COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

NONDETERMINISTIC STATE COMPLEXITY
IN SUBREGULAR CLASSES

DISSERTATION THESIS

2017 Mgr. Peter Mlynarcik

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

NONDETERMINISTIC STATE COMPLEXITY
IN SUBREGULAR CLASSES

DISSERTATION THESIS

Study programme: Applied mathematics

Field of study: 9.1.9 Applied mathematics

Supervising institution: Mathematical Institute, Slovak Academy of Sciences
Supervisor: RNDr. Galina Jiraskova, CSc.

Bratislava, 2017 Mgr. Peter Mlynarcik

UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

NEDETERMINISTICKA ZLOZITOST V
PODTRIEDACH REGULARNYCH JAZYKOV

DIZERTACNA PRACA

Studijny program: Aplikovana matematika

Studijny odbor: 9.1.9 Aplikovana matematika

Skoliace pracovisko: Matematicky tstav Slovenskej akadémie vied
Skolitel: RNDr. Galina Jiraskova, CSc.

Bratislava, 2017 Mgr. Peter Mlynarcik

28807588

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT
Name and Surname: Mgr. Peter Mlynarc¢ik
Study programme: Applied Mathematics (Single degree study, Ph.D. III. deg.,
full time form)
Field of Study: Applied Mathematics
Type of Thesis: Dissertation thesis
Language of Thesis: English
Secondary language: Slovak
Title: Nondeterministic state complexity in subregular classes

Literature:

1. Birget, J. C.: Intersection and union of regular languages and state complexity.
Inform.Process.Lett.43, 185--190 (1992)

2. Birget, J. C.: Partial orders on words, minimal elements of regular
languages, and state complexity. Theoret. Comput. Sci. 119, 267--291 (1993)
ERRATUM: Partial orders on words, minimal elements of regular languages,
and state complexity, 2002. Available at http://clam.rutgers.edu/\simbirget/
papers.html.

3. Brzozowski, J.A., Jiraskova, G., Li, B.: Quotient complexity of ideal
languages. Theoret. Comput. Sci. 470, 36--52 (2013)

4. Brzozowski, J.A., Jiraskova, G., Zou, C.: Quotient complexity of closed
languages. Theory Comput. Syst. 54, 277--292 (2014)

5. Cmorik, R., Jirdskova, G. : Binary Operations on Binary Suffix-Free
Languages. In: Z. Kotasek et al. (Eds.): MEMICS 2011, LNCS 7119, pp.
94-102. Springer - Verlag Berlin Heidelberg (2012)

6. Campeanu, C., Salooma, K., Yu,S.: Tight lower bound for the state
complexity of shuffle of regular languages. J.Autom.Lang.Comb.7, 303--310
(2002)

7. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci.
47, 149--158 (1986)

8. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular
languages. Int. J. Found. Comput. Sci. 14, 1087--1102 (2003)

9. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free
regular languages. Theoret. Comput. Sci. 410, 2537--2548 (2009)

10. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity for suffix-free
regular languages. In: McQuillan, 1., Pighizzini, G. (eds) DCFS 2010. EPTCS
vol. 31, pp. 189--196 (2010)

11. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free
regular languages. Theoret. Comput. Sci. 410, 2537--2548 (2009)

12. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-
free regular languages. Esik, Z.(ed.). Automata, formal languages, and related
topics, pp. 99-115. Institute of Informatics, University of Szeged (2009)

13. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of
basic operations for prefix-free regular languages. Fundam. Inform. 90, 93--106
(2009)

28807588

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Aim:

Annotation:

Keywords:

Tutor:

Department:

14. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-
free regular languages. In: Automata, Formal Languages, and Related Topics,
pp. 99--115. Institute of Informatics, University of Szeged (2009)

15. Jiraskovd, G.: State complexity of some operations on binary regular
languages. Theoret. Comput. Sci. 330, 287-298 (2005)

16. Jiraskova, G., Masopust, T.: Complexity in union-free regular languages.
Internat. J. Found. Comput. Sci. 22, 1639--1653 (2011)

17. Krausova, M.: Prefix-free regular languages: Closure properties, difference
and left quotient. In: Kotasek, Z. and Bouda, 1. and Cerna, 1. and Sekanina,
L. and Vojnar, T. and Antos, D. (eds.) MEMICS 2011, LNCS, vol. 7119, pp.
114--122, Springer (2012)

18. Maslov,A.N.: Estimates of the number of states of finite automata. Soviet
Math. Dokl. 11, 1373--1375 (1970)

19. Mirkin,B.G.: On dual automata. Kibernetika (Kiev) 2, 7--10 (1966)(in
Russian). English translation: Cybernetics 2, 6--9 (1966)

20. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res.
Develop. 3, 114--129 (1959)

21. Sipser, M.: Introduction to the theory of computation. PWS Publishing
Company, Boston (1997)

22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic
operations on regular languages. Theoret. Comput. Sci. 125, 315--328 (1994)

1) Summarize known results concerning deterministic and nondeterministic
complexity of basic operations in the class of regular languages and its
subclasses.

2) Investigate properties of nondeterministic finite automata accepting
languages in some special subregular classes (prefix-, suffix-, factor-, and
subword-free languages, closed languages, convex languages and ideal
languages).

3) Use the properties of nondeterministic automata to get nondeterministic
complexity of operations union, intersection, concatenation, star, reversal and
complementation in above mentioned subregular classes.

We investigate properties of nondeterministic finite automata accepting
languages in subregular classes of prefix-, suffix-, factor-, and subword-free
languages, closed languages, convex languages and ideal languages. We use
these properties to study the nondeterministic complexity of operations of
union, intersection, concatenation, star, reversal, and complementation in these
subregular classes. Except for complementation on factor-convex and subword-
convex languages, we get the precise complexity of each operation in each of
considered subregular classes. To describe worst case examples, we use small
fixed alphabets in most cases, which are almost always optimal.

: regular languages, prefix-, suffix-, factor-, and subword-free languages,
closed languages, convex languages and ideal languages, nondeterministic
finite automaton, regular operations, nondeterministic complexity.

RNDr. Galina Jiraskova, CSc.
FMFI.KAMS - Department of Applied Mathematics and Statistics

28807588

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Head of
department:

Assigned:

Approved:

prof. RNDr. Daniel Sevéovi¢, DrSc.

22.08.2013

24.04.2017 prof. RNDr. Anatolij Dvurecenskij, DrSc.

Guarantor of Study Programme

Student

Tutor

28807588

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Mgr. Peter Mlynarc¢ik

Studijny program: aplikovana matematika (Jednoodborové studium,
doktorandské III. st., denna forma)

Studijny odbor: aplikovana matematika

Typ zaverecnej prace: dizertacna

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Nondeterministic state complexity in subregular classes

Literatuira:

Nedeterministicka zlozZitost v podtriedach regularnych jazykoch

1. Birget, J. C.: Intersection and union of regular languages and state complexity.
Inform.Process.Lett.43, 185--190 (1992)

2. Birget, J. C.: Partial orders on words, minimal elements of regular
languages, and state complexity. Theoret. Comput. Sci. 119, 267--291 (1993)
ERRATUM: Partial orders on words, minimal elements of regular languages,
and state complexity, 2002. Available at http://clam.rutgers.edu/\simbirget/
papers.html.

3. Brzozowski, J.A., Jiraskova, G., Li, B.: Quotient complexity of ideal
languages. Theoret. Comput. Sci. 470, 36--52 (2013)

4. Brzozowski, J.A., Jiraskova, G., Zou, C.: Quotient complexity of closed
languages. Theory Comput. Syst. 54, 277--292 (2014)

5. Cmorik, R., Jiraskova, G. : Binary Operations on Binary Suffix-Free
Languages. In: Z. Kotasek et al. (Eds.): MEMICS 2011, LNCS 7119, pp.
94-102. Springer - Verlag Berlin Heidelberg (2012)

6. Campeanu, C., Salooma, K., Yu,S.: Tight lower bound for the state
complexity of shuffle of regular languages. J.Autom.Lang.Comb.7, 303--310
(2002)

7. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci.
47, 149--158 (1986)

8. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular
languages. Int. J. Found. Comput. Sci. 14, 1087--1102 (2003)

9. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free
regular languages. Theoret. Comput. Sci. 410, 2537--2548 (2009)

10. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity for suffix-free
regular languages. In: McQuillan, 1., Pighizzini, G. (eds) DCFS 2010. EPTCS
vol. 31, pp. 189--196 (2010)

11. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free
regular languages. Theoret. Comput. Sci. 410, 2537--2548 (2009)

12. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-
free regular languages. Esik, Z.(ed.). Automata, formal languages, and related
topics, pp. 99-115. Institute of Informatics, University of Szeged (2009)

13. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of
basic operations for prefix-free regular languages. Fundam. Inform. 90, 93--106
(2009)

28807588

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Ciel’:

Anotacia:

Kluadové
slova:

Skolitel’:
Katedra:

14. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-
free regular languages. In: Automata, Formal Languages, and Related Topics,
pp. 99--115. Institute of Informatics, University of Szeged (2009)

15. Jiraskovd, G.: State complexity of some operations on binary regular
languages. Theoret. Comput. Sci. 330, 287-298 (2005)

16. Jiraskova, G., Masopust, T.: Complexity in union-free regular languages.
Internat. J. Found. Comput. Sci. 22, 1639--1653 (2011)

17. Krausova, M.: Prefix-free regular languages: Closure properties, difference
and left quotient. In: Kotasek, Z. and Bouda, 1. and Cerna, 1. and Sekanina,
L. and Vojnar, T. and Antos, D. (eds.) MEMICS 2011, LNCS, vol. 7119, pp.
114--122, Springer (2012)

18. Maslov,A.N.: Estimates of the number of states of finite automata. Soviet
Math. Dokl. 11, 1373--1375 (1970)

19. Mirkin,B.G.: On dual automata. Kibernetika (Kiev) 2, 7--10 (1966)(in
Russian). English translation: Cybernetics 2, 6--9 (1966)

20. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res.
Develop. 3, 114--129 (1959)

21. Sipser, M.: Introduction to the theory of computation. PWS Publishing
Company, Boston (1997)

22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic
operations on regular languages. Theoret. Comput. Sci. 125, 315--328 (1994)

1) Zhrmut' zname vysledky tykajlice sa deterministickej a nedeterministickej
zlozitosti zdkladnych operécii v triede reguldrnych jazykov a jej podtriedach.
2) Skumat’ vlastnosti nedeterministickych automatov akceptujucich jazyky
v niektorych $pecialnych podtriedach.

3) Vyuzit vlastnosti nedeterministickych automatov pri zistovani
nedeterministickej zlozitosti operacii zjednotenie, prienik,, zretazenie,
Kleeneho uzaver, zrkadlovy obraz, doplnok v skimanych podtriedach

Skimame vlastnosti nedeterministickych konecnostavovych automatov
akceptujucich jazyky v niektorych Specialnych podtriedach regularnych
jazykov. Tieto vlastnosti vyuzijeme pri $tadiu nedeterministickej zlozitosti
operacii zjednotenie, prienik, zreta zenie, Kleencho uzaver, zrkadlovy
obraz, doplnok v skiimanych podtriedach. S vynimkou doplnku v dvoch
podtriedach vzdy ziskavame presnt hodnotu zloZitosti kazdej operacie v kazde;j
zo skumanych podtried. Na definovanie najhorSich pripadov pouzivame
vacsinou mala konstantnu abecedu, ktora je takmer vzdy optimalna.

regularne jazyky, podtriedy regularnych jazykov, nedeterministicky
konecnostavovy automat, regularne operacie, nedeterministickd zloZitost'.

RNDr. Galina Jiraskova, CSc.
FMFLKAMS - Katedra aplikovanej matematiky a $tatistiky

Vediici katedry: prof. RNDr. Daniel Sevéovié, DrSc.
Datum zadania: 22.08.2013

Datum schvalenia: 24.04.2017 prof. RNDr. Anatolij Dvurecenskij, DrSc.

garant Studijného programu

28807588

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Student skolitel’

Declaration
I here declare that I have produced this dissertation thesis without the prohibited
assistance of third parties and without making use of aids other than those specified;
notions taken over directly or indirectly from other sources have been identified as such.
This dissertation thesis was conducted from 2013 to 2017 under the supervision of
RNDr. Galina Jiraskova, CSc. during PhD study at the Faculty of Mathematics, Physics

and Informatics, Comenius University in Bratislava, Slovak Republic.

Bratislava, 2017
Mgr. Peter Mlyndrcik

Acknowledgements

I would like to thank to my supervisor RNDr. Galina Jiraskova, CSc. for all his
help, valuable ideas, advice and time she has given me throughout my PhD. studies. She
has been a great example how to work with high focusing on the problem with huge
enthusiasm. Also she guides me in mathematic world with its correctness and pureness
and beauty.

My great thanks belong also to my coleague Michal Hospodar for helping with drawing
figures in better system and for discussions on many topics.

Also I thank to my colleague Matus Palmovsky for friendly cooperation during studies.

I would like to thank also to my parents and family, friends for support and life energy.

Abstract

We study the nondeterministic state complexity of the operations of intersection, union,
concatenation, star, reversal, and complementation in the classes of prefix-, suffix-, factor-,
and subword-free (-closed, and -convex) languages, and in the classes of right (left, two-
sided, and all-sided) ideal languages. Except for complementation on factor-convex and
subword-convex languages, we obtained tight upper bounds for all considered operations in
all considered classes. Most of our witness languages are defined over small fixed alphabets
of size at most three, and the size of these alphabets usually cannot be decreased. As for
complementation, we show that the corresponding upper bounds cannot be met by any
binary prefix-, suffix-, or factor-free language, and on suffix-convex languages, we prove
the tightness of the upper bound 2", which are the most ineteresting results of this thesis.

Keywords: regular operations, subregular classes of prefix-, suffix-, factor-, and subword-
free (-closed, and -convex) languages, and right (left, two-sided, and all-sided) ideal lan-

guages, nondeterministic state complexity, fooling-set lower bound method

Abstrakt

V préaci studujeme nedeterministicka stavovi zlozitost operacii prienik, zjednotenie, zreta-
zenie, uzaver, zrkadlovy obraz a doplnok v triedach bezpredponovych, bezpriponovych,
bezfaktorovych a bezpodslovovych jazykov, dalej v triedach jazykov uzavretych na pred-
pony (pripony, faktory, podslova), predponovo-, priponovo-, faktorovo-, podslovovo-kon-
vexnych jazykov a v triedach pravych (Tavych, obojstrannych, v8etkostrannych) idealnych
jazykov. A7z na doplnok na faktorovo-konvexnych a podslovovo-konvexnych jazykoch,
ziskavame vzdy presné hodnoty zlozitosti vSetkych operacii na vSetkych uvazovanych
podtriedach. Na definovanie jazykov pre najhorsi pripad pouzivame skoro vzdy malé
konStatntné abecedy, velkost ktorych obvykle uz nejde zmensit. Najzaujimavejsimi vysled-
kami prace su vysledky tykajice sa doplnku na binarnych bezpredponovych, bezpripono-

vych a bezfaktorovych jazykoch a na priponovo-konvexnych jazykoch.

Krlacové slova: regularne operacie, subregularne triedy bezpredponovych, bezpripono-
vych, bezfaktorovych a bezpodslovovych jazykov, triedy jazykov uzavretych na predpony
(pripony, faktory, podslové), predponovo-, priponovo-, faktorovo-, podslovovo-konvexné
jazyky, triedy pravych (lavych, obojstrannych, vsetkostrannych) idealnych jazykov, nede-

terministickd stavova zlozitost, metdda klamicej mnoziny

Contents

Preface

Introduction

Preliminaries
Upper and Lower Bound Methods
Known Results

Free Languages

4.1 Properties of free languageso Lo
4.2 Unary free languageso
4.3 Operations on free languages 0oL

4.4 Concluding remarks and open problems

Closed Languages

5.1 Properties of closed languages oL
5.2 Unary closed languages Lo
5.3 Operations on closed languages

5.4 Concluding remarks and open problems

Ideal Languages

6.1 Properties of ideal languages
6.2 Unary ideal languageso
6.3 Operations on ideal languages

6.4 Concluding remarks and open problems

14

19
19
22
24
47

49
49
o1
52
29

7 Convex Languages

7.1 Properties of convex languages

7.2 Unary convex languages

7.3 Operations on convex languages

7.4 Concluding remarks and open problems

Appendix

7.5 The list of my published papers

7.6 The list of given talks

Bibliography

vi

75
75
75
7
80

83
83
84

85

Preface

"You will come to know the truth, and the truth will set you free."
(John 8,32)

A language is a bridge to man’s mind or soul. It is one of the most important treasure
for people. Understanding a language means a big step to the other heart, as well as to
the mine. It is not easy to describe natural language (even perhaps not possible at all),
but I believe that attemption to describe formal forms helps us to be closer to language
understanding. Those facts are strong motivations for me to deal with formal languages.

I am very thankful for possibility to study and work on such intersting topic with my
colleagues. It gave me much in many field in my life.

I have performed a little step to understanding and also I realize how much I still do

not know and I have much to do for my next way.

Introduction

Finite automata and regular languages are one of the oldest topics in formal languages
theory. The basic properties of this class of languages were investigated in 1950s and
1960s. Although regular languages are the simplest languages in Chomsky hierarchy,
some challenging problems are still open. The most famous is the question of how many
states are sufficient and necessary for two-way deterministic automata to simulate two-
way nondeterministic automata, which is connected to the well-known NLOGSPACE vs.
DLOGSPACE problem [2].

In last three decades, we can observe a new interest in regular languages which have
applications in software engineering, programming languages, and other areas of com-
puter science. However, they are also interesting from the theoretical point of view [28].
Various properties of this class are now intensively studied. One of them is descriptional
complexity which studies the cost of description of languages by formal systems such as
deterministic and nondeterministic automata, or grammars.

Rabin and Scott in 1959 [42] defined nondeterministic finite automata (NFAs), de-
scribed an algorithm known as the "subset construction" which shows that every n-state
nondeterministic automaton can be simulated by at most 2"-state deterministic finite
automaton (DFA). In 1962 Yershov [46] then showed that this construction is optimal.
Maslov |37] investigated the state complexity of union, concatenation, and star, and also
some other operations. Birget in |3, 4] examined intersection and union. He also con-
sidered the question of the size of nondeterministic automaton for the complement of a
language. The complement of a formal language L over an alphabet Y is the language
L =%*\ L, where ¥* is the set of all strings over an alphabet ¥. The complementation
is an easy operation on regular languages represented by deterministic finite automata
(DFAs) since to get a DFA for the complement of a regular language, it is enough to
interchange the final and non-final states in a DFA for this language.

On the other hand, complementation on regular languages represented by NFAs is

an expensive task. We first must apply the subset construction to a given NFA, and

only after that, we may interchange the final and non-final states. This gives an upper
bound 2".

Sakoda and Sipser [43] presented an example of languages over a growing alphabet size
meeting this upper bound. Birget claimed the result for a three-letter alphabet in [4], and
later corrected this to a four-letter alphabet. Holzer and Kutrib [24] obtained the lower
bound 2772 for a binary n-state NFA language. Finally, binary n-state NFA languages
meeting the upper bound 2" were described by Jirdskova in [30]. In the case of a unary
alphabet, the complexity of complementation is in e©(Vrnn) [24, 30].

Birget [3| described a lower-bound technique for proving minimality of NFAs. The
technique is known as a fooling-set method. Although in some cases there is a large gap
between the size of a fooling set and the size of minimal nondeterministic automaton
[29], in a many other cases, the fooling sets can be used to prove the minimality of
nondeterministic machines, and we successfully use this method throughout our thesis.

The systematic study of the state complexity of operations on regular languages began
in the paper by Yu et al. [49]. The nondeterministic state complexity of operations was
investigated by Holzer and Kutrib [24], and some improvements of their results can be
found in [30]. Some special operations were examined as well: proportional removals
in [14], shuffle in [10], and cyclic shift in [33].

Recently, researchers investigated subclasses of regular languages such as, for example,
prefix- and suffix-free languages [13,19,22], ideal languages 7], closed languages [8], bifix-,
factor-, and subword-free languages [5], union-free languages [31], or star-free languages
[9]. In some of these classes, the operations have smaller complexity, while in the others,
the complexity of operations is the same as in the general case of regular languages.

Prefix-free languages are used in codes like variable-length Huffman codes or country
calling codes. In a prefix-code, there is no codeword which is a proper prefix of any other
codeword. Therefore, a receiver can identify each codeword without any special marker
between words. This was a motivation for investigating this class of languages in last few
years |15,16,21,23, 36].

The non-deterministic state complexity of operations on prefix-free and suffix-free lan-
guages was studied by Han et al. in [19-21,23|. For the nondeterministic state complexity
of complementation, they obtained an upper bound 2"~! + 1 in both classes, and lower
bounds 2"~ ! and 2"~! —1 for prefix-free and suffix-free languages, respectively. The ques-
tions of tightness remained open. In the first part of this thesis, we solve both of these
open questions, and we prove that in both classes, the tight bound is 2"~!. To prove

tightness, we use a ternary alphabet. Hence the nondeterministic state complexity of

complementation on prefix- or suffix-free languages defined over an alphabet that con-
tains at least three symbols is given by the function 2"~!. We also show that this upper
bound cannot be met by any binary prefix- or suffix-free language. We get a similar re-
sult in the class of factor-free languages, and moreover we obtain the tight upper bounds
on the nondeterministic complexity of each considered operation in each of the four free
classes. We also study the unary free languages, and, besides some other results, we prove
that the nondeterministic state complexity of complementation is in ©(y/n) in the each
of the four classes of free languages.

Then we deal with the operations of intersection, union, concatenation, star, reversal,
and complementation on prefix-, suffix-, factor-, and subword-closed languages, and on
right (left, two-sided, and all-sided) ideal languages. In all cases, we get tight upper
bounds on the nondeterministic complexity for all operations. Except for three cases, our
witnesses are defined over small fixed alphabets.

Finally, we use our results to show that the nondeterministic complexities of basic
regular operations, except for complementation, in the classes of prefix-, suffix-, factor-,
and subword-convex languages are the same as in the general case of regular languages.
As for complementation, the complexity in the class of suffix-convex languages is 2" which
is one of the most interesting results of this thesis. A curious reader is referred to read
Chapter 7 to find out why this is the case :).

All the results of this thesis, except for the results on convex languages and some
results on free languages, have been already published in three papers (co-authored)
by the author of this thesis given in the list of author’s publications, and presented at
international conferences DCFS 2014, 2015 and CIAA 2016. The paper on the results for
convex and free languages has been accepted to the conference CIAA 2017 in Paris, and

will be presented by the author (if nothing unexpected happens).

