf)npj S"<”pj+1>
by mg € w. Since kK < cov(]K), there exists a sequence {m;};c. such that

V§<f£3°°]mj—m Ifm]—m letrj—rE 5 = 5cck—ak,bk—b 9;.3:92

]7
for p; < k < pjt1, and o0, = 05 for ny, < n < mny.,. Denote Mg = {j € w:
J>je Amy :mg} for E <k, M = U£<HM§ and N:wOUjGM [rj,sj).

Now let us construct the perfect set P by an induction on k. Put 7o = {Io}.
Suppose that 7y is a family of intervals with pairwise disjoint interiors and that
|| > nik for every I € Ty,

If k € w\N then ng11 > 2n; and by Lemma 2 3 for any I € 7j, there exists J! C I
such that Vz € J ||ngz| < - and |J!| > ——. Put Tpq1 = {J' : I € T }.

k+1

If ke Nthenr; <k < sJ for some j € M By Corollary 2.2 (1) there exists

J! C I such that Vo € J! Ingz|| <e; and |JI| > 8] . Since aj < by, 0 < ﬁ and
fLJ > 60k , by Lemma 2.9 there exists J! C J! Such that
k g
Ve e J! Z Onllnz| > 7’“ Z o0, and |JI| > 29" > nk2+1.
ar<n<by ar<n<by

Denote J¢ and J{ the left and the right half of J! and put 71 = {J{, Jf : [ € Tp.}.
Since N is infinite, the set P = (0, c,, U7 is a perfect subset of I. For all z € P
we have limy_. ||ngz| = 0, and hence P C X. Moreover, if £ < k and j € M

then
S _
> > dilna] = onl[nxl| =
T§§k<S§ aign<b’§c ri<k<s; ar<n<bg
Ok — O 1
r;j<k<s; ar<n<by r§§k<s§ af <n<bf

and hence 3277 0f [nz| > Y cn, 2 P <hest 20l <n<tf o5 |nz|| = 00, i. e. x ¢ Y.
Weget PC X\UJV. O

It is easy to see that for any increasing sequence {ny}re, of positive integers
. . k.
there is a subsequence {ny, }jc, such that lim;_, = 0, 0r 3222,

< 0.
J Mkjp1

Hence the family F of all sets X satisfying the conditions of Theorem 2.5 (resp. 2.6,

2.10) is a basis for the class Ny (resp. By, A), i. e. every No-set (resp. Bo-set, A-set)

is included in a set X € F. As immediate consequences we get the following:

Corollary 2.11. For any Ny-set X there is Nyg-set X' O X such that for any family
Y of PD-sets of size |Y| < add(K) and for any interval Iy C [0,1] with nonempty
interior, the set (X' \\JY) NIy has a perfect subset.

Corollary 2.12. For any By-set X there is By-set X' D X such that for any family
Y of PD-sets of size |Y| < add(K), the set X'\ |JY has a perfect subset.
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Corollary 2.13. For any A-set X there is A-set X' O X such that for any family
Y of N-sets of size |Y| < add(K) and for any interval Iy C [0,1] with nonempty

nt

erior, the set (X’ \ Uy) N Iy has a perfect subset.

We do not know whether a similar result holds true in case of N-sets (resp. B-
sets). The following question is open:

Question 2.14. Is it true that for any N-set X there are sequences { gk }kew and
{ni}trew such that Y 72 o ok =00, Y pe gk% < oo and Y oo o ok|lnkz|| < oo for

all

(1]

(9]

[10]
(11]

(12]

reX?
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