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Abstract. I. Dobrakov introduced in [2] a notion of submeasure defined on a
ring of sets. This submeasure type is now known as the Dobrakov submeasure.
In this paper we will develop some limit techniques to create new Dobrakov
submeasures from the old ones in the case when elements of the ring R are
subsets of the real line.

1 Examples of Dobrakov net submeasures

In [2] I. Dobrakov has initiated a theory of monotone set functions intended
to be ”a non-additive generalization of the theory of finite non-negative count-
ably additive measures”. Thus, he has introduced the following notion of a
submeasure:

Definition 1.1 (Dobrakov, [2]) Let R be a ring of subsets of a set T 6= ∅.
A set function µ : R→ [0,∞) is said to be a submeasure, if it is

(1) monotone: if E,F ∈ R such that E ⊂ F , then µ(E) ≤ µ(F );

(2) subadditively continuous: for every F ∈ R and ε > 0 there exists a δ > 0
such that for every E ∈ R with µ(E) < δ there holds

1. µ(E ∪ F ) ≤ µ(F ) + ε, and

2. µ(F ) ≤ µ(F \ E) + ε;

(3) continuous at ∅ (shortly continuous): if µ(En) → 0 for any sequence
En ∈ R, n = 1, 2, . . ., such that En ↘ ∅ (i.e., En ⊃ En+1 and

⋂
En = ∅).

Such a set function µ is now known as the Dobrakov submeasure (D-sub-
measure, for short). If instead of (2) we have µ(E ∪F ) ≤ µ(E) +µ(F ) for every
E,F ∈ R, or µ(E ∪ F ) = µ(E) + µ(F ) for every E,F ∈ R with E ∩ F = ∅,
then we say that µ is a subadditive, or an additive D-submeasure, respectively.
Therefore, the condition (2) is a useful generalization of the classical subaddi-
tivity.

Further, in paper [4], I. Dobrakov studied tools of enlargement of such D-
submeasures to the σ-ring σ(R) generated by R. In paper [11] V. M. Klimkin
and M. G. Svistula considered the Darboux property of non-additive set func-
tions, in particular, the D-submeasure. In [12], we can find the D-submeasure
in the context of fuzzy sets and systems. Note that there are two qualitative
different types of continuity of µ in the definition. In literature, for miscella-
neous reasons, some additional properties of continuity (or exhaustivity) are
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sometimes added to the property (1) in Definition 1.1 when defining the notion
of a submeasure, cf. [6]. There are also many papers where authors consider
various generalized settings (e.g. [3], [7], [8] and [13]).

In this paper we extend the notion of D-submeasure to nets and consider
techniques based on limit methods to create new D-submeasures from the old
ones parametrized with an l-group of real functions in the case when elements
of the ring R are subsets of the real line. If functions in the limit are monotone
and approximately continuous in a generalized sense, then we obtain a recursive
process.

By a net (with values in a set S) we mean a function from Ω to S, where
Ω is a directed partially ordered set. A net aω, ω ∈ Ω, is eventually in a set A
if and only if there is an element ω0 ∈ Ω such that if ω ∈ Ω and ω ≥ ω0, then
aω ∈ A. Also other terminology about nets (the notion of the subnet, etc.) is
used in the standard sense, cf. [10].

Definition 1.2 We say that a set function µ : 2R → [0,∞) is a Dobrakov
net submeasure (D-net-submeasure, for short), if it is

(1) monotone, i.e. if E,F ∈ 2R such that E ⊂ F , then µ(E) ≤ µ(F );

(2) subadditively continuous, i.e., for every F ∈ 2R and ε > 0 there exists
δ > 0 such that if E ∈ 2R with µ(E) < δ, then

(a) µ(E ∪ F ) ≤ µ(F ) + ε, and
(b) µ(F ) ≤ µ(F \ E) + ε;

(3) continuous, i.e., if Eω ↘ ∅ (Eω ⊃ Eω′ , for ω ≺ ω′, ω ∈ Ω, ω′ ∈ Ω, and⋂
ω∈ΩEω = ∅), then µ(Eω)→ 0, where Ω is a directed set.

Note that if the δ in condition (2) is uniform with respect to F ∈ 2R, then
we say that µ is a uniform D-net-submeasure.

The following few examples describe some simple tools how to create new
D-net-submeasures from old ones.

Example 1.3 Let (R,Σ, λ) be the Lebesgue measure space. For every λ-
integrable function f , the set function

µf (E) = inf
A∈Σ,E⊂A

∫

A

|f | dλ, E ⊂ R,

is a D-net-submeasure.

Example 1.4 If f is a function, then a set function

µf (E) = sup
t∈E
|f(t)|, E ⊂ R

is a D-net-submeasure.

Example 1.5 If λ1, λ2, . . . , λN , are D-net-submeasures, then a set function

µ(E) =

√√√√
N∑
n=1

λ2
n(E), E ⊂ R

is a D-net-submeasure.
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Example 1.6 If f : R → R is a function, δ > 0 is a positive real number
and λ is a D-net-submeasure, then a set function

µδ,f (E) = λ({t ∈ E; |f(t)| ≥ δ}), E ⊂ R

is a D-net-submeasure.