Chapter 1
Preliminaries

We use a standard model of a nondeterministic finite automaton (NFA), as explained, for
example, in [44]. For details, the reader may refer to [25,44, 48].

Let X be a finite non-empty alphabet of symbols. Then ¥* denotes the set of strings
over the alphabet X including the empty string . The length of a string w is denoted by
|wl|, and the number of occurrences of a symbol a in a string w by |w|,. A language is any
subset of ¥*. For a finite set X, the cardinality of X is denoted by | X|, and its power-set
by 2X.

For a language L over an alphabet X, the complement of L is the language L¢ = ¥*\ L.
The intersection of languages K and L is the language K N L = {w | w € K and w € L}.
The union of languages K and L is the language K UL = {w | w € K or w € L}. The
concatenation of languages K and L is the language KL = {uv | v € K and v € L}.
The power of a language L is the language L* = LL*1 where L° = {¢}. The star of a
R

language L is the language L* = (J;, L'. The reversal of a string is defined as ¢ = ¢

R

and (wa)® = aw? for each symbol a and string w. The reversal of a language L is the

language L® = {w” | w € L}. The shuffle u LU v of strings u,v € 3* is defined as follows:
v = {ugvy - URVR | U = Up o Uy, U = U1 Uy Uy e Ug, U, ., U € DT
The shuffle of two languages K and L over Y is defined by

KulL= U w LU .

ueKvelL

A nondeterministic finite automaton (NFA) is a quintuple A = (Q, X%, -, s, F'), where
() is a finite non-empty set of states, > is a finite non-empty input alphabet, - is the
transition function that maps Q x X to 29, s € @Q is the start (or initial) state, and

F C @ is the set of final (or accepting) states. In this thesis we also use another notation
of transition function, as ¢ or o. The transition function is extended to the domain
29 x ¥* in the natural way. The language accepted by the NFA A is the set of strings
LA) ={weX|s-wnNF #0}.

An NFA A = (Q,X%,, s, F) is a (complete) deterministic finite automaton (DFA) if
for each state ¢ and each input symbol a, the set g - a has exactly one element. In such
a case, we write p-a = ¢ instead of p-a = {q}. If |¢-a| < 1 for each ¢ and a, then
A is an incomplete deterministic finite automaton (IDFA) Notice that every DFA can be
considered to be incomplete. Next, the number of states in the minimal complete and
incomplete DFAs for the same language differ by at most one.

Two automata are equivalent if they accept the same language. A DFA (an NFA) A
is minimal if there is no equivalent DFA (NFA) with a smaller number of states than A
has. It is known that every regular language has a unique, up to isomorphism, minimal
DFA however, this is not true for NFAs.

The state complexity of a regular language L, (L), is the number of states in the
minimal DFA for L.

Sometimes, we allow an NFA to have multiple initial states and use the notation
NNFA (an NFA with a nondeterministic choice of initial states) for this model [48]. A
nondeterministic finite automaton (NNFA) is a 5-tuple A = (Q, X, -, I, F'), where Q, %, -, F
are the same as for NFA, and I C @) is the set of initial states. The language accepted by
NNFA A is the set L(A) ={w e X* | [-wNF #(}.

For an easier description of some constructions, we use e-model of NFA, denoted as
e-NFA, where we also allow the transitions on the empty string. It is known that every
e-NFA can be converted to an equivalent NFA without increasing the number of states.
The reader can find more detailed conversion from e-NFA to NFA in Chapter 2.

We call a state of an NNFA sink state if it has a loop on every input symbol. From
every final sink state, every string is accepted, but from every non-final sink state, no
string is accepted. Notice that every minimal IDFA has no non-final sink states, and
every minimal DFA has at most one non-final sink state. A state g of an NFA A is called
a dead state if no string is accepted by A from ¢, that is, if ¢ - w N F = () for each string
w. An NFA A is a trim NFA if each its state ¢ is reachable, that is, there is a string u in
3* such that ¢ € s - u, and, moreover, no state of A is dead.

For a symbol a and states p and ¢, we say that (p,a,q) is a transition in the NNFA A
if ¢ € p-a, and for a string w, we write p — ¢ if ¢ € p-w. We also say that the state ¢

has an in-transition on symbol a, and the state p has an out-transition on symbol a. A

state is non-exiting if it does not have any out-transitions. An NFA is non-returning if
its initial state does not have any in-transitions, and it is non-exiting if each final state
of A does not have any out-transitions.

Every NNFA A = (Q,%,-, I, F) can be converted to an equivalent deterministic au-
tomaton A’ = (29,%,0,1, F'), where Soa = S - a for each S in 29 and a in ¥, and
F'={S€29|SNF #0}. We call the DFA A’ the subset automaton of the NNFA A.
The subset automaton may not be minimal since some of its states may be unreachable
or equivalent to other states.

The nondeterministic state complexity of a regular language L, nsc(L), is the smallest
number of states in any NFA for L. To prove the minimality of NFAs, we use a fooling
set lower-bound technique [3,4,18,27]. We describe this technique in detail in Chapter 2;

here we only give the definition of a fooling set.

Definition 1.1. A set of pairs of strings {(u1,v1), (uz,v2), ..., (un,v,)} is called a fooling
set for a language L if for all 7,5 in {1,2,... n},

(F1) wv; € L,
(F2) if i # j, then u;v; ¢ L or ujv; ¢ L.

The reverse of an automaton A = (Q,%,, I, F) is the NNFA A obtained from A by
swapping the role of initial and final states and by reversing all the transitions. Formally,
we have AR = (Q,%, - F,T), where ¢-"'a = {p € Q| q € p-a} for each state ¢ in Q and
each symbol a in 3. The NFA AR accepts the language L(A)%.

Let A= (Q,%,-,I,F) be an NNFA and S, T C). We say that S is reachable in A if
there is a string w in ¥* such that S = I - w. Next, we say that T is co-reachable in A if
T is reachable in A%

If u,v,w,z € ¥* and w = uxv, then u is a prefix of w, x is a factor of w, and v is a
suffix of w. Both u and v are also factors of w. If w = ugvyuy - - - v, u,, where u;, v; € ¥,
then vivs - - - v, is a subword of w. For example, let w = abbacb. Strings abac, bbb, bc are
subwords of w, but string aca is not a subword of w. Every factor of w is also a subword
of w. A prefix v (suffix, factor, subword) of w is proper if v # w.

A language L is prefiz-free if w € L implies that no proper prefix of w is in L; it
is prefir-closed if w € L implies that each prefix of w is in L; and it is prefiz-convez if
u,w € L and u is a prefix of w imply that each string v such that u is a prefix of v and v
is a prefix of w is in L. Suffix-, factor-, and subword-free, -closed, and -convex languages

are defined analogously.

A language L is a right (respectively, left, two-sided, all sided) ideal if L = L>*
(respectively, L = ¥*L, L = ¥*L¥* L = L 1u¥").

We say that a regular language is a free language if it is either prefix-free, or suffix-
free, or factor-free, or subword-free. Let us emphasize that we do not consider star-free,
or union-free, or any other free languages in this thesis. In an analoguous way, we use the
notions of closed languages, convezr languages, and ideal languages.

Notice that the classes of prefix-free, prefix-closed, and ideal languages are subclasses
of convex languages and the complement of a closed language is an ideal language.

If languages K and L are accepted by NFAs A = ({0,1,...,m —1},%,-4,0, F4) and
B=({0,1,...,n—1},%,-5,0, Fg), respectively, then the language K N L is accepted by
the product automaton

AxB=({0,1,...,m—1}x{0,1,....,n—1},%,-,(0,0), F4 x Fg),

where (p,q)-a= (p-aa) x (q-pa). We call the set of states {(i,0) | 0 <i < m — 1} the
first column of the product automaton. The first row and the last row/column are the
sets {(0,7) |0<j<n—1}and {(m—1,5)|0<j<n—-1}/{(i,n—1)|0<i<m-—1},
respectively.

It is known that every unary n-state NFA can be transformed to Chrobak normal form
which consist of a simple path containing not more than 2n?+n states, ending with a state
in which there is a nondeterministic choice to several pairwise disjoint cycles containing
at most n states [12,45]; see Figure 3.2.

<2n%’+n

See

Figure 1.1: Every unary automaton can be transformed to Chrobak normal form

Chapter 2

Upper and Lower Bound Methods

In this thesis we consider unary or binary regular operation as union, intersection, con-
catenation, star, reversal, complementation. The nondeterministic state complexity of a

binary regular operation o is a function f: N x N — N defined as
f(m,n) = max{nsc(K o L) | nsc(K) = m and nsc(L) =n}

and the nondeterministic state complexity of a unary operation is a function f: N — N
defined as
f(n) = max{nsc(o(L)) | nsc(L) = n}.

To find the nondeterministic state complexity of the binary operation o, it is necessary

to prove that:

(1) for all integers m,n and all languages K, L such that nsc(K) = m,nsc(L) = n we
have nsc(K o L) < f(m,n), so we say that f is an upper bound on the nondeter-

ministic complexity of o;

(2) for all integers m,n there exist languages K, L such that nsc(K) = m,nsc(L) = n
and nsc(K o L) = f(m,n), so we say that f is a lower bound on the nondeterministic

complexity of o. The languages K, L are called wittnes languages for the operation o.

For a unary operation, the task to find the nondeterministic state comlexity is de-
scribed analogously.

The nondeterministic complexity of an operation may depend on the size of alphabet
over which languages are considered. We usually try to describe wittnes languages over as

small alphabet as possible. Moreover, it is not necessary to verify the minimality of NFAs

for our wittnes languages because the nondeterministic complexity of each operation is
an increasing function in both m,n.

Sometimes the upper and lower bound may be different, but in this thesis all our upper
and lower bounds coincide, except for complementation on factor-convex and subword-
convex languages. Thus we almost always obtain the exact nondeterministic state com-
plexity of each operation on each considered class.

We now describe a very useful tool for estimation of a lower bound on the number of
states in NNFAs based on fooling set techniques [3,4,18,27|. Recall that set of pairs of
strings {(u1,v1), (u2,v2), ..., (un, v,)} is called a fooling set for a language L if for all 4, j
in {1,2,...,n},

(F].) U V; € L,

(F2) if i # j, then wv; ¢ L or u;v; ¢ L.

Lemma 2.1 ([3, Lemma 1|, Lower bound method for NNFAs). Let F be a fooling
set for a language L. Then every NNFA for the language L has at least |F| states.

Proof. Let A = (Q,%,0,1,F) be NFA, such that L(A) = L and let F = {(z;,5:) | 1 <
i < n} be the fooling set for language L. Let us assume for contradiction, that |Q] < |F|.
Fix an accepting computation of A on every z;y;, for 1 < ¢ < n. Let ¢; be the state on
this computation reached after reading x;. So there are n such fixed states q1,qs, ..., qn-
Since n > |@Q|, there are i, j such that ¢ # j and ¢; = ¢;. See Figure. 2.1. So there are
two accepted computations z;y; and x;y; which is contradiction with the property (F2)

O

of the fooling set.

w
St

Figure 2.1: The number of states of NFA recocnizing a language L cannot be less than

number of pairs in fooling set for L.

Let n be an even integer and consider the binary language
L, ={uv € {a,b}" | |u| = |v| = n,u # voru = ww}.

10

In [29] Jiraskova showed that every fooling set for the language L, is of size O(n?), while
every NFA for L, has at least 21/6 states. Tt follows that the fooling set method described
by Lemma 2.1 may fail significantly in some cases. Nevertheless, we use a this method
successfully throughout this thesis to get the exact nondeterministic complexity of basic
operations in subregular classes in most of considered 96 cases.

Let us emphasize that the size of a fooling set for L provides a lower bound on the
number of states in any NNFA for L. If we insist on having just one initial state, then

the following modification of a fooling set method can be used.

Lemma 2.2 ([31, Lemma 4|, Lower bound method for NFAs). Let A and B be
sets of pairs of strings and let w and v be two strings such that AU B, AU {(g,u)},
and BU {(e,v)} are fooling sets for a language L. Then every NFA for L has at least
|A| + |B| + 1 states.

Now we present the known result that for each e-NFA, there exists an NFA that
accepts the same language. We provide a more detailed proof here. First, we give the

following definition.

Definition 2.1. Let A = (Q,%,-,s,F) be a e-NFA. The e-closure of a state ¢ € @,
denoted e—closure(q), is the set of all states that are reachable from ¢ by zero or more

e-transitions.

Theorem 2.3 ([47]|, Lemma 4). For each e-NFA A, there exists an NFA A’ such that
L(A) = L(A"). Moreover, the NFA A’ has the same number of states as the e-NFA A.

Proof. Let A = (Q,%,-,s,F) be a e-NFA. We construct an NFA A" = (Q,%,0,s, F’)
where for each ¢ € () and a € ¥,

pea= |J q-a
gee—closure(p)

and
F'={q € Q | e—closure(q) N F # ()}

First, we show L(A) C L(A").
Let w € L(A), w = ajay - - - ax where a; € 3 for each i. Then there are sequences of states

q0,q1, - - - » @n and symbols or empty strings x1, zo, ..., x, such that

1 o Tn—1 Tn
Qo —q1 —> " —>qn—1 —> (n

11

is an accepting computation in A, where each ¢; € @ and u; € YU{e}, qo is an initial state,
g, € F, and 129 --- 1, = ajas---ag. There is a sequence 1 < i1 < 19 < ... < 7 < n,
such that for each i;, z;;, = a;. Then in the accepting computation mentioned above are
parts of the following form qo---¢q;; 1 x—]> i, 55 Qijr—1 IJ—“) Qisyy " Qn, €XCEPL
the case that n > 45, when the computation ends with g;, S5,

Now, let us find the appropriate accepting computation in A’. Since ¢;,,,—1 is in
e—closure(q;;) and ¢;;,, € gi;,,—1-aj41, in A’ there is a transition g;, AL ;.- Let us
consider the marginal cases, the begining of computation and finishing of computation.
Since the state ¢;, _; € e—closure(q) and ¢;, € ¢;,_1-ay, in A’ there is transition ¢y =% g;, .
If n > iy, then ¢;, € F’. Finally, there is accepting computation in A": qo, gi,, - - ., ¢, such
that g;, ., € q;; 0 ajy1, 50 ajay - - - ay, is accepted by A’. Hence w € L(A").

Now, we show L(A’) C L(A). Let w € L(A’),w = ajay - - - ax. Then there is a sequence

of states qo,q1, ..., such that ¢gg = ¢1 - --- =% ¢, is an accepting computation in
A, If any transition ¢; — ¢;41 does not exist in A, there are ¢; states p,ph, ... ,Dh

such that ¢ — pi = ph = --- = piz_ SaEN Giv1- If ¢ SaEN ¢i+1 exists in A, then t; = 0.
If g € F" and g, € F, then there exists ¢, € F and states p¥,pk, ... ,pfk such that
e k 15 k € € k €

QG = Py —> Py = -+ = Pi — Qr+1. So there is accepting computation in A on string

eaieay - - - age'™, hence w € L(A). O

The next observations are used throughout this paper. Recall that a subset S of the
state set of an NNFA A = (Q,%,-, I, F) is reachable if S = I - w for some string w, and
it is co-reachable if it is reachable in the NNFA A%,

Proposition 2.4. Let T be a co-reachable set in an NNFA A = (Q,%,-,1, F). Then there
is a string w in X* such that w is accepted by A from each state in T and rejected from

each state in T*C.

Proof. Let T be a a co-reachable set in A. Then T is reachable in A®, so there is a string
v such that -y =T. Set w = v®. Then w is the desired string. [l

Lemma 2.5. Let A be an NNFA. Let for each state q of A, the singleton set {q} is

reachable as well as co-reachable in A. Then A is minimal.

Proof. Let A= (Q,%,-,I,F). Since {q} is reachable in A, there is a string u, such that
I-u, = {q}. Since {¢} is co-reachable in A, by Proposition 2.4, there is a string v,
accepted by A from and only from the state g. Then {(uq,v,) | ¢ € Q} is a fooling set for
L(A). By Lemma 2.1, the NNFA A is minimal. O

12

Recall that an NFA A is trim if every state of A is reachable and useful.
Notice that if A is a trim incomplete DFA, then for each state ¢ of A, the singleton
set {q} is reachable. If moreover A% is an incomplete DFA, then {¢} is co-reachable in

A. So we get the following result.

Lemma 2.6. Let A be a trim NFA. If both A and A® are incomplete DFAs, then A and
AR are minimal NFAs. H

Proposition 2.7. Let L be a language accepted by an n-state NFA in which each subset
of the state set is reachable and co-reachable. Then nsc(L¢) = 2".

Proof. Let A= (Q,%,-,s,F) be an n-state NFA and S C . Since S is reachable, there
exists a string ug in ¥* such that s - ug = S. Next, the set S¢ is co-reachable. By
Proposition 2.4, there is a string vg which is accepted by A from each state in S¢, but
rejected from each state in S. It follows that {(ug,vs) | S C @} is a fooling set for L¢ of
size 2". Hence nsc(L¢) > 2" by Lemma 2.1. O

13

Chapter 3

Known Results

A language is regular if it is accepted by some deterministic or nondeterministic finite
automaton. In 1959 Rabin and Scott [42] provided an algorithm called "subset construc-
tion" for the conversion of an NFA to an equivalent DFA. It follows from this algorithm
that if a given NFA has n states, then the resulting DFA has at most 2" state. A binary
n-state witness NFA meeting the upper bound 2" was presented in 1962 by Yershov [46].
Some other witnesses were described in 1963 by Lupanov, and in the western literature,
in 1971 by Moore [40] and Meyer, Fisher |38|.

The reverse of an NFA N was defined by Rabin and Scott [42| as the NFA N obtained
from N by swapping the roles of the initial and final states and by reversing all the
transitions, and it was shown by them that the NFA NF accepts the reverse of the
language L(N).

In 1970 Maslov [37| studied the state complexity of union, concatenation, star, and

some other regular operations. He also provided a general statement of the problem as

follows: Let f be a k-ary regular operation, and let languages L1, Lo, . . ., Ly be represented
by automata A;, As, ..., Ay with ny,no, ..., n, states, respectively. What is the maximal
number of states of a minimal automaton recognizing the language f(L1, Lo, ..., L) for
given ny,ng, ..., Nk !

Birget [3]| studied the state complexity of the intersection and union of k (2 < k < n)
languages each of which has an n-state DFA or NFA. He obtained tight upper bounds
in both cases. For tightness he used a ternary alphabet in the deterministic case, and a
quaternary alphabet in the nondeterministic case. He also provided a useful lower bound
method for the number of states in NFAs known as fooling set method. In 1993 the same
author [4] described a quaternary language accepted by an n-state NFA such that every

NFA for its complement has at least 2" states. The bound 2" is also an upper bound

14

for complementation of languages represented by NFAs since given an n-state NFA for a
language L, we first apply the subset construction to this NFA, and then we interchange
the final and non-final states to get a DFA (and therefore also an NFA) of 2" states for L°.

In 1994 Yu, Zhuang, and K. Salomaa [49] initiated the systematic study of the state
complexity of regular operations. Their paper was followed by several papers examining
the state complexity of operations on subregular classes. Unary languages were studied by
Pighizzini and Shallit [41], finite languages by Campeanu, Salomaa, and Yu [10], prefix-
free languages by Han, K. Salomaa, and Wood [22], suffix-free languages by Han and K.
Salomaa [19], ideal languages by Brzozowski, Jiraskové, and Li [7], closed languages by
Brzozowski, Jiraskova, and Zou [8], and bifix-, factor-, and subword-free languages by
Brzozowski, Jiraskova, Li, and Smith [5|. The results for ideal, closed, and free languages

are summarized in Tables 3.1 and 3.2, respectively.

KnL |2 KUL |2]
Right ideal mn 2 mn — (m+n — 2) 2
Left ideal mn 2 mn 4
Two-sided ideal mn 2 mn — (m+n —2) 2
All-sided ideal mn 2 mn— (m+n—2) 2
Prefix-closed mn — (m+n —2) 2 mn 2
Suffix-closed mmn 4 mn 2
Factor-closed | mn — (m+n —2) 2 mn 2
Subword-closed | mn — (m +n — 2) 2 mn 2
Prefix-free mn — 2(m+n — 3) 2 mn — 2 2
Suffix-free mn —2(m+n —3) 2 mn — (m+n—2) 2
Factor-free mn —3(m+n —4) 2 mn — (m + n) 3
Subword-free | mn—3(m+n—4) m+n—7 mn — (m+n) m+n—3
Regular mn 2 mn 2
Unary ideal max{m,n} min{m,n}
Unary closed min{m,n} max{m,n}
Unary free nifm=n max{m,n}
Unary regular mn mn

15

Table 3.1: State complexity of boolean operations on subregular classes from [5,7,8|.

KL |2 L 13| Lt |2
Right ideal m + 2n~2 2 n+1 on—1 2
Left ideal m+mn—1 1 n+1 2 | 2n 41 3
Two-sided ideal m+n—1 n+1 2 | 27241 3
All-sided ideal m+n—1 1 n+1 2 27241 2n—4
Prefix-closed (m +1)2n2 3 | 3 2n—1 2
Suffix-closed (m—1)n+1 3 n 2 | 2nl g 3
Factor-closed m+n-—1 2 2 2 | 27241 3
Subword-closed m+n—1 2 2 2 | 27241 2n
Prefix-free m+n—2 1 n 2 | 27241 3
Suffix-free (m—-12"1t+1 3 22 41 2 | 2"2 41 3
Factor-free m+n—2 1 n—1 2 | 2"73 42 3
Subword-free m+n—2 1 n—1 2 | 2n 342 2n3 1
Regular m2" —2n-1 2 | 2nlypon=2 9 2" 2
Unary ideal m+n-—1 n n
Unary closed m-+n—2 1 n
Unary free m+n—2 n—2 n
Unary regular mn (n—1)2 n

Table 3.2: State complexity of concatenation, star, and reversal on subregular classes
from [5,7,8].

In 2010 Brzozowski [6] studied convex languages. He observed that the state complex-
ity of union and intersection in all four convex classes is mn because this is an upper bound
for regular languages and it is met by all-sided ideals (so subword-convex languages) for
intersection, and by subword-closed (so subword-convex) languages for union. The state
complexity of concatenation, star, and reversal on convex languages is not known.

In 2003 Holzer and Kutrib [24] investigated the complexity of basic operations on
languages represented by nondeterministic finite automata. They obtained tight upper
bounds in most cases. Their results for reversal and complementation were improved by
Jiraskova [30] by providing binary witness languages for these two operations. All these
results on the nondeterministic state complexity of basic operations on regular and unary

regular languages are summarized in Table 3.3.

16

Regular || Source Unary regular Source

KnL mn 2 [24, Theorem 3| mn; [24, Theorem 4]
ged(m,n) =1
KUL|m+n+1 2 [24, Theorem 1] | m+n+ 1; [24, Theorem 2]
ged(m,n) =1
KL m+n 2 [24, Theorem 7| | >m+n—1 [24, Theorem 8|
<m+n
L* n+1 1 [24, Theorem 9] n+1 [24, Theorem 9]
L% n+1 2 [30, Theorem 2| n

Le¢ 2" [30, Theorem 5| 20(vnlogn) [12, Theorem 4.5]

\]

Table 3.3: The nondeterministic complexity of operations on regular languages; sources
from Chrobak [12], Holzer and Kutrib [24], and Jiraskova [30].

We use the following result from [30] several times in this thesis. Therefore we give a
sketch of its proof here. A detailed proof can be found in [30, Theorem 5|.

Theorem 3.1 ([30, Theorem 5|). Let G be a binary language accepted by the NFA A
shown in Fig. 3.1. Then every NFA for the language G¢ requires 2" states.

Figure 3.1: The NFA A of the binary regular language G from [30] with nsc(G¢) = 2"

Sketch of proof. Our aim is to describe a fooling set for the language G°¢. Let us consider
the set of states {1,2,...,n} in the NFA A. We describe two strings ug and vg for every
subset S of {1,2,...,n} such that F = {(us,vs) | S C {1,2,...,n}} is a fooling set
for L°.

We first show that every subset of {1,2,...,n} is reachable from 1. Every singleton

-1

{i} is reached from 1 state by the string a’~! and the emptyset is reached from n by a.

17

Every set {i1, iz, ...,4} of size k, where 1 < i; < iy < -+ < i, < nis reached from the set
{ig —i1,i3 — i1, ...,9% — 11} of size k — 1 by the string ba”~*. This proves the reachability
of all subsets by induction. It follows that for every subset S of {1,2,...,n}, there is a
string ug such that the state 1 goes to the set S after reading ug in NFA A.

Now we are going to define the strings vg. If S = {1,2,...,n}, then define vg = a™.
Otherwise, let k& be the minimal state that is not in S, that is {1,2,...,k—1} C S and
k ¢ S. Then the string vg of length n — k is defined as vg = vovy -+ - Vy_g_1, Where

a, ifn—ies
b, ifn—i¢sS

V; =

Then:
(1) if p € S, then the string vg is rejected by the NFA A from the state p.
(2) if p ¢ S, then string vg is accepted by the NFA A from the state p.
The proof of given claims is in [30, Theorem 5|. O

Chrobak [12] defined so called Chrobak normal form of unary NFAs. A unary NFA is
said to be in the Chrobak normal form if it consists of a simple path ending with a state
in which there is a nondeterministic choice to several pairwise disjoint cycles; see Figure

3.2 for an illustration.

<2n%?+n

See

Figure 3.2: Every unary automaton can be transformed to Chrobak normal form

We use the following result from [45] later is in this thesis.

Theorem 3.2 (cf. [45, Theorem 1]). Every unary n-state NFA can be converted to Chrobak
normal form which consist of a simple path containing not more than 2n+n states, ending
with a state in which there is a nondeterministic choice to several pairwise disjoint cycles

containing at most n states. [

18

Chapter 4

Free Languages

In this chapter we study the nondeterministic complexity of basic operations in the classes
of prefix-, suffix-, factor-, and subword-free languages. Recall that a language is prefix-free
if it does not contain two distinct strings such that one of them is a prefix of the other.
Suffix-, factor-, and subword-free languages are defined analogously. We use the notion
of a free language for a language belonging to one of these four classes.

For each considered operation, we obtain tight upper bound in each class. To prove
tightness, we always use an optimal fixed alphabet of size at most three, except for
intersection and complementation on subword-free languages where we use a growing
alphabet.

4.1 Properties of free languages

We start with recalling the characterization of minimal deterministic automata accepting
prefix-free languages. Since we use this characterization several times in this chapter, we

provide a detailed proof here.

Proposition 4.1 ([22] Characterization of prefix-free DFAs). Let n > 2 and A =
(Q,%,6,s, F) be a minimal n-state DFA for a language L. Then L is prefiz-free if and
only if A has a dead state qq and exactly one final state qf such that §(qs, a) = qq for each
a i .

Proof. =: Let L be a prefix-free language accepted by an DFA A. Let ¢ € F. For the
sake of contradiction assume that there is a symbol a € ¥ such that 0(¢,a) = p and p is
not a dead state. Then there is a string u such that d(p,u) € F'. On the other hand the

state ¢ is reachable from the initial state, so there is a string v such that §(s,v) = ¢. Thus

19

we have v € L and also vau € L, where v is proper prefix of vau and it is contradiction.
Hence, from each final state every transition goes to the dead state. Therefore all final
states are equivalent. Since A is minimal, there is just one final state in A.

<: The single final state going on every input to the dead state indicates that no
string can be extended to be accepted, so it cannot be a prefix of some longer string.
Now let us prove it more formally. Let w be a string, such that w € L. Since f is the
only final state, we have 0(s,w) = f. Let u,v be strings such that w = uv and v # ¢.
The prefix u ¢ L, because otherwise we would have §(s,u) = f and 6(f,v) = f, which is

contradiction with assumption that final state goes on every input to the dead state. [J

ORO=L

Figure 4.1: Every minimal DFA recognizing a prefix-free language has just one final state,

from which every transition goes to a dead state.

Now we state a necessary condition for an NFA to accept a prefix-free language.

Proposition 4.2 (Neccessary conditions for prefix-free NFA). Let N = (Q, >, 9, s, I)
be a minimal NFA for a prefiz-free language. Then N has exactly one final state qf and
8(qf,a) =0 for each a in X.

Proof. 1t is not possible to reach some final state from any final state by any a nonempty
string. The reason is the same as in deterministic case shown above. So from every
final state no nonempty string is accepted, so we can merge all final states to one final
state. [

Figure 4.2 shows that the converse of Proposition 4.2 does not hold .

Figure 4.2: An NFA satisfying condition in Proposition 4.2, but it accepts the language

{a,aa} which is not prefix-free.
We continue with necessary conditions for DFAs accepting suffix-free languages.

20

Proposition 4.3 (Neccessary conditions for suffix-free DFA). Let A = (Q, %, 0, s, F)
be a minimal DFA for a non-empty suffiz-free reqular language. Then A satisfies the fol-

lowing properties:

1. A is non-returning.
2. A has a dead state.
3. For each symbol a in 3, there is a state q, # qa, such that 0(q.,a) = qq.

4. Let a € ¥. There is no state ¢ € Q \ {s} such that 6(s,a) = 6(q, a).

Proof. Let us prove every property. 1) Let us consider for contradiction, that there is
a state ¢ € Q and a symbol a € ¥, such that there is a transition ¢ = s. Since A is
minimal, there are strings u, v such that d(¢,v) € F' and §(s,u) = q. Therefore there are
two accepted strings wv and wauv, where uv is the proper suffix of string uwauv, hence
language of automaton A is not suffix-free which is a contradiction. 2) Let a € ¥. Consider
the string ™ with m > |Q|. Let a sequence of states s, q1, g, - - ., ¢n be the computation
on the string a™. Let us show that the state ¢, is dead. Let us assume for contradiction

that ¢, is not dead. Then there is a string w such that 6(¢,,, w) € F. There are 7, j such

that ¢ < j and ¢; = ¢;, therefore we can omit states g;11,...,¢; and we get computation
Sy q1y- > irQjt1, - - - Gm ON & string a’, where £ = m — (j —1i). We get two accepted strings
a™w, a’w, where ¢ < m, so a’ is the proper suffix of a™w, which is contradiction with

suffix-free property of L(A). 3) Similarly as in the previous consideration we can take
arbitrary a € X, so there is q,, such that ¢, # d and 0(gs,a) = d. 4) For a sake of
contradiction let us assume that there are states ¢, p such that there are transitions s — p
and ¢ = p, for some a € ¥. There is a string u # &, which leads automaton from s to g.
Also, there is a string w, which leads automaton from p to some final state f € F. Then
there are two accepted computations s — p — f and s = ¢ — p — f, so strings aw and
uaw are accepted by A. The string aw is a proper suffix of the string uaw, which is a

contradiction.]

The example in Figure 4.3 illustrates that the properties of Proposition 4.3 are not
sufficient.
The next Cmorik’s lemma provides a very comfortable tool for proving the suffix-

freeness of a language accepted by an incomplete DFA.

Lemma 4.4 ([13, Lemma 1|). Let A be a non-returning incomplete DFA that has a
unique final state. If each state of A has at most one in-transition on every input symbol,
then L(A) is suffiz-free. O

21

b a
X,
—(s U @:)a,b

Figure 4.3: A DFA A satisfying every property from Proposition 4.3, but accepted lan-

guage is not suffix-free since both b and ab are accepted.

4.2 Unary free languages

Every free unary language L can contain only one string. It follows that in the unary case
all free classes coincide. Moreover if nondeterministic complexity of L is n, then we must
have L = {a"~'}. The next theorem gives an overview of complexities for basic operations
except complementation on unary free languages. The complexity of complementation is

analysed in another theorem.
Theorem 4.5. Let K, L be a unary free languages with nsc(L) = n and nsc(K) = m.
(1) nsc(K N L) < max{m,n},
(2) nsc(K U L) < max{m,n},
(3) nsc(KL) <m+n—1,
(4) msc(L*) <n—1,
(5) nsc(Lf) < n.

Proof. (1) If m # n, then KNL = 0, sonsc(KNL) = 1. If m = n, then KNL = K = L, so
nsc(KNL) = n. In both cases nsc(KNL) < max{m,n}. The languages K = L = {a™'}
meet the upper bound.

(2) Let A = ({0,...,m — 1},{a},0,0,{m — 1}) be NFA for language K, where
§(i,a) =i+1if0<i<m-—1,and B = ({q,--,qn-1},{a}, ¥, qo, {gn-1}) be NFA
for language L, where ¢§'(¢;,a) = ¢ix1 if 0 < 4 < n — 1. Since union is commutative
operation we may assume that m < n. For union K U L we can construct automa-
ton C' = ({qo,---,qn-1},{a}, 9,0, {@m-1,qn-1}) with n states, where ¢'(¢;,a) = g1 if
0 <i < n— 1. The languages a™ ! and a" ! meet the upper bound for union.

22

(3) Let A = ({0,...,m—1},{a},0,0,{m—1}) be NFA for language K, where 6(i,a) =
i+1if0<i<m-—1,and B = {q0,---,qn-1},{a},9,q0,{q-1}) be NFA for language
L, where §'(g;,a) = ¢i41 if 0 < i < n — 1. For concatenation KL we can construct
automaton C' = ({0,...,m+n—1},{a},d”,0,{m+n — 1}) with m +n — 1 states, where
§"(gi,a) = qiy1 if 0 < i < m+n— 1. The languages a™ ! and a"~! meet the upper bound
for concatenation.

(4) Let A= ({0,...,n—1},{a},d,0,{n — 1}) be NFA for L, where §(i,a) =i+ 1 if
0 <i<mn—1. For L* we can construct automaton C' = ({0,...,n — 2}, {a},d’,0,{0})
with n — 1 states, where ¢'(i,a) =i+ 1 mod (n—1) if 0 <i < n —2. The language a"!
meets the upper bound for star.

(5) The reversal of every unary language is the same language, so L = L, therefore
we have nsc(L?) = n. O

Now, let us analyse complementation on unary free languages. Recall that if nsc(L) =
n for a unary free language L, then L = {a" '}. Hence, the complement of L contains

every string w in a* with |w| #n — 1.
Theorem 4.6. Let L be unary free language with nsc(L) = n. Then nsc(L¢) = O(y/n).

Proof. Let us denote the length of string in L by m. So m = n — 1. The language L°
contains all strings with length not equal to m. First consider a lower bound, and let us
show that every NFA for L€ requires at least \/n_/?) states. Assume for a contradiction that
there is an NFA N for L€ with less than \/n_/3 states. Recall, that every unary n-state NFA
can be transformed to Chrobak normal form which consist of a simple path containing not
more than 2n? + n states, ending with state in which there is a nondeterministic choice to
several pairwise disjoint cycles containing at most n states (see Theorem 3.2, Figure 3.2).
Thus, the tail in the Chrobak normal form of N is of size less than 3 - (y/n/3)? [12,45],
thus less than n. Since @™ must be rejected, each cycle in the Chrobak normal form must
contain a rejecting state. It follows that infinitely many strings are rejected, which is a
contradiction. Now let us prove the upper bound. Let h = |y/m], and consider relatively
prime numbers h and h+1. Tt is known that the maximal integer that cannot be expressed
as zh + y(h + 1) for non-negative integers z and y is (h — 1)h — 1 =h? — h — 1 [49]. Let
k=m— (h* —h—1). Then 0 < k < 3y/m. Next, the NFA A shown in Figure 4.4 and
consisting of a path of length £ and two overlapping cycles of lengths h and A + 1 does
not accept a™, and accepts all strings a’ with ¢ > m + 1.

It remains to accept the shorter strings. To this aim let py,pso,...,ps be the first ¢
primes such that pyps - --p, > m. Then £ < [logm]. Thus p; +ps+---+p, = O(*Inl) <

23

(W@ OO

Figure 4.4: The part of NFA accepting every string of length more than m =n — 1

v/m [1]. Consider an NFA B consisting of an initial state s that is connected to ¢ cycles
of lengths pi,pa,...,pe. Let the states in the j — th cycle be 0,1,...,p; — 1, where s is
connected to state 1. The state m mod p; is non-final, and all the other states are final.
Then this NFA does not accept a™, but accepts all strings a’ with ¢ < m — 1 since we have
(¢ mod pq,7 mod po, ...,i mod py) # (m mod p;,m mod py, ..., m mod p;). The NFA B

for m = 24 is shown in Figure 4.5.

-
O——E——

Figure 4.5: An example of NFA accepted every string shorter than m = 24

Now we get the resulting NFA for the language L of at most 61/m states as the union
of NFAs A and B. O

4.3 Operations on free languages

We start with intersection. The nondeterministic complexity of intersection on prefix- and
suffix-free languages was studied by Han et al. [20,22|, where the tight upper bounds were
obtained and a three-letter alphabet was used to prove tightness. The binary witnesses
were described by Jirdskova and Olejar [34]. Here we obtain the tight upper bounds for
intersection on factor- and subword-free languages. To prove tightness, we use a binary
alphabet in the factor-free case and a growing alphabet of size m+n—>5 in the subword-free

case.

24

Lemma 4.7. Let K and L be languages over ¥ with nsc(K) = m and nsc(L) = n.

(a) If K and L are prefiz-free (suffiz-free) then nsc(K N L) < mn — (m+n—2), and the
bound is tight if m >4, n > 2, and |X| > 2.

(b) If K and L are factor-free, then nsc(K N L) < mn — 2(m +n — 3), and the bound is
tight if m > 5, n > 3, and |X| > 2.

Proof. We first prove the upper bounds. Let A and B be minimal NFAs for K and L,
respectively. We may assume that the state sets of A and B are {0,1,...,m — 1} and
{0,1,...,n — 1}, respectively, with the initial state 0 in both automata. Construct the
product automaton A x B for K N L. If K and L are prefix-free with the final states
m — 1 and n — 1 respectively, then all states in the last row and last column, except for
(m —1,n — 1), are dead, so we can omit them. If K and L are suffix-free, then A and
B are non-returning, so all states in the first row and first column, except for (0,0), are
unreachable. Since every factor-free language is both prefix-free and suffix-free, all the
three upper bounds follow from these observations.

To prove tightness, we first consider factor-free languages. Let m > 5, n > 3. Let K
and L be the languages accepted by the NFAs A and B shown in Figure 4.6.

ROL000MRE-cL0
B H@ﬁ@} iéﬂ

Figure 4.6: Factor-free witnesses for intersection meeting the bound mn — 2(m + n — 3).

Every string w in K begins and ends with a, and |w|, mod (m — 2) = (m — 3). Every
proper factor v of w which begins and ends with a has a computation in A which either
starts in 0 and ends in 2, or starts and ends in 2, or starts in 2 and ends in m — 1.
However, in all three cases, |v|, mod (m — 2) # (m — 3), so v ¢ L. Hence the language
K is factor-free. Next, every string in L has exactly n — 1 a’s, but every proper factor of
every string in L has less then n — 1 a’s. Hence L is factor-free.

Construct the product automaton A x B and remove all the unreachable and dead
states to get a trim NFA N for K N L. Figure 4.7 shows the NFA N in the case of m =5

25

Figure 4.7: The NFA for intersection of the languages from Figure 4.6; m = 5,n = 6.

and n = 6. Since the NFA N and its reverse N are incomplete DFAs, the NFA N is
minimal by Lemma 2.5. So we have nsc(K N L) = mn — 2(m + n — 3). Notice that there
is no need to prove that NFAs A and B are minimal because the upper bound cannot
be met by languages of a smaller nondeterministic complexity. For this reason we do not
prove the minimality of witnesses in what follows.

Next, the left quotients of K and L by the string a, that is, the languages a\ K and
a\L, are prefix-free and meet the upper bound mn — (m + n — 2). Similarly, the right

quotients K/a and L/a are suffix-free witnesses. O

The next lemma provides a subword-free witness for intersection defined over a growing
alphabet.

Lemma 4.8. Let m,n > 3. There exist subword-free reqular languages K and L over
an (m + n — 5)-letter alphabet such that nsc(K) = m, nsc(L) = n, and nsc(K N L) =
mn —2(m +n — 3).

Proof. Let ¥ = {a}U{br |2 <k <m—-2}U{c, | 2<¢<n-2} Let K and L
be languages accepted by incomplete DFAs A = ({0,1,...,m —1},%.0,-,{m — 1}) and
B=({0,1,...,n—1},%,0,0,{n—1}), where for each i (0 <i <m—2),5 (0 <j<n-—-2),
k(2<k<m-—2),and ¢ (2</{¢<n-—2), we have

1ra=1+1, Jjoa=j+1,
O-bp=Fkand (k—1) by =m—1, Ooby=1and (n—2)ob, =n—1,
O-cg=1land (m—2)-¢cp=m—1, Oocg=Cand ({ —1)oc,=n—1.

Figure 4.8 shows the automata A and B in the case of m =5 and n = 6.

26

Figure 4.8: Subword-free witnesses for intersection; m = 5,n = 6.

To prove that K is subword-free, let X1 = {a, ¢2,¢3,...,¢n2} and 3o = {bo, b3, ..., b, o}
Notice that no string in 7 of length less than m — 1 is in K. Next, each string in K
contains at most two symbols from 5. Let w be a string in K. If w contains no symbol
from X5, then |w| = m — 1 and no proper subword of w is in K. If w contains exactly
one symbol from ¥, then either w = uby for some string u with v € ¥} and |u| = k — 1,
or w = bgv for some string v with v € X7 and |v]| = n — k. In both cases, no proper
subword of w is in K. Finally, if w contains two symbols from X, then w = bra'bpisqq
where £k > 0and 2 <k <k+t+1<m—2. No proper subword of such string is in K.
The proof for L is similar.

Construct the product automaton A x B for K N L. To get a trim NFA N, omit all
the unreachable and dead states; see Figure 4.9 for an illustration in the case of m = 4
and n = 5.

The resulting trim NFA has (m — 2)(n — 2) + 2 states, it is an incomplete DFA, and
its reverse is an incomplete DFA as well. By Lemma 2.6, this NFA is minimal. This

concludes the proof. O
We conjecture that the bound mn is asymptotically tight in the binary case if m = n.

Conjecture 4.9. There exist a constant ¢ and binary subword-free languages K and L
with nsc(K) = nsc(L) = n such that nsc(K N L) > n?/c.

As a corollary of the three lemmata above, and taking into account the unary case in

Theorem 4.5, we get the following result.

27

Figure 4.9: The NFA for intersection of languages from Figure 4.8.

Theorem 4.10 (Intersection). The nondeterministic state complezity of intersection is
mn — (m + n — 2) on prefiz-free and suffiz-free languages, and it is mn — 2(m +n — 3)
on factor-free and subword-free languages. Fxcept for subword-free witnesses which are
defined over an alphabet of size m + n — 5, all the remaining witnesses are binary and,

moreover, this binary alphabet cannot be reduced. 0

Now we consider the union operation. In [22] it is claimed that the upper bound m+n
is met by the union of prefix-free languages K = (a™ 1)*b and L = (¢"1)*d, and a set P
of pairs of strings of size m + n is described in [22, Proof of Theorem 3.2|. The authors
claimed that P is a fooling set for K U L. However, the language K U L is accepted by
an NNFA of m + n — 1 states. Therefore P cannot be a fooling set for K U L. Here we
prove the tightness of the upper bound m + n for union of prefix-free languages using a
binary alphabet and Lemma 2.2. Next we get the tight upper bound for union of suffix-,
factor-, and subword-free languages. To get tightness, we always use a binary alphabet
which is optimal for all four classes.

Lemma 4.11. Let K and L be languages over ¥ with nsc(K) = m and nsc(L) = n.

(a) If K and L are prefiz-free then nsc(K U L) < m + n, and the bound is tight if
m>3,n>3, and X > 2.

(b) If K and L are suffiz-free then nsc(K U L) < m +n — 1, and the bound is tight if
m>3,n2>3, and X > 2.

(¢c) If K and L are factor-free, then nsc(K U L) < m+n — 2, and the bound is met by

binary subword-free languages if m > 2 and n > 2.

28

Proof. We first prove the upper bounds. Let A and B be minimal NFAs for K and L,
respectively, with disjoint state sets, and the initial states s4 and sp, respectively.

(a) If K and L are prefix-free, then NFAs A and B are non-exiting and have a unique
final state. To get an (m + n)-state NFA for K U L from A and B, add a new initial
(non-final) state connected through e-transitions to s4 and sp, make the states s, and
sp non-initial, and merge the final states of A and B.

(b) If K and L are suffix-free, then A and B are non-returning. We can get an
(m +n — 1)-state NFA for K U L from A and B by merging their initial states.

(c) If K and L are factor-free, then they are both prefix- and suffix-free. To get an
(m + n — 2)-state NFA for K U L from A and B, we merge their initial states, and then
we merge their final states.

To prove tightness, consider languages K and L accepted by an m-state and n-state
NFAs A and B, respectively, shown in Figure 4.10 (left). Notice that K is prefix-free
since every string in K ends with b while every proper prefix of every string in K is in a*.
Similarly, L is prefix-free.

Construct the (m + n)-state NFA for their union by adding a new initial state s, by
adding transitions (s,a,p;) and (s,b, q1), by making states py and gp non-initial, and by
merging their final states as shown in Figure 4.10 (right). The resulting trim NFA is an
incomplete DFA | and its reverse is an incomplete DFA as well. By Lemma 2.6, this NFA
is minimal. It follows that nsc(K U L) > m + n.

Next, the languages K* and L are suffix-free, and they are accepted by m-state and
n-state NFAs A% and B¥, respectively. To get an NFA for K% U L¥, we merge the initial
states of A and B. For each state ¢ of the resulting automaton, the singleton set {q}
is reachable, as well as co-reachable. By Lemma 2.5, this NFA is minimal. Hence we get
nsc(KRU L) >m+n— 1.

Finally, we again use Lemma 2.6 to show that the union of binary subword-free lan-

guages {a™ 1} and {b""'} meets the upper bound m +n — 2, O

4 ﬂ“ @
’ H&‘ ‘;_bb/‘

Figure 4.10: Binary prefix-free witnesses for union meeting the upper bound m + n.

29

As a corollary of the lemma above, and taking into account unary case in Theorem 4.5,

we get the following result.

Theorem 4.12 (Union). The nondeterministic state complexity of union is m +n on
prefir-free languages, m +n — 1 on suffiz-free languages, and m +n — 2 on factor- or
subword-free languages. All the witnesses can be defined over a binary alphabet, and the

size of alphabet cannot be reduced. O

The nondeterministic state complexity of concatenation on regular languages is m +n
with binary witnesses |24, Theorem 7|. For prefix-free and suffix-free languages, the
upper bound is m + n — 1 [20,22], and to prove tightness, a binary alphabet was used
in |22, Theorem 3.1] and |20, Theorem 4|. In this section, we show that this upper bound
is tight for all four classes of free languages, and to prove tightness, we use a unary
alphabet.

Lemma 4.13. Let K and L be prefiz- or suffiz-free languages with nsc(K) = m and
nsc(L) =n. Then nsc(KL) < m+n—1, and this upper bound is met by unary subword-

free languages.

Proof. Let A and B be minimal NFAs for K and L, respectively. In the prefix-free case,
we can merge the final state of A and the initial state of B to get an NFA for K L. In
the suffix-free case, automata A and B are non-returning. To get an NFA for KL, we
add the transition (p,a, q) for each final state p of A and and each transition (sg, a,q) of
B. Next, we make final states of A non-final, and remove the unreachable state sg. As
a result, we get an NFA for KL of m +n — 1 states in both cases. This upper bound is

met by the concatenation of unary subword-free languages {a™ '} and {a""'}. O
As an immediate corollary of the lemma above, we get the next result.

Theorem 4.14 (Concatenation). The nondeterministic state complexity of concatena-

tion on each of the four classes of free languages is m +n — 1, with unary witnesses. []

We next consider the Kleene star and reversal operations. Both operations have
nondeterministic complexity n + 1 on regular languages with a unary witness for star [24,
Theorem 9] and a binary witness for reversal [30, Theorem 2].

In |22, Theorem 4.2] and |20, Theorem 7| it is claimed that for each prefix-free or suffix-
free language L with nsc(L) = n the nondeterministic complexity of L* is n. However, this
is not true since {a" "'} is a prefix- and suffix-free language of nondeterministic complexity

n and its star, the language (a"~!)*, has nondeterministic complexity n — 1.

30

The next lemma provides tight upper bounds for star on all four classes of free lan-
guages. To get tightness, we use an optimal binary alphabet in the prefix- and suffix-free

case, and a unary alphabet otherwise.
Lemma 4.15. Let L be a language over an alphabet 3 with nsc(L) = n.

(a) If L is prefiz- or suffiz-free then nsc(L*) < n. These upper bounds are tight if |X| > 2,

and the size of alphabet cannot be decreased.

(b) If L is factor-free, then nsc(L*) < n—1, and the bound is met by a unary subword-free

language.

Proof. Let A= (Q,%,-,s, F) be a minimal NFA for L.

(a) If L is prefix-free, then A is non-exiting and has a unique final state ¢;. We can
construct an n-state e-NFA for the language L* from A by making state g; initial and
state s non-initial, and by adding the e-transition from ¢; to s. If L is suffix-free, then A
is non-returning. Now we construct an n-state e-NFA for L* from A by making the initial
state s final, and by adding the e-transition from every final state to the initial state s.

To get tightness, we first consider the suffix-free case. Let L be the language accepted
by the n-state NFA A shown in Figure 4.11 (left). Notice that it is non-returning, has a
unique final state, and each of its states has at most one in-transition on each input symbol.
By Lemma 4.4, the language L is suffix-free. Next, the set {(a’,a" ') |0 <i<n—1}
is a fooling set for L* since a"'b € L*, but for each j with 5 < n — 1, the string a’b is
not in L*.

Now consider the prefix-free language L. It is accepted by the n-state NFA A® shown
in Figure 4.11 (right). Construct an NFA N for L* from A by making state n — 1 initial
and state 0 non-initial, and by adding the transitions (n —1,a,1) and (n—1,b,0). Notice
that for each state ¢ of N, the singleton set {q} is reachable and co-reachable, so N is

minimal by Lemma 2.5.

Aﬂ@ﬁ@ﬂ ﬂ@ﬂ ARH@@Q ﬂ@ﬁ

Figure 4.11: Prefix-free and suffix-free witnesses for star meeting the upper bound n.

(b) If L is factor-free, then A is non-returning and non-exiting, and it has a unique

final state ;. We construct an NFA for L* by making state g initial, by adding transition

31

(¢, a,q) for each transition (s, a,q), and by omitting the unreachable state s. The unary

subword-free language {a" "'} meets this upper bound. [l
The next theorem summarizes the results of the lemma above.

Theorem 4.16 (Star). The nondeterministic state complexity of star is n on prefiz- and
suffiz-free languages with binary witnesses, and it is n — 1 on factor- and subword-free
languages with unary witnesses. The binary alphabet in the prefix- and suffiz-free case

cannot be reduced. OJ

Now we turn our attention to the reversal operation. Han et al. obtained tight upper
bounds for reversal on prefix-free and suffix-free languages and they provided a binary
prefix-free witness [22, Theorem 3.4] and a ternary suffix-free witness [20, Theorem 9]. As
shown in the next lemma, the upper bound for reversal on prefix-free languages is n, so

it is met by any unary language, in particular, by the subword-free language {a" '}.

Lemma 4.17. Let L be a prefiz-free language with nsc(L) = n. Then nsc(L®) < n, and

this upper bound is met by a unary subword-free language.

Proof. 1f L is prefix-free, then every minimal NFA for L has a unique final state. Thus
nsc(Lf) < n. The bound is met by the subword-free language {a™"1}. O

Now we consider the suffix-free case, and provide a binary witness meeting the upper
bound n + 1. Notice that the reverse of a language accepted by an n-state NFA is
accepted by an n-state NNFA. This means that we cannot use a fooling set method to
prove the tightness of the bound n+ 1. However, a modified fooling set method described

in Lemma 2.2 can be successfully used here.

Lemma 4.18. Let n > 5. There exists a binary suffiz-free language L such that nsc(L) =
n and nsc(LT) =n + 1.

Proof. Let L be the language accepted by the NFA A shown in Figure 4.12.

Since every string in L contain both a and b, but every proper suffix of every string
in L is in a* Ub*, the language L is suffix-free. Now we show that every NFA for L® needs
at least n + 1 states. Let

A={(a"3,a")} U{(a’,a") | 1 <i<n—4}U{(a"*b,e)},

B = {(bb, ba), (b, a)},

u = ba,

v =a"".

32

Figure 4.12: A binary suffix-free witness for reversal meeting the upper bound n + 1.

Notice that {a®"~7b,a™ b, bbba,ba} C L. Moreover, in every string in L? starting
with a, the number of consecutive a’s modulo (n — 3) is (n —4), and the string ends with
a single b. Next, the string bba is not in L¥. Finally, every string in L either starts with
a and ends with b or starts with b and ends with a. It follows that AU B, AU {(g,u)},
and BU {(g,v)} are fooling sets for L?. By Lemma 2.2, we have nsc(L?) >n+1. O

We can use the same fooling sets as in the above proof to show that the left ideal
language {a, b}*L is a witness for reversal meeting the upper bound n + 1. This improves
the result from [26, Theorem 17| by decreasing the size of alphabet from three to two.

As a corollary of the two lemmata above, and taking into account that the reversal of

every unary language is the same language, we get the next result.

Theorem 4.19 (Reversal). The nondeterministic state complexity of reversal is n on
the classes of prefiz-, factor-, and subword-free languages, with the witnesses defined over
a unary alphabet. The nondeterministic state complexity of reversal is n+ 1 on the class
of suffiz-free languages, with the witnesses defined over a binary alphabet which is optimal

in this case. O]

We continue with complementation, which is the most interesting and the most difficult
part of this thesis. Han and Salomaa in [20] have obtained an upper bound 2"~ + 1 on
the nondeterministic state complexity of complementation on suffix-free languages. Our

next result shows that this upper bound can be decreased by one.

Lemma 4.20. Let n > 3. Let L be a suffiz-free reqular language with nsc(L) = n. Then
nsc(L¢) < 2n71

Proof. Let N be a non-returning n-state NFA for a suffix-free language L. The subset
automaton A = (Q,%,4,s, F) of the NFA N has at most 1 + 2"~! reachable states since
the only reachable subset that contains the initial state of N is the initial state of the
subset automaton. The initial state of the subset automaton is non-final since L does not

contain the empty string.

33

After interchanging the final and non-final states, we get a DFA A° = (Q, %, 0,5, Q\ F)
for L¢ of 1 + 2" ! states. The initial state of A€ is final and has no in-transitions. The
state d is final as well, and it accepts every string.

Construct a 2" !-state NFA N¢ from the DFA A¢ as follows. Let Q4 be the set of states
of A¢ different from d and such that they have a transition to the state d, that is, Q4 =
{q € Q\ {d} | there is an a in ¥ such that (¢, a) = d}; remind that by Proposition 4.3,
for each symbol a, there is a state g, in ()4 that goes to d by a. Replace each transition

(q,a,d) by transitions (g, a,p) for each p in (Q4, and moreover add the transition (¢, a, s).
Then, remove the state d. Formally, let N¢ = (Q \ {d},>,d,s,(Q \ {d}) \ F'), where

{0(q,a)}, if 6(¢, a) # d,

o) = (s)UQu if6(qa) = d.

In a similar way as in the case of prefix-free languages, it can be shown that L(N¢) =
L(A°). O

Figure 4.13: An NFA of a ternary suffix-free regular language L with nsc(L¢) = 271

As for a lower bound, Han and Salomaa in [20] claimed that there exists a ternary
suffix-free language meeting the bound 27! — 1. In the next lemma, we increase this

lower bound by one.

Lemma 4.21. Let n > 3. There exists a ternary suffiz-free language such that nsc(L) = n
and nsc(L¢) > 2"71,

Proof. Let K be the language accepted by the NFA over {a,b} shown in Figure 3.1 with
n — 1 states. Set L = c¢- K. Then L is a suffix-free language recognized by an n-state
NFA shown in Figure 4.13. As shown in |30, Theorem 5|, there exists a fooling set
F ={(zs,ys) | S C{1,2,...,n — 1}} of size 2"~ ! for the language K. Then the set of
pairs of strings 7' = {(c- xs,y5) | S C {1,2,...,n — 1}} is a fooling set of size 2"~! for
the language L°. O]

34

We can summarize these results in the following theorem which provides the tight
bound on the nondeterministic state complexity of complementation on suffix-free lan-
guages over an alphabet with at least three symbols.

Theorem 4.22 (Complementation on suffix-free languages). Let n > 3. Let L be
a suffiz-free language over an alphabet > with nsc(L) = n. Then nsc(L¢) < 2" !, and the
bound is tight if |X| > 3. O

Now, let us turn our attention to investigate bounds for binary alphabet. The lower
bound for binary alphabet is a little bit different. We also improve the estimation of
upper bound.

Let G be the language accepted by the NFA over {a, b} shown in Figure 3.1 with n—1
states. Let L = ¢G. The language L is a suffix-free language over {a,b, c} recognized
by an n-state NFA A shown in Figure 4.13, and we have nsc(L¢) > 2"~! ([32, Lemma
5]). Now, let us define a homomorphism & as follows: h(c) = 00, h(a) = 10, h(b) = 11
(used in [13, Theorem 7|). After applying h on the language L, we have a binary language
K = h(L) over {0,1}.

Lemma 4.23. The language K is a suffiz-free language.

Proof. Every string in L contains exactly one symbol ¢ at the begining, so every string in
K begins with the string 00 and such substring does not appear further in the string. If
there is a string w = uv and u # ¢, then v does not contain 00 and therefore v ¢ K. So
K is suffix-free. O

Now let us define NFA A’ for the language K. We use the description of automaton A
for original language L. Let A = (@, {a,b,c},9,0,{n—1}) (be NFA shown in Figure 4.13).
The idea is replace every transitions ¢ — ¢, by adding a new state ¢’ and two transitions

1,0 . 1,1 . c
q — ¢ — q., similarly for symbol b ¢ — ¢ — ¢, and transition ¢ — ¢. we replace by
adding ¢’ and two transitions ¢ 9, q 9, qe; see Figure 4.14.

More formally: A" = (Q',{0,1},8,0,{n — 1}) where states Q' = quQ{q7 q'} (so we

add for every state ¢ from) a new state ¢’) and transition function is defined as follows:

e for ¢ #0 and ¢ # 0/, we have §'(¢,1) = {¢'}, 8'(¢',0) = d(q,a), &'(¢',1) = 6(q,b)
e for 0,0’ we have §'(0,0) = {0}, 6’(0",0) = (0, ¢)

In the following three lemmas, we prove that the NFA A’ is a minimal NFA recognizing
the language K. Then we show that nsc(K¢) > 271

35

Figure 4.14: An NFA of binary suffix-free regular language K.

Lemma 4.24. The NFA A’ defined above recognizes the language K.

Proof. We have to prove L(A’) = K.

The first we show K C L(A"). Let w € K, then there is u € L, where u = ujusy . . . Uy,
such that h(u) = w, so w = h(uy)h(uz) - - - h(u,,). There is computation in A as follows:
0,q1,92, - - -, qm where ¢; € 6(0,u;) and for every ¢;, such that 1 <i <m ¢;11 € §(¢), 0 is
initial state and ¢, is final state.

We claim that after reading h(u;)h(us) - - - h(u;) the automaton A’ can be in ¢; thus
¢ € §'(0, h(uy)h(ug) - - - h(u;)). We prove it by mathematical induction.

The base case is ¢« = 1. Every string in L begins with symbol ¢, so u; = ¢, hence
h(uy) = 00. By definition of ¢’; 6'(0,0) = {0’} and §'(0’,0) = (0, ¢), so ¢1 € ¢'(0, h(uy))

Let us assume that ¢; € 0'(0, h(ug)h(ug) - h(w;)), 1 <i<m—1. Symbol u;y; can
be equal to a or b. There is §(¢;, 1) = {q}}, so ¢; € (0, h(uy)h(us)---h(u;)1). If
ujr1 = a, then h(u;41) = 10. Since 0'(¢,,0) = 0(¢;,a) and g1 € (g, a), we have
Giv1 € 0'(0, h(uy) ... h(u;)10) = & (0, h(uy) . .. h(u;)h(u;yq)). Similarly if w4 = b.

In conclusion g, € 6'(0, h(uq) - - h(uy,)) and g, is final state, so w € L(A’).

Now we show that L(A") C K.

Let w € L(A’). Every computation in A’ has an alternate form of states ¢, ¢’ as follows
00’1192 - - Gm—14,,_19m and accepted string has a form 001zy1zy - - - 12,1 where z; €
{0,1} for 1 < ¢ < m — 1. For such string is possible to find a string u = ujus - - - Uy,
where u; = ¢ and for every 1 <i < m, u; € {a,b} and h(u;) = lz;_;.

We claim that after reading ujus ---u;, the automaton A can be in ¢;, more precisely

¢ € 0(0,uzug - - - u;). We show it by mathematical induction.

36

The base case is @ = 1. Then u; = ¢ and §'(0,00) = §(0,¢) and ¢; € ¢’(0,00) so
¢ € 0(0,uq).

Let us assume ¢; € 0(0,uq -+ -u;), where 1 < i < m — 1. By definition of ¢’ we have
8 (qi, 1) = 8(gi, uiy1) and since g1 € 8'(gi, 1), we have g1 € 0(qi, uir1). So at last
Gm € 0(0,urug . .. uy) and g, is final state, so u = wjug ... u,, € L.

Hence: u € L, h(u) = w, so w € K. O

Lemma 4.25. The NFA A’ is a minimal NFA for the language K.

Proof. For every state g of A’, we are going to define a pair of strings (u,, v,) such that

(a) by ug, the initial state of A’ goes only to the state ¢, and

(b) v, is accepted by A’ only from the state ¢ if ¢ # (n —1)".
Let ugp = € and uy = 0. Next, if 1 < i < n—1, then let u; = 00(10)"~! and u; = 00(10)* 1.
Then (a) is satisfied for every state ¢ of A’.

Now, let vg = 00(10)"2 and vy = 0(10)""2 Next, if 1 < i < n — 2, then let
v; = (10)"'7" and vy = 0(10)"2~". Finally, let v,_; = € and v(,_1y = 1. Then (b) is
satisfied for every state g of A’, except for (n—1)". We show that the set of pairs of strings
F = {(ug,vq) | ¢ is a state of A’} is a fooling set for K.

(F1) For every pair (ug,v,), we have u,v, € K.

(F2) Let us consider two distinct pairs (ug, vq) and (up, vp), except for (um—1y, Vn-1y).
By the string u,, we reach only the state ¢, and the string v, is accepted only from the
state p. Thus uqv, € K. Now let us consider (up,v,) and (U(m—_1),Vpn—1y). Since by the
string u(,—1y, we can reach only the state (n —1)’, and the string v, is accepted only from
the state p, we have ug,_1yv, ¢ K.

Hence F is a fooling set for K. Since the size of F is 2n, the NFA A’ is minimal. [

Lemma 4.26. Let n > 3 and K be the language defined above. Then nsc(K¢) > 2"1,

Proof. As it is shown in [32, Lemma 5|, the set F = {(czg,ys) | S C {1,2,...,n—1}}is
a fooling set for L°. Let us define F' = {(h(cxs),h(ys)) | S €{1,2,...,n—1}} . Let us
show that the F’ is fooling set for K°.

(F1) For every pair (h(cxs),h(ys)), we have cxsys € L, so crsys ¢ L and since
homomorphism h is a bijection h(cxsys) € K so (h(cxs), h(ys)) € K°.

(F2) Let (h(czs), h(ys)), (h(czr), h(yr)) be two distinct pairs. Without loss of gener-
ality, let cxsyr ¢ L. So cxgyr € L, then h(cxsyr) € K, so h(cxsyr) & K°.

Hence F' is a fooling set for K°. Since the size F' is 2" nsc(K¢) > 2"~ L. O

We need the following observation later.

37

DD

Figure 4.15: An automaton A” recognizing a binary suffix-free language K.

Proposition 4.27. Let L be a suffiz-free language L over alphabet 3. Then for every
x € X the language R = xL is suffix-free.

Proof. For a contradiction let us assume, that there are two strings xu, xv in R, such that
xv is suffix of xu. So there exists y such, that xu = xyxrv. Hence u = yxv, it means that

v is suffix of v and w,v € L. It is contradiction, that L is suffix-free. O

Above we found a binary language with an even nondeterministic state complexity,
and now we want to find a binary language with an odd one. Now let us consider the

language K7 = 0K, where K is described above. By Proposition 4.27, K, is suffix-free.
Lemma 4.28. Let K; be suffiz-free language given above. Then nsc(K;) = 2n + 1.

Proof. Let us consider the automaton A’ for the language K. Let us construct an au-
tomaton A” from A’ by simply adding a new state 0’ and transition from 0" to orig-
inal initial state 0 on symbol 0. State 0’ become a new initial state. The NFA A”
is shown in Figure 4.15, and we have L(A”) = K;. Now let us consider the mini-
mality of A”. Let F be fooling set for K. Let us construct F' from F as follows:
F' = {(0u,v) | (u,v) € F} U{e000(10)"2}. The set F' is fooling set for K; and
|F'| =2n + 1, so nsc(K;) = 2n + 1. O

Lemma 4.29. Let n > 3 and K be the language defined above. Then nsc(K¢) > 271,

Proof. Let F be the fooling set for K¢ given by Lemma 4.26. Let 7' = {(0u,v) | (u,v) € F}.
Let us show that F' is fooling set for K7.

(F1) If wv € K€, then uwv ¢ K, then also Ouv ¢ K, so Ouv € K¥.

(F2) If (u,v),(x,y) are two distinct pairs in F. Then without loss of generality,
uy & K¢ so uy € K. Then Ouy € K; and Ouy & KY.

Hence F' is fooling set for K¢. Since the size of 7’ is 2", we have nsc(K¢) > 2"~ [

We summarize our results in the following theorem.

38

Theorem 4.30 (Complementation on binary suffix-free languages; lower bound).

Let n > 6. There is a binary suffiz-free language L such that nsc(L) = n and nsc(L) >
alzl-1,

Proof. If n is even, that is, n = 2k for some k& > 3, then we set L = K, where K is the
language described above with nsc(K) = 2k. By Lemma 4.26, nsc(K¢) > 28-1. Hence
nsc(L¢) = nsc(K¢) > 2k = 212171 If nis odd. That is, n = 2k + 1 for some k > 3, then
we said L = K, where K is the language described above with nsc(K;) = 2k + 1. By
Lemma 4.29, nsc(K¢) > 2871, Hence nsc(L°) = nsc(K¢) > 281 = 2211, O

In the next consideration we use concept of prefiz-free languages. Now, we consider

an upper bound. Let us recall the following result.

Lemma 4.31. Let n > 12. Let L be a binary prefiz-free language with nsc(L) = n. Then
nsc(L¢) <27t —2n73 41,

Notice that the proof at [32, Lemma 9| works also for NFAs with multiple initial states.

We are going to use it also for suffix-free languages.

Lemma 4.32. Let n > 12. Let L be a binary suffiz-free language with nsc(L) = n. Then
nsc(L¢) <27t —2n=3 4 9,

Proof. After reversing an NFA for L, we obtain an n-state NFA (possibly with multiple
initial states) for a prefix-free language L¥. By Lemma 4.31, nsc((L)¢) < 271 —2n=3 41,

Since (Lf)¢ = (L)%, we have
nsc((L)F) < 2n7t — 273 4]

It follows that (L¢)® is accepted by an NFA N which has at most 2"~ — 2773 + 1 states.
Now we reverse the the NFA N, and get NFA N%, possibly with multiple initial states.
By adding one more state, we get an NFA for L¢ with at most 2771 — 2773 + 2 states and

with a unique initial state. Our proof is complete. O

So in the binary case the upper bound does not reach value 2"~! and there is language,
such that nondeterministic complexity of its complement is at least 2L2)7!, so complement
requires still exponential number of states for nondeterministic automaton.

Han et al. in |21] obtained an upper bound 2"~! + 1 and a lower bound 2"~ on the
nondeterministic complexity of complementation on prefix-free languages. Our first result

shows that the upper bound can be decreased by one.

39

Lemma 4.33. Let n > 3. Let L be a prefiz-free reqular language with nsc(L) = n. Then
nsc(L¢) < 2n L

Proof. Let N be an n-state NFA for a prefix-free language L. Construct the subset
automaton of the NFA N and minimize it. Then, all the final states are equivalent, and
they go to the dead state on each input. Thus L is accepted by a DFA A = (Q, 3,4, s, {qs})
with at most 2"7! + 1 states, with a dead state g; which goes to itself on each symbol,
and one final state ¢ which goes to the dead state on each symbol, thus 6(gq, a) = ¢4 and
d(qf,a) = qq for each a in X.

To get a DFA for the language L¢, we interchange the final and non-final states in the
DFA A, thus L¢ is accepted by the (27! + 1)-state DFA A° = (Q,%,d,s,Q \ {¢s}). We
show that using nondeterminism, we can save one state, that is, we describe a 2" !-state
NFA for the language L°.

Construct a 2" l-state NFA N¢ for L¢ from the DFA A¢ by omitting state gg, and
by replacing each transition (g, a,qq) by two transitions (q,a,qs) and (¢, a,s); see the
Figure 4.16.

Formally, construct an NFA N¢ = (Q \ {¢a}, 2,9, s,Q \ {¢r,qa}), where

{5(Q7 a)}’ if 5(Qa a) 7é dd,

0'(q,a) =
{qf78}7 if 6<QJG’) = d4-

Let us show that L(N¢) = L(A°).

Let w = ajas---a be a string in L(A), and let s,q1,qo,...,q; be the computation
of the DFA A° on the string w. If ¢z # qq, then each ¢; is different from ¢; since gqq
goes to itself on each symbol. It follows that s,qi,qo, ..., ¢ is also a computation of the
NFA N°€ on the string w. Now assume that ¢z = g4. Then there exists an ¢ such that
the states qs, qoi1, ..., qr are equal to g, and the states s,q,...,q—_1 are not equal to
qq- If ¢ =k, then 0(qx—1,ar) = qq, s0 s € 0'(qr_1,ax). It follows that s, q1,q2,...,qk—1,5
is an accepting computation of N¢ on w. If ¢ < k, then we have ¢y = gy 1 = -+ =
qx = q4, and therefore the string w is accepted in N¢ through the accepting computation
Soquy .- qe—1,9f,4f, - - -, qf, s since we have 0'(q_1,ar) = {qs, s}, and (g, a) = {qs, s}
for each a in X.

Now assume that a string w = ajas---a; is rejected by the DFA A¢. Let s =
q0,q1, G2, - - -, Q& be the rejecting computation of the DFA A¢ on the string w. Since the
only non-final state of the DFA A€ is ¢;, we must have g, = gy. It follows that each state
¢; is different from ¢4, and therefore in the NFA N¢ we have 0'(¢;—1,a;) = {6(qi—1,a;)}.

40

This means that s = qg,¢1,42,...,q: is a unique computation of N¢ on w. Since this

computation is rejecting, the string w is rejected by the NFA N¢. O

Figure 4.16: A sketch of substitution of a former dead state by new transitions

To prove tightness, we use similar languages as in the case of suffix-free languages,
shown in Figure 4.17

Figure 4.17: An NFA of a ternary prefix-free language L with nsc(L¢) = 2"~!

Lemma 4.34. Let n > 3. There exists a ternary prefiz-free language such that nsc(L) = n
and nsc(L¢) > 2" 1,

Proof. Let K be the language accepted by the NFA over {a,b} shown in Figure 3.1
with n — 1 states. Set L = K -c. Then L is a prefix-free language recognized by an
n-state NFA in Figure 4.17. As shown in [30, Theorem 5|, there exists a fooling set
F ={(zs,ys) | S C{1,2,...,n — 1}} of size 2"~! for the language K°. Then the set of
pairs of strings ' = {(zs,ys-¢c) | S C {1,2,...,n — 1}} is a fooling set of size 2"~! for
the L.]

We summarize the results given in Lemma 4.33 and Lemma 4.34 in the following
theorem which provides the tight bound on the nondeterministic state complexity of

complementation on prefix-free languages.

41

Theorem 4.35 (Complementation on prefix-free languages). Let n > 3. Let L be
a prefiz-free reqular language over an alphabet 3 with nsc(L) = n. Then nsc(L¢) < 2" 1
and the bound is tight if |X| > 3. O

Now, let us turn our attention to a binary alphabet. Similarly as in the case of suffix-
free language, we can apply the same homomorphism h on the ternary prefix-free language
L from [32, Lemma 3] shown in Figure 4.17. We only have to be careful with the proof
of prefix-free property of the language h(L). Now every string in h(L) ends by 00. The
only proper prefix of a string in h(L) which ends with 00 has an odd length. But such a
string does not belong to h(L). Therefore h(L) is prefix-free.

We can construct NFA A for h(L) with 2n states similarly as in the suffix-free case.
The main difference between the automaton in case of binary suffix-free language and
automaton for binary prefix-free language is the final state; see the Figure 4.18. Similarly
as in suffix-free case we can prove that A is minimal and therefore nsc(h(L)) = 2n. Finally,
we use a similar approach to find a binary prefix-free language with an odd size of states,
such that we add a new state n’ and the transition from original final state n to n’ on
symbol 0. State n’ become a new final state. Such a language is still prefix-free.

Hence we get the following result for binary prefix-free languages.

Theorem 4.36 (Complementation on binary prefix-free languages; lower bound).
Let n > 6. There is a binary prefiz-free language L such that nsc(L) = n and nsc(L¢) >
ols]-1,]

Lemma 4.31 and Theorem 4.36 give the following result.

Theorem 4.37 (Complementation on binary prefix-free, suffix-free languages).
Let n > 12. Let L be a binary prefiz-free or suffiz free language with nsc(L) = n. Then
nsc(L¢) < 2771 — 2773 12, The lower bound is 212171, O

After investigation of prefix and suffix free languages we investigate other free classes
of languages: factor-free and subword-free languages.
The next theorem provides a tight bound on the nondeterministic state complexity of

complement on factor-free languages.

Theorem 4.38 (Complementation on factor-free languages). Let n > 3. Let L be
a factor-free language over an alphabet 3 such that nsc(L) = n. Then nsc(L¢) < 277241,
and the bound is tight if |3] > 3.

42

Figure 4.18: The last part of an NFA of prefix-free language h(L)

Proof. We first prove the upper bound. Let A be an n-state NFA for L. Since L is
factor-free, it is suffix-free and also prefix-free. It follows that no transition goes to the
initial state of A, and all the final states in the subset automaton are equivalent. Hence
the subset automaton has at most 2”72 + 2 reachable and pairwise distinguishable states.
After exchanging the final and non-final states, we get a DFA for L¢ of at most 272 + 2
states. In the same way as for prefix-free languages in [32, Lemma 2|, we can use a
nondeterminism to save one state. This gives the upper bound 2772 + 1.

To prove tightness, consider the binary language G accepted by the (n — 2)-state NFA N
shown in Figure 3.1. Let L = ¢- G - ¢. Then L is accepted by an n-state NFA A shown
in Figure 4.19.

Let F = {(zs,ys) | S C{1,2,...,n—2}} be a fooling set for the G¢ [30, Theorem 5|.
Notice that the strings xs and ys have the following properties: (1) by xg, the initial
state goes to the set S; (2) the string yg is rejected by N from every state in .S and it is
accepted by N from every state in {1,2,...,n —2}\ S. Then the set of pairs of strings
F' =A{(cxs,ysc) | S C{1,2,...,n—2}} is a fooling set for L°. Let

A={(cxs,ysc) | S C{1,2,...,n—2} and S # 0},

B = {(ca"%c,ypc)},

u = Yy,

v==¢.

Let us show that A, B, u and v satisfy the conditions of Lemma 2.2. The set A is a fooling
set for L¢ since A C F'. The set B is fooling set for L¢, because the string ca™ 3c - ypc is

in L° because it contains three symbols c.

43

Notice that the string ygc is accepted by A from each state in the set {1,2,...,n — 2}
since yg is accepted by N from each state in {1,2,...,n —2} [30, Theorem 5|. Thus, if
S is non-empty, then cxg - ypc ¢ L since by cxrg the NFA A reaches the non-empty set
S, from which it accepts ygc. It follows that AU B and AU {(¢,u)} are fooling sets for
L. Also BU{(e,¢)} is fooling set for L, because € - ¢ € L¢ and ca™ 3c-e¢ & L°.

It follows that the conditions in Lemma 2.2 are satisfied, and therefore we have
nsc(LC) > |A| + |B| +1=2""2+1. O

Figure 4.19: An NFA of a ternary factor-free language L with nsc(L¢) = 2"2 + 1

It remains to find the bounds for the binary case.

Let us start with an upper bound. Let L be a binary factor-free language with nsc(L) =
n accepted by an n-state NFA N. The NFA N has to have the same properties as an
automaton for a prefix or suffix free language. Thus there is just one final state with no
outgoing transition and no transition goes to the initial state. We obtain a similar lemma

as in the case of binary prefix-free languages in [32, Lemma 9|.

Lemma 4.39. There is a positive integer ng such that for every n > ng, if L is a binary
factor-free language with nsc(L) = n then nsc(L¢) < 2772 — 24 41,

Proof. Let N be a minimal NFA for L. Let {1,2,...,n} be the state set of N. Let n
be the final state and 1 be initial state of N. Without loss of generality, the state n is
reached from the state n —1 on a in N. Recall that no transition goes to state 1 because

L is also a suffix-free language, so at most two subsets of states are reachable from 1.

Therefore it is enough to consider subsets of set {2,3,...,n — 1}.
If there is no transition (i,a,j) with ¢,5 € {2,3,...,n — 1}, then the automaton on
states {2,3,...,n — 1} is unary. It follows that in the subset automaton of N, at most

O(F(n — 2)) distinguishable subsets of {1,2,...,n — 1} can be reached. Since, starting
from some positive integer ng, we have O(F(n —2)) < 272 — 2"~ the lemma follows in

this case.

44

Now consider a transition (i,a,j) with 4,7 € {2,3,...,n — 1}. Let us show that no
subset of {2,3,...,n — 1} containing states ¢ and n — 1 may be reachable. Assume for
contradiction, that a set S U {i,n — 1} is reached from the initial state of the subset
automaton by a string w. Since N is minimal, the final state n is reached from the state
J by a non-empty string v. However, the set S U {i,n — 1} goes to a final set S" U {j,n}
by a, and then to a final set S” U {n} by v. It follows that the subset automaton accepts
the strings ua and uav, which is a contradiction with the prefix-freeness of the accepted
language. Thus at least 2”4 subsets of {2,3,...,n — 1} are unreachable. Therefore, the
subset automaton has at most 2772 — 2% 4 1 states. After exchanging the accepting and
the rejecting states we get a DFA of the same size for the complement of L(N), and the

lemma follows. [

For the lower bound, let us consider the language L. = c¢Gc, where G is accepted by the
n — 2-state NFA shown in Figure 3.1. Then L is accepted by an n-state NFA A shown in
Figure 4.19. By a similar strategy as in the binary case of prefix or suffix free language, we
apply homomorphism h on the language L. Every string w in A(L) has a form 0011100
or 00141000 and the string u does not contain string 00. So in the first case, any proper
factor belonging to h(L) does not exist. In the second case, every proper factor belonging
to h(L) has to have form 001«100 but it has an odd length, and since every string in h(L)
has an even length, such a string is not in h(L). So h(L) is factor-free. We get an NFA
A for h(L) in a similar way as in cases suffix-free or prefix-free. The NFA A is minimal
and has 2n states, so nsc(h(L)) = 2n.

We deal with odd values of n similarly as before. Thus we get the following result.

Lemma 4.40. Let n > 8. There is a binary factor-free language L such that nsc(L) =n
and nsc(L°) > Q(2%2). O

We summarize our results on binary factor-free languages in the following theorem.

Theorem 4.41 (Complementation on binary factor-free languages). There is a

positive integer ng such that for every n > ng, if L is a binary factor-free language with
nsc(L) = n then nsc(L) < 2772 —2"=4 1 1. The lower bound is Q(2%). O

The last class investigated is class of subword-free languages. We provide upper and
lower bounds for nondeterministic state complexity of complement of such a language.
We prove that bound is tight if alphabet has exponential size.

First, we prove the following observation.

Proposition 4.42. Let L be a language. If L is subword-free, then L is finite.

45

Proof. Let us assume for a contradiction that L is not finite. Let A be a minimal NFA
for L. Since L is infinite, there is a state ¢ in A and a non-empty string u such that
q € 6(q,u), where § is a transition function of A and u # . Since A is minimal, there
must be a string x by which ¢ is reachable from the initial state, and a string y which
is accepted from ¢. So the string xy belongs to the language L. The string xuy also
belongs to L. However, the string zy is a proper subword of the string zuy. So L is not

subword-free, which is contradiction. O

Theorem 4.43 (Complementation on subword-free languages). Let n > 4. Let
L be a subword-free language over an alphabet ¥ such that nsc(L) = n. Then nsc(L) <
272 + 1, and the bound is tight if |3| > 272

Proof. The upper bound is the same as for factor-free languages. To prove tightness, let
Y ={as|S C{1,2,...,n—2}} be an alphabet with 2”2 symbols.

Consider the language L accepted by the NFA A = (Q,%,6,0,{n — 1}), where
Q =1{0,1,...,n— 1}, and the transition function ¢ is defined as follows: for each symbol
ag in 2,

0(0,a5) = S;

d(i,as)=0if1<i<n—2andi€ S,

d(i,as) ={n—1}if 1 <i<n-—2andi¢S;and

d(n—1,as) =10.
The Figure 4.20 shows the NFA A with n = 4.

a{1}, @{1,2} ag, a2
{2y, @{1,2} ag, ay

Figure 4.20: Example of a subword-free language with NFA of four states and alphabet

ap, a{1}7 a{2}7 a{l,Q}

Notice that each string in L is of length 2, so L is subword-free. Consider the set of
pairs F = {(as,as) | S C {1,2,...,n — 2}}. Let us show that the set F is a fooling set
for L°.

46

(F1) For each S, the string agag is in L€ since A goes to S by ag and ag is rejected
by A from each state in S.

(F2) Let S # T. Then, without loss of generality, there is a state ¢ in {1,2,...,n—2}
such that ¢ € S and ¢ ¢ T. Then agar in not in L° since A goes to the state ¢ by ag,
and then to the accepting state n — 1 by ar.

Hence F is a fooling set for L°.

Let

A= {(as,as) | S C{1,2,...,n—2} and S # 0},

B = {(aqyaq2y, ap)},

u = ag,

v=E¢.

Let us show that L¢, A, B, u, and v satisfy the condition in Lemma 2.2. The set A is
a fooling set for L° since A C F. The set B is fooling set for L, because the string
agiyagoy - ag is in L, because it contains three symbols.

Notice, if S is non-empty, then ag - ay is accepted by A, so ag - ag ¢ L°. Tt follows
that AUB and AU {(g, ap)} are fooling sets for L. Also BU{(g,¢)} is fooling set for L€,
because ¢ - € € L° and agyaqy - € ¢ L°

So the conditions in Lemma 2.2 are satisfied, therefore we have nsc(L¢) > 272 +1. [

4.4 Concluding remarks and open problems

Table 4.1 provides an overview of complexities of operations on unary-free languages and
compares them to the known results on regular unary languages from [24]. Notice that
the exact complexity of concatenation in the case of regular languages is still not known.

Table 4.2 summarizes our results on the nondeterministic complexity of operations on
prefix-, suffix-, factor-, and subword-free languages and compares them to the results on
regular languages which are from [24,30]. Notice that the complexity of each operation
in each class is always smaller than in the general case of regular languages, except for
the reversal operation on suffix-free languages. All our wittnes languages are defined over
small fixed alphabet which are always optimal, except for intersection and complementa-
tion on subword-free languages where it remains open whether the upper bounds can be
met by subword-free languages defined over smaller alphabets. We conjecture that the

bound mn is assymptotically tight for intersection of binary subword-free languages.

47

KNL KUL KL L* Le
Unary free m=n max{m,n} m+n—1 |[n—1| ©O(y/n)
Unary regular [24] mn; m4n+1; | >m+n—1|n41|20Wnlen
ged(m,n) =1 | ged(m,n)=1| <m+n

Table 4.1: Nondeterministic complexity of operations on unary free languages.

Class | Regular [24,30] Prefix-free Suffix-free Factor-free Subword-free
KnL mn 2 | mn—(m+n—2) 2 2 | mn—2(m+n—3) 2 m—+n—>5
KUL | m+n+1 2 m+n 2| m+n—-1 2 m-+n—2 2 2
KL m-+n 2 m+n—1 1 1 1 1
L* n+1 1 n 2 2 n—1 1 1
LR n+1 2 n 1 n+1 2 n 1 1
Le 2" 2 21 3 3 2241 3 2n—2
Table 4.2: Nondeterministic complexity of operations on free classes. The dot means that

the complexity is the same as in the previous column.

48

Chapter 5
Closed Languages

Recall that a language L is prefix-closed if w € L implies that every prefix of w is in L.
Suffix-, factor-, and subword-closed languages are defined analogously. In the first part
of this chapter, we investigate properties of nondeterministic finite automata accepting
closed languages. Then we examine the nondeterministic complexity of basic operations
on the four classes of closed languages. We also study the unary case. We conclude the

chapter by summarizing our results and stating some open problems.

5.1 Properties of closed languages

The next propositions say something about the characterization of NFA recognizing a

prefix-closed and suffix-closed language.

Proposition 5.1 (Characterizations of NFA).

(a) A regular language is prefiz-closed if and only if it is accepted by some NFA with all

states final.

(b) A regular language is suffiz-closed if and only if it is accepted by some NNFA with

all states initial.

Proof. (a) =: Let A= (Q,X%,6,s, F) be an trim NFA for a prefix-free language L. If A
does not have any non-final state we are done. If there are non-final states, they are not
dead states, because A is trim. The non-final states we set as final. More formally, Let
A =(Q,%,9,s, F'), where Q' = M, F' = (). We show, that, the automaton A" accepts

the same language as automaton A.

49

First, let us to show L(A") C L(A). Let v € L(A’). Let computation on string u
finishes in a state ¢. Since in A are every transitions and states as in A’ (some of them
may not be final), the same computation is also in A. If ¢ € F, then u € L(A). If ¢ € F,
then ¢ is not dead state in A. So there exists a string v, such that it reaches some p € F,
from g. Therefore uv € L(A). But L(A) is prefix-closed, so u € L(A).

Second, L(A) C L(A’), bacause every accepted string in A is also accepted in A’. Thus
L(A") = L(A) and A’ has all states final.

<: Let A be an automaton with the all states final. Let uv € L(A). Then there is a
computation s — p — f, where s is initial state and p, f are final states. Therefore also
u belongs to L(A). So, L(A) is prefix-closed.

(b) =: Let A be a NFA for a suffix-closed language L. We can set every noninitial
state to initial and get NNFA, which is also, accepting L.

<: Let A be an NNFA such that all states are initial. Let w be a string accepted by
A and w = wv. There is a computation ¢ — p — f, where f is final state. Since p is also

initial state, also suffix v is accepted, hence language accepted by A is suffix-closed. [

Proposition 5.2. Let NFA A = (Q, %, 0, s, F') be minimal accepting language L. Then L
15 suffiz-closed if and only if the next condition is satisfied: if a string w s accepted from

a state q, then the w is accepted from the initial state s.

Proof. Since A is minimal, there is a string u for arbitrary state ¢ in @, such that ¢ €
d(s,u) and a string v, such that d(q,v) N F # 0.

<=: Assume uv € L. Then there is computation such that s — ¢ — f, where f € F.
So there is computation ¢ — f and by assumption also computation s — f’, where
f' € F. Sov € L, hence L is suffix-closed.

=: Assume L is suffix-closed. Assume, there is a computation ¢ — f, where f € F.
NFA A is minimal, so there exists u, such that s — ¢. Then there is computation
s % g3 f,souv € L. Since L is suffix-closed also v € L, so there exists a computation
s 2 f', where f' € F.]

In what follows we use several times the following useful observation about factor-

closed languages.

Proposition 5.3. A language L is factor-closed if and only if the L is prefix-closed and
suffiz-closed.

Proof. =: Tt follows directly from definition of factor-closed.
«<: Let uvy € L. Then since L is suffix-closed, vy € L and since L is prefix-closed,
thev e L . O

50

5.2 Unary closed languages

In this section we pay attention to unary closed languages. Consider prefix-closed language
and two cases, finite language and infinite language. In the case of finite language, there
is a string with maximum length, so every shorter strings also must be in the language.
In the case of infinite language, for arbitrary positive integer ¢, there is a string w with
length at least + and with this string every its prefix, so such a language is a*. Moreover

suffix-closed, factor-closed and subword-closed coincide.

Theorem 5.4. Let K and L be two unary closed languages with nsc (K) = m and
nsc (L) =n. Then

1. nsc (K UL) < max{m,n},
2. nsc (K N L) < min{m,n},
3. nsc(KL)<m+n—1,
4. nsc(L*) <1,
5. nsc (L) < n,
6. nsc (L) <n+1.

All these bounds are tight.

Proof. An unary closed language L with nsc(L) = 1is 0 or a* or {¢}. For n > 2, the
unary closed language L with nsc (L) = n is the set {a’ | 0 <7 < n—1}. This observation
helps us to show that if 2 < m < n,

1) the language K U L is the same as L, because every string in K is in L;

2) the language K N L is the same as K, for the same reason;

3) the language KL is the set of strings with maximal length m — 1 4+ n — 1, hence

nsc (KL)=m+n —1;

4) the language L* is the same as a*, because the string a is in L, hence nsc (L*) = 1;

5) the language L' is the same as L, what holds true for every unary language;

6) the language L° is the set of strings with minimal length n, what needs n+ 1 states.
This case is proven by simple observation. Let us transform the unary automaton for
L to complete DFA. We need to add a dead state, which is single nonfinal state. After
exchanging finality we get automaton with single final state and n 4 1 states. This is the

minimal number. See the Figure 5.1. [l

51

a

H g H@ﬁ@ﬁ i@g

Figure 5.1: On the left is closed language and on the right its complement.

5.3 Operations on closed languages

We start with union and intersection on the class of closed languages.

Theorem 5.5 (Union). Let m,n > 2. Let K and L be closed languages with nsc (K) =m
and nsc (L) =mn. Then nsc (K UL) < m+n+ 1. The bound is met by binary subword

closed languages.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the binary languages shown in Figure 5.2. The language K consists of all strings such
that each string contains at most m — 1 symbols a, hence each subword contains also
at most m — 1 symbols a and such string belongs to the language K. Therefore K is

subword-closed. Similarly, the language L is also subword-closed.

b a a

Figure 5.2: The DFAs of subword-closed languages K and L with nsc(KUL) = m+n+1.

Consider the following sets of pairs of strings:

A={0"a",a™)| 0<i<m—1},
B={(a" ' tVa™) | 0<j<n—1}

Let us show that AU B is a fooling set. Condition (F1) is satisfied since for each i, j, the
strings b"a’ - a™ 17" and ab™ '~ - ba™ are in K U L. To prove (F2), we consider three
cases:
(1) if 0 <i < k <m — 1, then b"a* - a™ 1% is not in K U L;
(2)if0<j<?¢<n-—1, then ab™ =7 . bfa™ is not in K U L;
(3)if0<i<m-—1and 0<j<n-—1,then b"a’ - ¥a™ is not in K U L.
In addition, A U {(g,a™b" 1)} and B U {(g,a™ ")} are fooling sets for K U L. By
Lemma 2.2, we have that nsc (K UL) >m+n+ 1. O

52

Theorem 5.6 (Intersection). Let m,n > 2. Let K and L be closed languages with
nsc (K) = m and nsc (L) = n. Then nsc (KN L) < mn. The bound is met by binary

subword-closed languages.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the binary subword-closed languages shown in Figure 5.2. Consider the following set of

pairs of strings:
F={(a¥,a™ 7" 1) 0<i<m—-1,0<j<n-—1}.

Let us show that F is a fooling set for K N L. Condition (F1) is satisfied since for each i,
J, the string a’t’ - a™1=""1=7 is in K N L. To prove (F2), let (i,7) # (k,£). (1) Ifi < k,
then a*b’ - @™ 17" 1 is not in K N L. (2) If i = k and j < ¢, then a*b* - @™~ 1=1pn 17
is not in K N L. Hence F is a fooling set for K N L, so nsc (K N L) > mn. O

Figure 5.3: The subword-closed witnesses K, L for concatenation meeting the bound m+n.

Let us continue with concatenation.

Theorem 5.7 (Concatenation). Let K and L be closed languages with nsc (K) = m
and nsc (L) = n. Then nsc (KL) < m+n. The bound is met by ternary subword-closed

languages.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the ternary subword-closed languages shown in Figure 5.3. Consider the following set of

pairs of strings:
F={(a",a" " cba" ") |0<i<m—1}U{(a™ eba’,a™) |0 < G <n—1}.

Let us show that F is a fooling set for K L. Condition (F1) is satisfied since for each 1, j,
the strings a’ - a™ '“cba™ ! and a™cba’ - a1 are in K L. To prove (F2), notice that
KL is a subset of b*a*c*b*a*c* and every string in KL has at most m — 1 +n — 1 letters

a. We consider three cases.

53

(1) If0 <i <k <m—1, then a*-a™ ~cba"! is not in KL, because it has more
than m — 1 +n — 1 letters a.

(2) If0<j <l <n-—1,then a™ 'cha’ - a" 177 is not in KL, because it has more
than m — 1+ n — 1 letters a.

B)If0<i<m-—1land 0<j<n-—1,then a™ tcba’ - a™ ~'cba™ ! is not in KL,
because this string is not in the form b*a*c*b*a*c*.
Hence F is a fooling set for K'L, so nsc (KL) > m + n. O

Ha@: LN 4,

Figure 5.5: The suffix-closed witness language L for star meeting the bound n.

Theorem 5.8 (Star). Let L be a closed language over 3 with nsc (L) = n. Then
(a) if L is prefiz-closed, then nsc (L*) < n, and the bound is tight if |¥| > 2;
(b) if L is suffiz-closed, then nsc (L*) < n, and the bound is tight if |3| > 2;
(c) if L is factor- or subword-closed, then nsc (L*) = 1.

Proof. Tf L is a closed language, then ¢ € L. Tt follows that nsc (L*) < n. To prove tight-
ness, consider a prefix-closed language shown in Figure 5.4 and a suffix-closed language
shown in Figure 5.5. Lower bound for prefix-closed was proven in [11, Theorem 14|, lower
bound for suffix-closed is n because L = L*. For factor- or subword-closed, let I" be set
of letters present in any string of L. While L C I'*, every single-letter string from I' is in
L. Tt follows that L* = I'*, hence nsc (L*) = 1. O

Theorem 5.9 (Reversal). Let n > 3 and L be a closed language with nsc (L) = n.
Then nsc (L?) < n+1. The bound is met by a binary prefiz-closed language, by a binary

factor-closed language and by a subword-closed language over an alphabet of size 2n — 2.

54

Figure 5.6: A binary factor-closed witness for reversal meeting the bound n + 1.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the binary prefix-closed language shown in Figure 5.4. It was shown in [11] that the
reversal of this language requires n + 1 states.

Now we consider factor-closed case. Let L be the language accepted by the NFA
A=(Q,{a,b},-,0,Q), where Q@ = {0,1,...,n — 1} and the transitions are as follows:

0-a=Q\{0}andi-a={i+1}if1 <i<n-—2

0-b={n—-2}and (n—1)-b={n—2},
and all the remaining transitions go to (). The NFA A is shown in Figure 5.6.

First we show that L is factor-closed. Since each state of A is final, the language L is
prefix-closed. Next, for each transition (i, 0, j) there is the transition (0,0, 5) in A. Hence
if a string is accepted by A from a state 7, then it is accepted also from the initial state 0.
Therefore L is suffix-closed. Since L is prefix-closed and suffix-closed, it is factor-closed.

Now we show that every NFA for L% needs at least n + 1 states. Let

A={(ba" " a")|0<i<n—2}

B—{(bha)},

uw=a""! and v = a2
Notice that {ba™1,a"~* a2} C L® and no string in L has more than n — 1 consecutive
a’s. It follows that AU B, AU {(g,u)}, and B U {(g,v)} are fooling sets for LE. By
Lemma 2.2, we have nsc(L?) > n + 1.

Finally consider the subword-closed language accepted by the DFA shown in Fig-
ure 5.7. Consider the following sets:

A = {(bsbs---by_1,a1)}, B={(b1-+-bi_1bis1--by_1,0;) | 2 <i <n—1}U{(bas,e)}.
Let us show that AUB, AU{(g,a,)} and BU{(e,a,)} are fooling sets for L¥. Condition
(F1) for AU B is satisfied because for every i the string by ---b;_1bj41 - by—1 - @; is in
LT, Next, for every i # j the string by ---b;_1bis1 - by - a; is not in L%, because it
has b; before a;. Hence (F2) is satisfied. The condition (F1) for AU {(¢,a2)} and for
BU{(g,a;)} is satisfied, because the strings as and a; are in L¥. The proof of condition
(F2) uses the same strings as for AU B. O

%)

B B\{b}B\ {b2} B\ {b:} B\ {bn1}

GO & O

Figure 5.7: The DFA of subword-closed language L where B = {by,...,b,_1}

The next lemma provides a binary factor-closed witness language for reversal meeting
the bound n + 1, which improves the result from [26, Theorem 9| by reducing the size of
alphabet from three to two. This language is also a binary factor-convex witness.

We conclude this section with the complementation operation. In [11], a ternary
prefix-closed language meeting the upper bound 2" for complement was described. Now

we describe a binary witness language.

Theorem 5.10 (Complementation). Let L be a closed language over ¥ with nsc(L) =
n. Then

(a) if L is prefiz-closed, then nsc(L) < 2", and the bound is tight if |X| > 2;

(b) if L is suffiz-closed, then nsc(L) < 2"~1 + 1, and the bound is met by a binary

factor-closed language;

(c) if L is subword-closed, then nsc(L¢) < 2"7' + 1, and the bound is tight if |¥| > 2".

H i

Figure 5.8: The NFA of binary witness prefix-closed language L with nsc(L¢) = 2".

Proof. (a) The upper bound is the same as for regular languages. To prove tightness, let
L be the binary language accepted by the NFA A shown in Figure 5.8. First, we prove the

reachability of every subset of {1,2,...,n} in the subset automaton of A. Notice that we

have {1} LA {n} LA {1,2,...,n}. Next, we can shift cyclically by one every subset

56

S: we use the string a if n ¢ Sorifn € S and n—1 € S, and we use the string ab
otherwise. Finally, we can remove state n from any subset containing n by b. It follows
that every subset of {1,2,...,n} is reachable. Thus for every set S, there exists a string
ug such that ug leads the subset automaton from {1} to S.

Now, we define a fooling set for complement of L. For every set S we define a string

vs as follows. First we define o(i), where ¢ € {1,2,...,n} as

ba, ifi1€ S,

o(i) = .
a, if1&S.

Let vg = o(n)o(n —1)...0(2)o(1). We show, that such a string is rejected by A from
every i € S and accepted from every i € S. Let ¢ ¢ S, then o(i) = a, and
ZLn))Z—i—l o(n—1) i1 o(n—2) o(i+1) ni> 1 o(i—1)...0(1) ;
so vg is accepted since every state is final. If i € S, then (i) = ba, and
P 7 i1y T g2y T T gy

and now A reads the first symbol of o(i) which is b. However, transition on b is not

I

defined in state n, therefore the string vg is rejected.

Now we show that F = {(ug,vs) | S C{1,2,...,n}} is a fooling set for L°.

(F1) Let S €{1,2,...,n}. The NFA A reaches subset S by ug, and from every state
q € S the string vg is rejected. So ugvg is rejected by A, so ugvg € L€.

(F2) Let S, T C {1,2,...,n} and S # T. Without loss of generality, there exists a
state 7, such that i € S and ¢ € T. So vr is accepted from i. Hence ugvr is accepted by
A, and therefore ugvr ¢ L. This completes the proof of (a).

(b) We first prove the upper bound. Let A = (@, %, 4, s, F') be an minimal NFA, such
that L(A) = L. Since A is a minimal NFA, every ¢ in @ is reachable from s and also
some final state is reachable from ¢. Let a state ¢ € () be reachable from s by a string
u. If a final state is reachable from ¢ by string v, then also uv reaches a final state, so uv
is accepted. Since L is suffix-closed, the string v reaches a final state from s. Therefore
every subset of () containing s is equivalent to {s} in the subset automaton of NFA A.
So subset automaton of A has at most 2! + 1, so nsc(L¢) < 2" 1 + 1.

To prove tightness, consider a language L accepted by automaton in Figure 5.9. If there

. . . . b !
is an accepting computation from a state ¢ on a string u such that ¢ i(—l> ¢ 5 f, where

. .) b ’
u = au’ or u =bu' and f is a final state, then there is a computation s M ¢ 5 f It
follows that L is suffix-closed. Therefore L is factor-closed. First, we prove the reachability
of every subset of {1,2,...,n — 1} in the subset automaton of A. Notice that we have

{0} & {1,2,...,n — 1}. Next, we can shift cyclically by one every subset S by using

57

Figure 5.9: The factor-closed witness L for complement, with nsc(L¢) = 2"~ + 1.

the string a. Finally, we can remove state n — 1 from any subset containing n — 1 by 0.
It follows that every subset of {1,2,...,n — 1} is reachable. Thus for every set S, there
exists a string ug such that ug leads the subset automaton from {0} to S. Now, we define
a fooling set for complement of L. For every set S we define a string vg as follows. First
we define o (i), where i € {1,2,...,n—1}aso(i) =baif i € S, and o(i) = a if i ¢ S. Let
vs =o0(n—1)o(n—2)---0(2)o(1). Similarly as in proof in case of prefix-closed in (a) we
can show that such a string is rejected by A from every ¢ € S and accepted from every
i€ S. Let A= {(ug,vs) | S CA{L,2,...,n—1}}. We can show that F = AU {(¢, (ba)™)}
is a fooling set for L°.

(c) Since subword-closed language is also factor-closed, the upper bound is 2"~ % + 1.
To prove tightness consider an NFA A, defined as follows:
A=(Q,%, s F), where @ = {0,1,2,...,n—1},s =0,F = Q and ¥ = {ag,bs | S C
{1,2,...,n—1}}, §(0,as) = S, for i > 0 0(i,as) = 0, 6(0,bs) =0, fori > 0: ifi & S,
then 0(i,bs) = {i} and if i € S, then §(¢,bs) = () . Such an NFA is shown in Figure 5.10.

Consider now the language L = L(A). Let w € L. The string w is accepted in a
i€ S. Any substring of w is accepted also in the i. Hence L is subword-closed. We can
show that A = {(ag,bs) | S C {1,2,...,n—1}} U{(g,ap} is fooling set for L. Therefore
nsc(L¢) > 2771 + 1. O

b@a b2
jo

a2

bbb 0)
aiz

a2

b@u bl
Figure 5.10: The subword-closed witness language L with nsc(L) = 3 and |X| = 2.

58

5.4 Concluding remarks and open problems

We investigated the nondeterministic state complexity of basic regular operations on the
classes of closed languages. For each class and for each operation, we obtained the tight
upper bounds. To prove tightness we usually used a binary alphabet. In all the cases
where we used a larger alphabet for describing witness languages, it remains open whether
the obtained upper bounds can be met also by languages defined over smaller alphabets.
We also considered the unary case. Our results are summarized in the following tables.

The tables also display the size of alphabet used to describe witness languages.

Class KNL || KUL || K-L |2
Prefix-closed mn 2 m+n-+1 2 m—+n 3
Suffix-closed mn 2 m+n-+1 2 m—+n 3
Factor-closed mn 2 m-+n+1 2 m+n 3

Subword-closed mn 2 m+n+1 2 m+n 3
Unary closed min(m,n) max(m,n) m+n—1
Regular mn 2 m+n-+1 2 m—+n 2
Unary regular mn; m+n + 1; >m+n—1
ged(m,n) =1 ged(m,n) =1 <m+n

Table 5.1: The nondeterministic complexity of union, intersection, and concatenation on

closed languages. The results for regular languages are from [24].

Class L~ x| L% 13| L¢ %]
Prefix-closed n 2 |n+1 2 2"
Suffix-closed n 2 | n+1 3 1427t
Factor-closed 1 1 |n+1 3 14271 2

Subword-closed 1 1 |n+l 2n—2| 14201 v
Unary closed 1 n n—1
Regular n+1 1 |n+1 2 2n 2
Unary regular | n+1 n 20(vnlogn)

Table 5.2: The nondeterministic complexity of star, reversal, and complementation on

closed languages. The results for regular languages are from [24,30].

59

Chapter 6

Ideal Languages

In this section we focus on ideal languages. Recall that a language L over an alphabet X
is a right (left, two-sided, all-sided) ideal if L = LY>* (L = ¥*L, L = ¥*L¥*, L = L1 ¥*,
respectively). We again get tight upper bounds on the nondeterministic complexity of
basic operations in each of these subclasses.

6.1 Properties of ideal languages

In this section we state and prove some useful propositions about some features of au-

tomata for ideal languages.

Proposition 6.1. Let L be a reqular language.

1. If L is a left ideal, then there exists a minimal NFA A such that L(A) = L and there
18 a loop on each symbol in the initial state and no transition goes to the initial state

from any other state.

2. If L is a right ideal, then there exists a minimal NFA A such that L(A) = L and
there is the unique final state in which there is a loop on each symbol and from which

no transition goes to any other state.

Proof. (a) Let A be a minimal NFA for L and s be the initial state.

Construct A" from A by adding loops on every symbol in s and by removing every
transition going to s from other states.

If we L(A"), we can split w to two strings u,v such that w = wv and there is a

computation such that after reading u, the initial state s occurs the last time and during

60

reading v no added transition is used. So v is accepted in A. Since L(A) is a left ideal,
uv € L(A). Therefore w € L(A).

If we L(A), we can split w to two strings u,v such that w = wv and there is a
computation such that after reading u, the initial state s occurs the last time and during
reading v, no transition goes to s. So every used transition is also in A’, so v € L(A").
Since there is a loop on every symbol in s in A’, string u is possible to read in s and
continue by reading v. Therefore uv € L(A’), so w € L(A’).

So, L(A) = L(A’) and A" is an NFA with required properties.

(b) Let A be a minimal NFA for L and s be the initial state.

Construct A" from A by adding loops on every symbol in every final states and by
removing every transition going out from every final state to other state.

If we L(A), then we can split w to two strings u, v such that w = uv and there is a
computation such that after reading u a final state occurs the first time, so during reading
u, no transition going from some final state is used. So wu is accepted also in A’. Since in
every final state there is a loop on every symbol, the string v is possible to read in a final
state, so w € L(A").

If we L(A"), then we can split w to two strings u, v such that w = uv and there is a
computation such that after reading u a final state occurs the first time, so during reading
u no transition going from final state is used. So w is accepted also in A. Since L(A) is a
right ideal, uv € L(A). So w € L(A).

So L(A) = L(A").

Notice that A’ has only one final state. Otherwise all final states would be equivalent

and we could merge them into one. But it would be the contradiction with minimality
of A. m

Proposition 6.2. Let L be a language over ¥ and let A be a minimal NFA such that
L(A) = L. Language L is two-sided ideal if and only if there is a minimal NFA A with
initial state with a loop on every input and no in-transition from some other state and

gust one final state with a loop on every input and no out-transition to some other state.

Proof. A language L is two-sided ideal if and only if it is left ideal and right ideal, therefore

proposition follows from Proposition 6.1. 0

Proposition 6.3. Let L be a language over . Language L is all-sided ideal if and only
if there is a minimal NFA A with just one final state and with a loop in every state on
every letter of an alphabet 33, such that L(A) = L .

61

a
Figure 6.1: Minimal NFA for language a* k >n —1

Proof. =: A language L is all-sided ideal, then also it is right ideal, hence by Propo-
sition 6.1 there is just one final state with loop on every input symbol. Every state is
reachable and as well as from every state is possible to get to final state. Let us consider
a state g. There are strings u, v, such that u leads from initial state to ¢ and v leads from
q to final state. Since L is all-sided ideal, every string u - 3* - v is accepted by A, so we
can add a loop in ¢ on every input symbol.

<«: Since in every state is a loop on every input symbol, we can insert in every position

of any accepted string arbitrary string, what means that L is all-sided. O

6.2 Unary ideal languages

In the end of this chapter we pay attention to unary ideal languages. Let X = {a}. If
L is a right ideal and a’ is its shortest string, then L = a‘a*. Moreover L = a*a’ =
a*a‘a* = a* W a’, hence left, right, two-sided and all-sided ideals coincide. An NFA for

such language L has form shown in Figure 6.1.

Theorem 6.4. Let m,n > 2. Let K, L be unary ideals with nsc(K) = m,nsc(L) = n.
Then

(a) nse(K N L) = max{m,n},
(b) nsc(K U L) = min{m, n},
(¢) nsc(KL) =m+n—1,
(d) nsc(L*) =n—1,

(e) nsc(L¥) = n,

(f) nsc(L¢) =n — 1.

Proof. (a) Let k = max{m,n}. The string a*~! is the shortest string in K N L, so
KN L = a"1a*, therefore nsc(K N L) = max{m,n}.

62

(b) Let k = min{m,n}. The string a*! is the shortest string in K UL, so K UL =

a*~la*, therefore nsc(K U L) = min{m,n}.

(c) It follows directly from Theorem 6.7, because witness languages were over unary
alphabet.

a /
I

(0 - g@g H@;H@

Figure 6.2: The construction an unary NFA for L*

(d) Let A be minimal NFA for L. We can get NFA C for L* from A by applying three
next steps: (1) omit state n — 1 with all connected transitions, (2) state 0 set as
final, (3) add transitions (n — 2,a,n — 2),(n — 2,a,0). The construction an NFA
for L* is shown in in Figure 6.2, where dashed lines are added transitions, state 0

is initial and final and crossed state and transitions are omited from A.

NFA C has n — 1 states, therefore nsc(L*) < n — 1. To prove tightness consider
set of pairs F = {(a’,a"'7") | 0 < i < n — 2}. Notice that every string in L* has
length 0 or at least n — 1. The set F is fooling set for L*, so nsc(L*) > n—1. Hence
nsc(L*) =n — 1.

(e) A reversal of unary string is the same, so L = L, therefore nsc(L?) = n.

(f) Let A be minimal NFA for L. The form of such automaton is shown in Figure 6.1.
The automaton is also deterministic, so we can interchange final and non-final states
to get NFA A’ for complement L°. In A" we can omit the state n — 1, because it is
dead state. So nsc(A’) =n — 1.

H@C} H@
H ﬁ

Figure 6.3: Unary ideal language and its complement

63

6.3 Operations on ideal languages

First we consider the intersection operation on ideal languages.

Theorem 6.5 (Intersection). Let m,n > 1. Let K and L be ideal languages with
nsc(K) = m and nsc(L) = n. Then nsc(K N L) < mn. The bound is met by binary
all-sided ideals.

Proof. The upper bound mn holds since it holds for regular languages. For tightness,
consider the binary all-sided ideals

K ={w € {a,b}* | #4(w) > m — 1} and

L =A{w e {a,b}* | #o(w) > n—1}.
with nsc(K) = m and nsc(L) = n. Let F = {(a'¥/,a™ =" 17 |0 <i<m—1and 0 <
Jj < n—1} be a set of mn pairs. To prove the theorem, we only need to show that F is a
fooling set for K N L. The concatenation of the first and the second component of each
pair in F gives a string w with #,(w) = m — 1 and #,(w) = n — 1. Since all such strings
are in K N L, condition (F1) is satisfied. To prove (F2), let (i,j) # (k,¢). If i < k, then
a't’ - am 1=*pr=1=¢ has less then m — 1 a’s, so it is not in K N L. If i = k and j < ¢, then
the string a’®’/ - a™ 17" "1~¢ has less than n — 1 b’s, so it is not in K N L. Hence F is a

fooling set for K N L. O]

We continue with the union operation.

Theorem 6.6 (Union). Let m,n > 3. Let K and L be ideal languages over an alphabet
¥ with nsc(K) = m and nsc(L) =n. Then

(a) if K, L are right ideals, then nsc(K U L) < m +n,
(b) if K, L are left ideals, then nsc(K UL) <m+n —1,

(¢c) if K, L are two-sided or all-sided ideals, then nsc(K UL) < m+n —2,
and all the bounds are tight if |X| > 2.

Proof. (a) We first prove the upper bound. Let A be a minimal m-state NFA for K and
B be a minimal n-state NFA for L. Since K and L are right ideals, A and B have exactly
one final state which goes to itself on each symbol. We can get an e-NFA for K U L from
NFAs A and B by merging the final states of A and B and by adding a new initial state
connnected to the initial states of A and B by e-transitions. The resulting e-NFA has
m + n states, so the corresponding NFA for K U L has also m + n states.

To prove tightness, consider the binary right ideals K and L shown in Figure 6.4.

Now we show that minimal NFA for K U L needs m + n states.

64

) gb s

Figure 6.4: Witnesses right ideals for union.

To this aim let

A= {(a™ ™ g™ 2p) | 0 <i <m—2}U{(a™?b,e)}, and

B= {1 p"2a) |0 < j <n—2}
The sets AUB, AU{(g,b" 2a)} and BU{(g,a™ ?b)} are fooling sets. We first prove that
A is fooling set. Since a™ 'Ta™27p = ¢™ '™ % € K, and ™ ?b € K, condition (F1)
is satisfied. To prove (F2) we have two cases:

(1) Consider two pairs of forms (a™ '™ a™ 27%) and (a™ '™, a™ 279b) where 0 <
i < j<m—2. Then ¢ '*.aqm277p = ¢ 1+(m=2=G=0)p_ After reading the string
a1+ m=2=(=9) NFA A is in the state m — 2 — (j — 4), in which there is no transition
on b since m — 2 — (j — i) < m — 2. So that string is rejected by NFA A. The string is
rejected also by NFA B, since in the initial state of B, there is no transition on a. Hence,
am . gm=2=ip ¢ KU L.

(2) Consider a pair of a form (a™™ ' @™ 27%) with 0 < i < m — 2 and the pair
(a™2b,e). Then a™ . ¢ & K U L because it does not contain any symbol b.

Hence A is fooling set.

A proof that B is fooling set is symmetric to case (1).

Now consider one pair from A and one pair from B. To prove (F2) we have two cases:

(1) Consider two pairs of forms (a™ ' a™27) and (0" '7,0""*Ja) where 0 < i <
m—2and 0 < j <n-—2 Ifi<m~—2, then a™ 1+ . " 27Jq is rejected by NFA A,
because in state ¢ there is no transition on b, and in NFA B it is rejected immediately
in the initial state, in which there is no transition on a. In the case j = n — 2, the
string does not contain any b. Hence a™ '™ . " 27Jg ¢ K UL. If i = m — 2, then
pr1ti L gm=2=(m=2)p — pnHi does not contain any a, so it is rejected by both NFA A, B.
Hence b? 117 . gm=2=(m=2)p — pj+1 ¢ K U L.

(2) For pairs (a™ 2b,¢) and (6" ' 0" *Jqa) with 0 < j < n —2, we have b" 17 . ¢ &

K U L because this string does not contain any symbol a.

65

Hence A U B is a fooling set.

In case AU {(g,b" 2a)}, we have ¢-0"2a € K UL, so condition (F1) is satisfied. Now
we prove condition (F2). For a pair (a™ ' a™ 27) with 0 < ¢ < m — 2, the string
g-a™ > is not in K U L. For the pair (a™2b,), the string € - ¢ is not in K U L. Hence,
AU {(g,0"%a)} is a fooling set. In the case of BU {(g,a™2b)} the situation is similar.

By Lemma 2.2 we have nsc(K U L) > |A| + |B|+ 1 =m + n.

Hg i R
e 00

Figure 6.5: Witnesses left ideals for union.

(b) We first prove the upper bound. Let A be a minimal m-state NFA for K and
B be a minimal n-state NFA for L. Since K and L are left ideals, we may assume by
Proposition 6.1 that A and B have a loop on each symbol in the initial state, and no

transition from some other state goes to the initial state.

m—1 states

n — 1 states

Q O

@
O

Figure 6.6: General construction of automaton for union of left ideals

We can get an NFA for K U L from NFAs A and B by merging the initial states.

All original transitions from initial states of NFAs A, B go from new merged state to
states as before merging. See Figure 6.6. The resulting NFA has m + n — 1 states, so
nsc(KUL)<m+n—1

To prove tightness, consider two left ideals shown in Figure 6.5. Now we show that
minimal NFA for K U L needs m + n — 1 states. To this aim let A= {(a’,a™ 7% |0 <

66

i<m-—1}and B={(/,0" 7)) |1 <j<n—-2}U{®" ! ab"?)}. The set AUB is
fooling set for K U L, so nsc(K U L) > m +n — 1, therefore nsc(K UL) =m+n — 1.
(c) For upper bound, let A be a minimal m-state NFA for K and B be a minimal
n-state NFA for L. Since K and L are left ideals and also right ideals, we may assume
by Proposition 6.1 that A and B have properties claimed there. We can get an NFA for
KUL from NFAs A and B by merging the initial states, and by merging the final states of
A and B. The resulting NFA has m +n — 2 states and we leave to the reader to verify the
corectness of the construction. To prove tightness, consider languages K = {w € {a,b}" |
#qo(w) >m—1} and L = {w € {a,b}* | #4(w) > n—1}, so K and L are all-sided ideals.
Notice that each string in K U L has at least m — 1 symbols a or at least n — 1 symbols
b. Let A={(a’,a™ ") |0<i<m—1}and B={(H,b0"177)| 1 <j<n-—2} Theset
AUB is fooling set for K UL and contains m+mn — 2 pairs, so nsc(KUL) > n+m—2. [

In the next theorem we consider the concatenation operation and we use unary ideals

to prove tightness.

Theorem 6.7 (Concatenation). Let m,n > 3. Let K and L be ideal languages over %
with nsc(K) = m and nsc(L) = n. Then nsc(KL) < m+n —1 and the bound is tight if
x| > 1.

Proof. First, let K, L be left ideals. Let A = (Qa,%,94,54, Fa) and B = (@p, %, 05, sg, F)
be minimal NFAs for K, L. Since K and L are left ideals, we may assume by Proposi-
tion 6.1 that A and B have a loop on each symbol in the initial state, and no transition
from some other state goes to the initial state. We can get an NFA C for KL from NFAs
A and B as follows: For every f in F4 add a loop on every symbol and add transitions
(f,a,q) when there is a transition (sg,a,q) in B, where f € Fy,a € 3,9 € Qp \ {sB}-
Set Fo = Fp,Qc = QaUQp \ {sg}. The resulting NFA has m + n — 1 states, so
nsc(KL) <m+n—1.

Now, let K, L be right ideals. Let A = (Qa,%,04,54,{¢s}) be a minimal m-state
NFA for K and B = (Qp, %, 95, s, {pr}) be a minimal n-state NFA for L. Since K and
L are right ideals, we may assume by Proposition 6.1 that A and B have a loop on each
symbol in the unique final state, and no transition goes from the final state to some other
state. We can get an NFA C for KL from NFAs A and B by merging final state of A
with initial state of B and excluding of merged state from set of final states as follows:
C = (Qo, 2, 9c, 54 {p), where Qo = (Qu\ {a7}) U(Qs\ {55} U{nas} and for every a
in ¥ we have 0c(nap,a) = 04(qr,a) Udp(sp,a). The resulting NFA has m +n — 1 states,
sonsc(KL) <m+n—1.

67

Two-sided and all-sided ideals are also right ideals, so upper bound is the same as
in that cases. To prove tightness, consider all-sided ideal languages K = {a™ la* |
k >0} and L = {a"'a* | kK > 0}, with nsc(K) = m and nsc(L) = n. The set
F ={(a',a™™ 27" | 0 <i < m+n— 2} is fooling set for KL, so nsc(KL) > |F| =

m+n—1. O

Let us continue with star and reversal.

Theorem 6.8 (Star). Let n > 2. Let L be ideal languages over ¥ with nsc(L) = n.
Then nsc(L*) < n+ 1 and the bound is met by a binary all-sided ideal.

Proof. The upper bound n + 1 holds since it holds for regular languages. For tightness,
consider the binary all-sided ideal L = {w € {a,b}* | #.,(w) > n — 1} with nsc(L) = n.
Let F = {(ba’,a" ") | 0 < i < n—1}U{(g,¢e)} be a set of n + 1 pairs. To prove
the theorem, we only need to show that F is a fooling set for L*. Since €-¢ € L* and
ba'-a" 17 € L*, where 0 < i < n—1, condition (F1) is satisfied. To prove (F2), consider
two cases: (1) Pairs of forms (ba',a""'7b) and (ba’,a" '77b), where 0 <1 < j <n —1.
Then ba’-a™'=7b = ba"'~U~Db, which is the string not equal to € and with small number
of a, so ba’ - a"'7Ib & L*. (2) Pairs (ba’,a" ') and (e, ¢), where 0 <i < n — 1. Then
if i < n — 1, the string ba’ - € € L* and if i = n — 1, the string € - a"*~?b = b ¢ L*. Hence
F is fooling set for L*, so nsc(L*) > |F| =n+ 1. O

Theorem 6.9 (Reversal). Let n > 3. Let L be ideal languages over ¥ with nsc(L) = n.

(a) If L is right or two-sided or all-sided ideal, then nsc(L%) < n and the bound is tight
if 8] > 1.

(b) If L is left ideal, then nsc(L?) < n + 1 and the bound is tight if |X| > 3.

Proof. (a) Let L be a right ideal. We first prove the upper bound. Let A be a minimal
n-state NFA for L. We can construct an NFA Af for LT by reverse all transition and
setting initial state of A to final state and every final state of A to initial state. Since
by Proposition 6.1, NFA A has unique final state, the A® has unique initial state and
therefore nsc(L¥) < n. Two-sided and all sided ideals are also right sided, so the upper
bound is also n. To prove tightness, consider unary language L with nsc(L) = n. Such a
language is the same for L%, so nsc(L%) = n.

(b) Let L be a left ideal. Let A be a minimal n-state NFA for L. After construction
of A% described in case (a) above we get NNFA with possible more initial states, so after
adding new extra initial state nsc(L®) < n + 1. To prove tightness, consider a language
L= (a+b+c)*b(a"?c)*(e + a + a*) shown in Figure 6.7.

68

a,b,c

Figure 6.7: The left ideal language L with nsc(L?) =n + 1.

Let A= {(ca’,a"?7b) | 0 < i < n—3}U{(ca"?b,e)}, and B = {(ca™2,b)}. Minimal
NFA for L needs n + 1 states, because AU B, AU {(g,b)} and BU {(¢,ab)} are fooling
sets. We show that AUB, AU{(g,b)} and BU{(e,ab)} are fooling sets. Consider three
cases: (1) The set AU B. Since reversals of ca’ - a">7'b for 0 < i < n — 2 are in L and
also reversal of ca™”2b - ¢ is in L, the condition (F1) is satisfied. To prove (F2) we have
two cases:

(1.1) Consider two pairs (ca’,a™ >7'b) and (ca’,a™ ?77b) where 0 < i < j < n — 2.
Then in the string ca’a® 277b are less a’s than n — 2, so ca® - a" 277b & L%,

(1.2) Consider pair (ca’,a”27'), where 0 < i < n — 2 and (ca”2?b,e). Then ca’ - ¢
does not contain any symbol b, so ca’ - € ¢ L.

Hence, the set A U B is fooling set.

(2) The set AU{(e,b)}. The condition (F1) for A was proved in case (1) and for (e, b)
is also satisfied. To prove (F2) we have two cases:

(2.1) Consider (ca’,a"%7b), where 0 < i < n —3 and (£,b). Then ca’ - b contains less
than n — 2 a’s between c and b, so ca’ - b ¢ L.

(2.2) Consider (ca™2b,e) and (g,b). Then e-& & L

Hence, the set AU {(g,b)} is fooling set.

(3) The set BU {(g,ab)}. The reversals ca® 2 -b and ¢ - ab are in L so condition
(F1) is satisfied. Concatenation ca” 2 - ab has more than n — 2 a’s between b and ¢, so
ca"? - ab & L%, which prove (F2).

Hence, the set B U {(g,ab)} is fooling set. By Lemma 2.2 we have nsc(L®) > |A| +
Bl +1=mn+1. O

As the last operation, we study complementation on ideal languages.

Theorem 6.10 (Complementation). Let n > 3. Let L be a language over ¥ with

nsc(L) = n.
(a) If L is a right or left ideal, then nsc(L¢) < 2"~'. The bound is tight if || > 2.
(b) If L is a two-sided ideal, then nsc(L¢) < 2"72. The bound is tight if |2| > 2.

69

(¢c) If L is an all-sided ideal, then nsc(L¢) < 2"72. The bound is tight if |3| > 2772,

Proof. (a) First, let us consider right ideal languages.

Figure 6.8: An NFA of a binary right ideal language L with nsc(L¢) = 2!

Let A= (Q,%,6,s, F) be a minimal n-state NFA for a right ideal L. Then by Propo-
sition 6.1 the NFA A has a unique final state f which goes to itself on every input symbol,
that is, we have 6(f,a) = {f} for each a in ¥. Tt follows that in the subset automaton of
the NFA A, all final states are equivalent since they accept all the strings in ¥*. Hence
the subset automaton has at most 2”71 + 1 reachable and pairwice distinguishable states.
By interchanging the final and non-final states, we get a DFA B for L°. The DFA B has
a dead state. After removing the dead state, we get an NFA N for L¢ of at most 2"}
states.

To prove tightness, let L = G - b- (a + b)*, where G is the language accepted by the
binary (n — 1)-state NFA N shown in Figure 3.1. Then L is accepted by the n-state NFA
N shown in Figure 6.8 and by Proposition 6.1 it is a right ideal. The NFA N is minimal
because F = {(a’,a"27) | 0 <i <n—2}U{(a"2b,e)} is a fooling set for L.

Let F = {(us,vs) | S C {1,2,...,n — 1}} be a fooling set for G¢ as described
in [30, Theorem 5|. We prove that the set F' = {(ug,vs-b) | S C{1,2,...,n—1}}is a
fooling set for L°.

(F1) For each S, the string usvg is in G°, so it is not accepted by N. It follows that
the string ugsvgb is not accepted by A. Thus ugvgb is in L°.

(F2) Let S # T. Then ugvr ¢ G° or urvs ¢ G°. In the former case, the string
ugvr is accepted by the NFA N, and therefore the string ugvrb is accepted by A. Hence
ugvrb ¢ L°. The latter case is symmetric.

Hence F' is a fooling set for L¢, which means that nsc(L) = 2",

Second, let us consider left ideal languages.
Let A =(Q, 3,0, s, F') be a minimal n-state NFA for a left ideal L. By Proposition 6.1

we can add a loop in the initial state s on every input symbol, we get an NFA N which is

70

Figure 6.9: An NFA of a binary left ideal language L with nsc(L¢) = 271

equivalent to A. Since the initial state s of NV goes to itself on every input symbol, each
reachable subset of the subset automaton of NV contains the initial state s, so the number
of all reachable subsets is at most 2" 1.

To prove tightness, let the language L be accepted by NFA A in Figure 6.9. Then L
is by Proposition 6.1 binary left ideal. The NFA A is minimal because F = {(a’,a""17) |
0 <i <n— 1} is fooling set for L.

We are going to consider L¢. Let us consider set of states {1,2,...,n — 1} in NFA A.
Our aim is to find two strings ug and vg for every subset S of {1,2,...,n — 1} such that
F = {(us,vs) | S € {1,2,...,n — 1}} would be a fooling set for L°. Such strings are
described in Preliminaries in Theorem 3.1, for a little different automaton but description
is the same unless the size of set of states. Summarize the property of strings ug, vg:

(1) string ug is such that the state 1 goes to the set S after reading ug
(2) if p € S, then the string vg is rejected by the NFA A from the state p.
(3) if p ¢ S, then string vg is accepted by the NFA A form the state p.
The proof is almost the same as in |30, Theorem 5| and we omit it.

Now, we prove that the set 7' = {(a - us,vs) | S C {1,2,...,n — 1}} is a fooling set
for L°.

(F1) For each S, the string usvg is not accepted from state 1, so it follows that the
string augvg is not accepted by A. Thus augvg is in L.

(F2) Let S # T. Then ugvr ¢ L¢ or upvs ¢ L. Let usvr be accepted by the NFA
A, and therefore the string augvr is accepted by A. Hence ausvy ¢ L°. The latter case
is symmetric.

Hence F' is a fooling set for L¢, which means that nsc(L) = 2" 1.

(b)

Let A = (Q,%,6,s, F) be a minimal n-state NFA for a two-sided ideal L. Then by
Proposition 6.2 A has a unique final state f which goes to itself on every input symbols.
We can also by Proposition 6.2 add a loop in initial state s for every input symbol. That
is, we have 0(f,a) = {f} for each a in 3 and §(s,a) = {s} for each a in X. Tt follows

that in the subset automaton of the NFA A are at most 2" ! reachable subsets, but every

71

Figure 6.10: An NFA of a binary two-sided ideal language L with nsc(L¢) = 2m~2

ap, a1, a2, 012

a1, a12

ap, ai, az, a2 ag, az

a@7 ai, az, 12
a@7 ai, az, 12

ap, a1

Figure 6.11: Example of a all-sided ideal language with NFA of four states and alphabet

Y= {a@>a1,a27alz}

subset containing final state f are equivalent, hence the subset automaton has at most
2"=2 4 1 reachable and pairwise distinguishable states. By interchanging the final and
non-final states, we get a DFA B for L°. The DFA B has a dead state. After removing
the dead state, we get an NFA N for L¢ of at most 2" 2 states.

To prove tightness, let the language L be accepted by NFA A in Figure 6.10. Then
L is by Proposition 6.2 binary two-sided ideal. The NFA A is minimal because F =
{(a",a"27"b) | 0 < i < n—2}U{(a"2b,e)} is fooling set for L. Let us define set of
pairs as F' = {(a - ug,vs-b) | S C {1,2,...,n — 2}}, where strings ug, vg are define the
same way as in Preliminaries in Theorem 3.1. The set F’ is fooling set for L¢ with 272
elements, thus nsc(L¢) > 2772,

()

The upper bound is the same as for two-sided ideals. To prove tightness, let ¥ =
{as | S C{1,2,...,n— 2}} be an alphabet with 2”2 symbols. Consider the language L
accepted by the NFA A = ({0,1,...,n — 1},%,0,0,{n — 1}) where for each symbol ag,

we have

72

6(0,as) = {0} U S;
d(i,as) ={i} ifi € S;
d(i,as) ={i,n—1}ifie {1,2,...,n—2}\ S;
d(n—1,ag) = {n—1}.
At the Figure 6.11 is shown NFA with n = 4.
Since in each state of A, we have a loop on every input symbol, the language L is an
all-sided ideal by Proposition 6.3.

Let F = {(as,as) | S C{1,2,...,n—2}}. Let us show that F is a fooling set for L.

(F1) For each S, the NFA A reaches the set {0} US by ag. By the next ag, the NFA
A remains in the set {0} U S, and rejects. Thus agag € L°.

(F2) Let S and T be two subsets of {1,2,...,n — 2} with S # T. Without loss of
generality, there is a state ¢ with i € S and i ¢ T. By ag, the NFA A goes to {0} U S.
Since i € S, the NFA A goes to i by ag. Then it goes to the state n — 1 by ar since i ¢ T.
Hence A accepts agar, and therefore agar ¢ L°.

Thus F is a fooling set for L¢. It follows that nsc(L¢) > 2"2. O

6.4 Concluding remarks and open problems

We investigated the nondeterministic state complexity of basic regular operations on the
classes of ideal languages. For each class and for each operation, we obtained the tight
upper bounds. These bounds are the same as in the general case of regular languages for
intersection and star on all four classes, and reversal on left ideals, while in the remaining
cases the complexity is always smaller than for regular languages.

To prove tightness we usually used a binary alphabet which is always optimal. In all
the cases where we used a larger alphabet for describing witness languages, It remains
open whether the obtained upper bounds can be met also by languages defined over
smaller alphabets. We also considered the unary case. Our results are summarized in the

following tables.

73

Class KNL || KUL || K-L 12|
Right ideal mn 2 m+n 2 m-+n—1 1
Left ideal mn 2 m+n—1 2 m+n—1 1
Two-sided ideal mn 2 m+n—2 2 m+n—1 1
All-sided ideal mn 2 m-+n—2 2 m-+n—1 1
Unary ideal max(m,n) min(m,n) m+n—1
Regular mn 2 m+n+1 2 m+n 2
Unary regular mn; m+n + 1; >m+n—1
ged(m,n) =1 ged(m,n) =1 <m+n

Table 6.1: The nondeterministic complexity of intersection, union, and concatenation on

ideal languages. The results for regular languages are from [24].

Class L~ 3| L® |3 L¢ |2
Right ideal n+1 2 n 1 on-t
Left ideal n+1 2 |n+1 3 gn-t
Two-sided ideal | n+1 2 n 1 on—2
All-sided ideal | n+1 2 n 1 on—2 on—2
Unary ideal n—1 n n—1
Regular n+1 1 |n+1 2 2" 2
Unary regular | n+1 n 20(vnlogn)

Table 6.2: The nondeterministic complexity of star, reversal, and complementation on

ideal languages. The results for regular languages are from [24].

74

Chapter 7
Convex Languages

In this chapter we study the nondeterministic complexity of basic operations on convex-
languages. Recall that a language L is prefix-convex if u,w € L and wu is a prefix of w imply
that each string v such that u is a prefix of v and v is a prefix of w is in L. Suffix-, factor-,
and subword-convex languages are defined analogously. Except for complementation on

factor- and subword-convex languages, we always obtain tight upper bounds.

7.1 Properties of convex languages

Our first proposition provides a sufficient condition on a DFA to accept a prefix-convex

language.

Proposition 7.1. Let D = (Q,%,-,s, F) be a DFA. If for each final state q and each
symbol a in X, the state q - a is final or dead, then L(D) is prefiz-convex.

Proof. Let u and w be strings in L(D) such that u is a prefix of w, that is, w = uv for a
string v. In the accepting computation on uv, the state reached after reading u is final. It
follows that all the following states in this computation must be final because otherwise

w would be rejected. Hence L(D) is prefix-convex. O

7.2 Unary convex languages

In this chapter we examine unary convex languages and nondeterministic state complexity
of operations on them. Notice that if i < j, then a’ is a prefix, suffix, factor, and subword

of a’. Tt follows that in the unary case all convex classes coincide.

75

Let L be a unary convex language and k£ be the length of the shortest string in L. If
L is infinite, then L = {a' | ¢ > k}. If L is finite and ¢ is the length of the longest string
in L, then L = {a’ | k < i < (}. In the first case the set {(a’,a*) | 0 < i < k} is a
fooling set for L. In the second case the set {(a’,a*"%) | 0 < i < £} is a fooling set for L.
It follows that the minimal incomplete DFA for L, which has k + 1 states if L is infinite,
and ¢ + 1 states if L is finite, is a minimal NFA for L.

The next theorem provides the tight upper bounds for unary convex languages. All the
results, except for the intersection, hold true for free languages too; notice that witness

languages for all operations, except for intersection, are free.

Theorem 7.2 (Operations on unary convex languages). Let m,n > 2. Let K and

L be unary convez languages with nsc(K) = m and nsc(L) = n. Then
(1) nsc(K N L),nsc(K U L) < max{m,n},

(2) nsc(KL) <m+n—1,
(3) nsc(L*) <n —1, nsc(L?) <n, and nsc(L°) <n+1,

and all these upper bounds are tight.

Proof. The upper bound for intersection and union can be verified by the case analysis,
where K and L can be final or non-final. The upper bounds for concatenation and
complement follow from the fact that the minimal NFAs can be incomplete deterministic.
The upper bound for reversal follows from the fact that L% = L.

Now we prove an upper bound for star. Let L be a unary convex language with
nsc(L) = n. If L is infinite, then L = a" 'a*, and the language L* is accepted by the
(n — 1)-state NFA N = ({0,1,...,n—2},{a},-,0,{0}) where i -a={i +1} ifi <n—2
and i-a={0,n—2}ifi=n—2.

If L is finite, then there is an integer k such that L = {a’ | k < i < n — 1}. Then
the (n — 1)-state NFA for the language L* can be constructed from a minimal incomplete
DFA ({0,1,...,n — 1},{a},,0,{k,k + 1,...,n — 1}) for L by making the state n — 1
initial, adding the transition (n — 1, a, 1), and removing the state 0.

m—1

The languages a and a"1a* meet the upper bound for intersection, the languages

m—1 n—1 n—1

a and a meet the upper bound for union and concatenation, the language a
meets the upper bound for square, star, reversal, and the language {a’ | 0 <i <n — 1}

meets the upper bound for complementation. O

76

7.3 Operations on convex languages

We start with the operations of intersection and union.

Theorem 7.3 (Intersection). The nondeterministic state complexity of intersection on
all the four classes of convex languages is mn. The upper bound is met by binary subword-

convex languages, and it cannot be met in the unary case.

Proof. The upper bound is the same as for regular languages. Binary subword-closed,
so also subword-convex, languages meeting the bound mn for their intersection are given
in Theorem 5.6. By Theorem 7.2, the complexity of intersection in the unary case is

max{m, n}, so the bound mn cannot be met in the unary case. O

Theorem 7.4 (Union). The nondeterministic state complezity of union on all the four
classes of convex languages is m~+n-+1. The upper bound is met by binary subword-convex

languages, and it cannot be met in the unary case.

Proof. The upper bound is the same as for regular languages. Binary subword-closed,
so also subword-convex, witnesses are described in Theorem 5.5. In the unary case, the

complexity of union is max{m,n} by Theorem 7.2. O

Let us continue with concatenation, star, and reversal.

Theorem 7.5 (Concatenation). The nondeterministic state complezities of concatena-
tion on each of the four classes of convex languages is m +n. The upper bound is met by

ternary subword conver languages.

Proof. The upper bound is the same as for regular languages. Ternary subword-closed, so
also subword-convex, languages meeting the bound m +n for concatenation are described
in Theorem 5.7. [

Theorem 7.6 (Star). The nondeterministic state complexity of star on all the four
convex classes is n + 1. The upper bound is met by a binary subword-conver language,

and it cannot be met in the unary case.

Proof. The upper bound is the same as for regular languages. The binary all-sided ideal,
so subword-convex language, meeting the upper bound is described in Theorem 5.8. As
shown in Theorem 7.2, case (3), the upper bound cannot be met by any unary convex

language. O]

77

Theorem 7.7 (Reversal). The nondeterministic state complexity of reversal on all the
four classes of convex languages is n+1. All the witnesses are binary, except for subword-
conver languages, where the witness is defined over an alphabet of size 2n — 2. The upper

bound cannot be met by any unary convex language.

Proof. The upper bound is the same as for regular languages. The subword-closed, so
also subword-convex, witness defined over an alphabet of size 2n—2 is described in The-
orem 5.9. Binary factor-closed, so also factor-convex, language given by Theorem 5.9,
proves the tightness for the remaining convex classes. The binary alphabet is optimal

since L = L* for every unary language L. [

Now we turn our attention to the complementation operation. To get an automaton
for the complement of a language L represented by an n-state NFA, we first apply the
subset construction to this NFA. Then, we interchange the final and non-final states.
This gives an upper bound 2". The binary witness is provided in [30, Theorem 5|, and
binary prefix-closed language meeting the bound 2" is described in Theorem 5.10. The
same theorem provides tight upper bound 2"~! + 1 for complement on suffix-, factor-
, and subword-closed languages, with a binary suffix- and factor-closed witness and a
subword-closed witness defined over an alphabet of size 2".

The aim of the next part is to describe a suffix-convex language meeting the upper
bound 2" for complementation. Notice that it must be so called proper suffix-convex
language, that is, a suffix-convex language which is neither suffix-free nor suffix-closed nor
left-ideal, since as mentioned above, the nondeterministic complexity of complementation
on suffix-closed and suffix-free languages is less than 2"; cf. Theorems 5.10, 4.22, and

’

4.37, and the same is true for left ideal languages; cf. Theorem 6.10.

Lemma 7.8. Let n > 3. There exists a suffiz-convex language L over a 5-letter alphabet
such that nsc(L) = n and nsc(L¢) = 2™,

Proof. Let L be the language accepted by the nondeterministic finite automaton A =
({0,1,...,n—1},{a,b,¢,d,e},0,-,{1,2,...,n—1}), where the transitions on a and b are
shown in Figure 7.1, the transitions on ¢, d, e are as follows:

0-c={0,1,...,n—1},

0-d={1,2,...,n—1},

q-e={n — 1} for each state q of A,
and all the remaining transitions go to the empty set. In the NFA A, the final state 0
goes to itself on a,b,c and to the empty set on d and e. Next, every other state of A

goes to 0 on d, and the state n — 1 goes to {0,1,...,n— 1} on e.

78

Figure 7.1: Transitions on a and b in suffix-convex witness for complementation.

Thus in the subset automaton of A%, each final subset, that is, a subset containing
the state 0, goes either to a final subset containing 0 or to the empty set on each input
symbol. By Proposition 7.1, L® is prefix-convex, so L is suffix-convex.

Let us show that each subset of the state set of A is reachable and co-reachable. Notice
that

{0} -a=0,{0}-b={0},

0-¢c={0,1,...,n—1}, and

0-d={1,2,...,n—1}.

Moreover, we can shift each subset of {1,2,...,n — 1} cyclically by one using the symbol
a. Next, we can eliminate the state 1 from each subset containing 1 by b. It follows that
each subset is reachable.

To prove co-reachability, notice that the initial subset of A is {1,2,...,n— 1} and it
goes to {0,1,...,n — 1} on e. We again use symbol a to shift subsets of {1,2,...,n— 1}
and symbol b to eliminate the state 1. It follows that every subset is co-reachable. By

Proposition 2.7, we have nsc(L¢) = 2". O

The next theorem summarizes our results on the nondeterministic complexity of com-

plementation on the classes of convex languages.

Theorem 7.9 (Complementation). The nondeterministic state complexity of com-
plementation is 2" on prefiz- and suffix-conver languages. The prefiz-conver witness is
binary, and the suffiz-convex witness is defined over a 5-letter alphabet. On factor- and
subword-convex languages, the complezity of complementation is at least 2" ' 4+ 1 and at

most 2.

Proof. Binary prefix-closed witness is given in 5.10. Lemma 7.8 provides a suffix-convex
witness over a 5-letter alphabet. The lower bound for factor- and subword-convex lan-

guages follows from 5.10 as well. m

79

7.4 Concluding remarks and open problems

Tables 7.1 and 7.2 summarizes our results on convex languages. In the second table, the -

means that the complexity is the same as in the previous column. This table also displays

the sizes of alphabet used for describing wittnes languages. Whenever the alphabet is

binary or unary, it is always optimal, otherwise we do not know whether the upper

bounds are tight also for smaller alphabets. The exact complexity of complementation in

the classes of factor-convex and subword-convex languages remains open.

KNL KUL KL L Le
Unary convex max{m,n} max{m,n} m+n—1 |n—1 n+1
Unary regular [24] mn; m4+n+1; | >m+n—1|n+1|20Wnben)
ged(m,n) =1 | ged(m,n)=1| <m+n

Table 7.1: Nondeterministic complexity of operations on unary convex classes.

Regular [24,30] | Prefix- | Suffix- Factor- Subword-convex
KNL mn 2 2 2 2 2
KUL |m+n+1 2 2 2 2 2
KL m+n 2 3 3 3 3
Lr n+1 1 2 2 2 2
LE n+1 2 2 2 . 2 2n — 2
Le 2" 2 2 5| >2nt 41 2 [>2v 7t A
< on <o

Table 7.2: Nondeterministic complexity of operations on convex classes. The - means that

the complexity is the same as in the previous column.

80

Conclusions

In this thesis, we studied the nondeterministic state complexity of basic unary and binary
operations on the subregular classes of free, closed, ideal, and convex languages. After
providing basic definitions and notations, we summarized the known results concerning
the complexity of basic operations on the above mentioned classes in the deterministic
case, and on the class of regular languages in the nondeterministic case in Chapter 3.
In the next chapter, we described upper and lower bound methods used throughout this
thesis.

In Chapter 4 we examined the operations on the classes of prefix-, suffix-, factor-,
and subword-free languages, and we obtained tight upper bounds in each case. The most
interesting result of this part of the thesis is obtaining the complexity of complementation
for prefix-, suffix-, and factor-free languages. In each of these three classes, we described
witness languages over a ternary alphabet, and we were able to show that the upper
bounds cannot be met by any binary languages.

In Chapters 5 and 6 we studied closed and ideal languages. For each of these eight
subclasses, we again found the exact nondeterministic complexity of each considered oper-
ation. Except for three cases, all our witness languages are desribed over a fixed alphabet
of size at most three, and moreover binary alphabets are always optimal.

In Chapter 7 we used our previous results to show that the complexity of each op-
eration, except for complementation, in the class of convex languages is the same as in
the general case of regular languages. A careful reader might notice that the classes of
prefix-free, prefix-closed, and right ideal languages are subclasses of the class of prefix-
convex languages; and we have similar inclusions in the other three convex classes. In the
case of complementation on suffix-convex languages, we obtained another very interesting
result of this thesis. We described a proper suffix-convex language, that is, a suffix-convex
language which is neither suffix-free, nor suffix-closed, nor left ideal, meeting the upper
bound 2" for its complementation. We had to find such a special language because the

complexity of complementation on the classes of suffix-free, suffix-closed, and left ideal

81

languages is less than 2.

Some problems remained open. For complementation on subword-free languages, we
defined witnesses over a growing alphabet. It is open whether the upper bound is tight for
some fixed alphabet. In the classes of closed and ideal languages, some of our witnesses
were described over a ternary alphabet. We do not know whether or not a binary al-
phabet can be used to describe the corresponding witnesses. The exact nondeterministic
state complexity of complementation in the classes of factor-convex and subword-convex

languages remains open as well.

82

Appendix

7.5 The list of my published papers

This part contains the list of publications.

(2)

(b)

Mlynarc¢ik,P.: On average complexity of InsertSort. ITAT 2005, Information Tech-
nologies - Applications and Theory, Proceedings, Slovakia, 117-122

Cevorovém, K., Jiraskova, G., Mlynarcik, P., Palmovsky, M., éebej, J.: Operations on
Automata with All States Final. 7. Esik and Z. Fiilop (Eds.): Automata and Formal

Languages 2014 (AFL 2014) EPTCS 151, 2014, pp. 2010215, doi:10.4204/EPTCS.151.14

Jirasek, J., Jiraskova, G., Krausova, M., Mlynarcik, P., Sebej, J.: Prefiz-Free Lan-
guages: Right Quotient and Reversal In: H. Jiirgensen et al. (Eds.): DCFS 2014,
LNCS 8614, pp. 210-221. Springer International Publishing Switzerland (2014)

Jiraskova, G., Mlynarcik, P.: Complement on Prefiz-Free, Suffiz-Free, and Non-
Returning NFA Languages. In: H. Jiirgensen et al. (Eds.): DCFS 2014, LNCS 8614,
pp. 222-233. Springer International Publishing Switzerland (2014)

Mlynarcik,P.. Complement on Free and Ideal Languages. In: Shallit, Okhotin (Eds.):
DCFS 2015, LNCS 9118, pp. 185-196. Springer International Publishing Switzerland
(2015)

Hospodéar, M., Jiraskova, G., and Mlynarcik: Nondeterministic Complexity of Oper-
ations on Closed and Ideal Languages. In: Han YS., Salomaa K. (eds) Implementa-
tion and Application of Automata. CIAA 2016. LNCS 9705, pp. 125-137. Springer
(2016)

Hospodar, M., Jiraskova, G., and Mlynar¢ik: Nondeterministic Complexity of Op-
erations on Free and Convex Languages. Accepted in CIAA 2017.

83

7.6 The list of given talks

This part contains the list of my talks in significant conferences concerning to the topic

of my thesis.

(a) 16th International Workshop on Descriptional Complezity of Formal Systems.
August 5-8, 2014, Turku, Finland

(b) DCFS 2015 Descriptional Complezity of Formal Systems
June 25-27, 2015, Waterloo, Ontario, Canada

(c) CIAA 2016 21st International Conference on Implementation and Application of

Automata
July 19-22, 2016, Seoul, South Korea

84

Bibliography

1]

2|

3]

4]

[5]

(6]

7]

18]

19]

Bach, E., Shallit, J.: 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms.
Cambridge, MA: MIT Press (1996)

Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite
automata. Technical Report 304 (Polish Academy of Sciences, 1977)

Birget, J.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43(4), 185-190 (1992), http://dx.doi.org/10.1016/0020-0190(92)
90198-5

Birget, J.: Partial orders on words, minimal elements of regular languages and state
complexity. Theoretical Computer Science 119(2), 267-291 (1993), http://dx.doi.
org/10.1016/0304-3975(93)90160-U

Brzozowski, J., Jiraskova, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-,
and subword-free regular languages. Acta Cybernetica 21, 507-527 (2014)

Brzozowski, J.A.: Complexity in convex languages. In: Dediu, A., Fernau, H.,
Martin-Vide, C. (eds.) Language and Automata Theory and Applications, 4th In-
ternational Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6031, pp. 1-15. Springer (2010),
http://dx.doi.org/10.1007/978-3-642-13089-2_1

Brzozowski, J.A., Jirdaskova, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36-52 (2013), http://dx.doi.org/10.1016/j.tcs.2012.
10.055

Brzozowski, J.A., Jiraskova, G., Zou, C.: Quotient complexity of closed lan-
guages. Theory Comput. Syst. 54(2), 277-292 (2014), http://dx.doi.org/10.1007/
s00224-013-9515-7

Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Int. J.
Found. Comput. Sci. 23(6), 1261-1276 (2012), http://dx.doi.org/10.1142/
S50129054112400515

85

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Campeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity
of shuffle of regular languages. Journal of Automata, Languages and Combinatorics
7(3), 303-310 (2002)

Cevorova, K., Jiraskova, G., Mlynar¢ik, P., Palmovsky, M., Sebej, J.: Operations
on automata with all states final. In: Esik, Z., Fiilop, Z. (eds.) Proceedings 14th
International Conference on Automata and Formal Languages, AFL 2014, Szeged,
Hungary, May 27-29, 2014. EPTCS, vol. 151, pp. 201-215 (2014), http://dx.do1i.
org/10.4204/EPTCS.151.14

Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149-158 (1986), http://dx.doi.org/10.1016/0304-3975(86)90142-8

Cmorik, R., Jiraskova, G.: Basic operations on binary suffix-free languages. In:
Kotések et al. [35], pp. 94-102, http://dx.doi.org/10.1007/978-3-642-25929-6_
9

Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455-468 (2002)

Eom, H., Han, Y., Salomaa, K.: State complexity of k-union and k-intersection for
prefix-free regular languages. In: Descriptional Complexity of Formal Systems —
15th International Workshop, DCFS 2013, London, ON, Canada, July 22-25, 2013.
Proceedings. pp. 78-89 (2013), http://dx.doi.org/10.1007/978-3-642-39310-5_
9

Eom, H., Han, Y., Salomaa, K., Yu, S.: State complexity of combined operations
for prefix-free regular languages. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.)
Discrete Mathematics and Computer Science. In Memoriam Alexandru Mateescu
(1952-2005). pp. 137-151. The Publishing House of the Romanian Academy (2014)

Esik, Z., Fiilop, Z. (eds.): Automata, Formal Languages, and Related Topics - Dedi-
cated to Ferenc Gécseg on the occasion of his 70th birthday. Institute of Informatics,

University of Szeged, Hungary (2009)

Glaister, 1., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inf. Process. Lett. 59(2), 75-77 (1996), http://dx.doi.org/10.
1016/0020-0190(96) 00095-6

Han, Y., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theor. Comput. Sci. 410(27-29), 2537-2548 (2009), http://dx.doi.org/
10.1016/j.tcs.2008.12.054

86

[20]

[21]

22]

23]

[24]

[25]

26]

27]

28]

[29]

Han, Y., Salomaa, K.: Nondeterministic state complexity for suffix-free regular
languages. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual
Workshop on Descriptional Complexity of Formal Systems, DCFEFS 2010, Saska-
toon, Canada, 8-10th August 2010. EPTCS, vol. 31, pp. 189-196 (2010), http:
//dx.doi.org/10.4204/EPTCS.31.21

Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic op-
erations for prefix-free regular languages. Fundam. Inform. 90(1-2), 93-106 (2009),
http://dx.doi.org/10.3233/FI-2009-0008

Han, Y., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular
languages. In: Esik and Fiilop [17], pp. 99-115

Han, Y., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular
languages. In: Esik and Fiilop [17], pp. 99-115

Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages 14(6), 1087-1102 (2003), http://dx.doi.org/10.1142/50129054103002199

Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

Hospodar, M., Jiraskova, G., Mlynarcik, P.: Nondeterministic complexity of oper-
ations on closed and ideal languages. In: Han, Y., Salomaa, K. (eds.) Implemen-
tation and Application of Automata - 21st International Conference, CIAA 2016,
Seoul, South Korea, July 19-22, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9705, pp. 125-137. Springer (2016), http://dx.doi.org/10.1007/
978-3-319-40946-7_11

Hromkovi¢, J.: Communication Complexity and Parallel Computing. Texts in Theo-
retical Computer Science. An EATCS Series, Springer (1997), http://dx.doi.org/
10.1007/978-3-662-03442-2

Hromkovi¢, J.: Descriptional complexity of finite automata: Concepts and open
problems. Journal of Automata, Languages and Combinatorics 7(4), 519-531 (2002)

Jiraskové, G.: Note on minimal automata and uniform communication protocols. In:
Martin-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing:
From Mathematics and Computer Science to Biology, and Back: Essays in Honour
of Gheorghe Paun. Topics in Computer Mathematics, vol. 9, pp. 163—-170. Taylor and
Francis (2003)

87

[30]

[31]

[32]

[33]

[34]

35]

[36]

37]

[38]

Jirdskova, G.: State complexity of some operations on binary regular languages. The-
oretical Computer Science 330(2), 287-298 (2005), http://dx.doi.org/10.1016/j.
tcs.2004.04.011

Jirdskova, G., Masopust, T.: Complexity in union-free regular languages. Int.
J. Found. Comput. Sci. 22(7), 1639-1653 (2011), http://dx.doi.org/10.1142/
S50129054111008933

Jiraskovéa, G., Mlynarcik, P.: Complement on prefix-free, suffix-free, and non-
returning NFA languages. In: Jiirgensen, H., Karhumiki, J., Okhotin, A. (eds.)
Descriptional Complexity of Formal Systems - 16th International Workshop, DCFS
2014, Turku, Finland, August 5-8, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8614, pp. 222-233. Springer (2014), http://dx.doi.org/10.1007/
978-3-319-09704-6_20

Jiraskova, G., Okhotin, A.: State complexity of cyclic shift. ITA 42(2), 335-360
(2008), http://dx.doi.org/10.1051/ita:2007038

Jirdskova, G., Olejar, P.: State complexity of intersection and union of suffix-free
languages and descriptional complexity. In: Bordihn, H., Freund, R., Holzer, M.,
Kutrib, M., Otto, F. (eds.) Workshop on Non-Classical Models for Automata and
Applications - NCMA 2009, Wroclaw, Poland, August 31 - September 1, 2009. Pro-
ceedings. books@ocg.at, vol. 256, pp. 151-166. Austrian Computer Society (2009)

Kotasek, Z., Bouda, J., Cerna, L., Sekanina, L., Vojnar, T., Antos, D. (eds.): Mathe-
matical and Engineering Methods in Computer Science - 7th International Doctoral
Workshop, MEMICS 2011, Lednice, Czech Republic, October 14-16, 2011, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 7119. Springer (2012),
http://dx.doi.org/10.1007/978-3-642-25929-6

Krausova, M.: Prefix-free regular languages: Closure properties, difference, and
left quotient. In: Kotasek et al. [35], pp. 114-122, http://dx.doi.org/10.1007/
978-3-642-25929-6_11

Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Mathe-

matics Doklady 11, 1373-1375 (1970)

Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata Theory,
East Lansing, Michigan, USA, October 13-15, 1971. pp. 188-191. IEEE Computer
Society (1971), http://dx.doi.org/10.1109/SWAT.1971.11

88

[39]

[40]

[41]

[42]

[43]

|44]

[45]

|46]

[47]

48]

[49]

Mlynéarcik, P.: Complement on free and ideal languages. In: Shallit, J., Okhotin, A.
(eds.) Descriptional Complexity of Formal Systems - 17th International Workshop,
DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Proceedings. Lecture Notes
in Computer Science, vol. 9118, pp. 185-196. Springer (2015), http://dx.doi.org/
10.1007/978-3-319-19225-3_16

Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between de-
terministic, nondeterministic, and two-way finite automata. IEEE Trans. Computers
20(10), 1211-1214 (1971), http://doi.ieeecomputersociety.org/10.1109/T-C.
1971.223108

Pighizzini, G., Shallit, J.: Unary language operations, state complexity
and jacobsthal’s function 13(1), 145-159 (2002), http://dx.doi.org/10.1142/
5012905410200100X

Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114-125 (Apr 1959), http://dx.doi.org/10.1147/rd.32.0114

Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: Lipton, R.J., Burkhard, W.A.| Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.)
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May
1-3, 1978, San Diego, California, USA. pp. 275-286. ACM (1978), http://doi.acm.
org/10.1145/800133.804357

Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997)

To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett.
109(17), 1010-1014 (2009), http://dx.doi.org/10.1016/j.1ipl.2009.06.005

Yershov, Y.L.: On a conjecture of V. A. Uspenskii. Algebra i logika (seminar) 1,
45-48 (1962 (in Russian))

Yu, S.: Regular languages. Department of Computer Science, University of Western

Ontario, London, Ontario, Canada

Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language,
Grammar, Handbook of Formal Languages, vol. 1, pp. 41-110. Springer-Verlag (1997)

Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315-328 (1994), http:
//dx.doi.org/10.1016/0304-3975(92)00011-F

89