Example 1.7 Let λ be a D-net-submeasure. Let F be a set of all non-
decreasing real functions f on R, such that f(0) = 0 and x ≥ y ≥ 0 ⇒
f(x)− f(y) ≤ f(x− y) (e.g. f(x) = arctanx). Then the set function

µf (E) = f(λ(E)), E ⊂ R

is a D-net-submeasure.

Remark 1.8 The D-net-submeasure µ(·) = arctan(λ(·)) in Example 1.7
gives the same ring topology on 2R, cf. [13], as the D-net-submeasure λ, because
arctan(·) is a continuous function. A linear combination of D-net-submeasures
(if it is a D-net-submeasure) yields a new ring topology on 2R if the components
in it are linearly independent. To obtain new ring topologies on 2R, non-linear
operations (cf. Examples 1.3, 1.4, 1.5, 1.6), a non-continuous function (in Exam-
ple 1.7), or a limit process may be used when creating new D-net-submeasures.

The rest three examples show such monotone and subadditive set functions
with 0 in ∅ which need not be continuous even in the case of sequences (not
necessarily nets). Let X and Y be two Banach spaces in Examples 1.9, 1.10,
1.11. In these examples Σ denotes a σ-algebra of sets generated by a ring R
of sets of a nonempty set T and L(X,Y) is the set of all continuous linear
operators L : X→ Y.

Example 1.9 A semivariation m̂ : Σ→ [0,∞] of a charge (= finitely addi-
tive measure) m : R→ L(X,Y) is defined as

m̂(E) = sup

∥∥∥∥∥
I∑

i=1

m(E ∩ Ei)xi
∥∥∥∥∥ , E ∈ Σ

where the supremum is taken over all finite sets {xi ∈ X; ‖xi‖ ≤ 1, i =
1, 2, . . . , I} and all disjoint sets {Ei ∈ R; i = 1, 2, . . . , I}. It is well-known
that m̂ is a monotone, subadditive set function with m̂(∅) = 0, but it need not
be continuous. ¿From it follows that the Dobrakov integral, [5], is not built on
D-submeasures because it solves also the case of non-continuous semivariation.

Example 1.10 A scalar semivariation ‖m‖ of a charge m : R → L(X,Y)
is given by

‖m‖(E) = sup

∥∥∥∥∥
I∑

i=1

λi m(E ∩ Ei)
∥∥∥∥∥ , E ∈ Σ,

where ‖L‖ = sup‖x‖≤1 ‖L(x)‖ and the supremum is taken over all finite sets of
scalars {λi ∈ K; ‖λi‖ ≤ 1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈ R; i =
1, 2, . . . , I}.
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Example 1.11 Denote by |µ| : Σ → [0,∞] a vector semivariation of a
charge µ : Σ→ Y, where

|µ|(E) = sup

∥∥∥∥∥
I∑

i=1

λi µ(E ∩ Ei)
∥∥∥∥∥ , E ∈ Σ,

where the supremum is taken over all finite sets of scalars {λi ∈ K; ‖λi‖ ≤
1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈ R; i = 1, 2, . . . , I}.

The next simple example shows such a set function which is not a D-(net)-
submeasure even if the set functions used in its definition are uniform D-(net)-
submeasures on a σ-algebra (possibly with some additional properties, e.g. uni-
form exhaustivity).

Example 1.12 Let T = [0, 1], let B be the Borel σ-algebra of T and λ :
B → [0, 1] be the Lebesgue measure. For n = 1, 2, . . . and F ∈ B put

µn(F ) = λ(F ) ∧ 1
2

+
(
n

(
λ(F )− 1

2

)
∧ 1

2

)
∨ 0,

where a ∨ b, resp. a ∧ b, means the maximum, resp. the minimum, of the real
numbers a, b. Then each µn : B → [0, 1] is a uniform D-(net)-submeasure. Put

µ(E) = sup
n∈N

µn(E), E ∈ B.

Let Fk = [0, 1/2 + 1/(k + 1)] for k = 1, 2, . . .. Then Fk ↘ [0, 1/2] = F and
µ(Fk) = 1 for each k = 1, 2, . . ., but µ(F ) = 1/2. By Corollary 1 of Theorem 7
in [3], µ is not a D-(net)-submeasure.

The following lemma shows a limit process of creating new D-net-submeasures.
Its proof is easy and therefore omitted. The second statement follows immedi-
ately from the monotonicity of the considered set functions. However we do not
solve the question on existence of a limit on this place. A sufficient condition
for the existence of a limit is given in Theorem 3.2.

Lemma 1.13 Let µ(ω), ω ∈ Ω, be a net of D-net-submeasures. If a limit
µ(E) = limω∈Ω µ(ω)(E) exists for each E ⊂ R, then µ is a D-net-submeasure,
and moreover, µ(ω), ω ∈ Ω, are uniformly continuous.

In the following two sections we bring a more sophisticated method of cre-
ating new D-net-submeasures.

2 Some classes of D-net-submeasures

Let (F , ‖ · ‖) be an (additive) l-group, cf. [1], of real functions on R equipped
with the following system of gauges

‖f‖E = sup
t∈E
|f(t)|, E ⊂ R, f ∈ F ,

such that f, g ∈ F , E ⊂ R and

|f | ≤ |g| ⇒ ‖f‖E ≤ ‖g‖E .
Shortly, we say that F is an (l, ‖ · ‖)-group.
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Definition 2.1 We say that a classDF = {µf ; f ∈ F} of D-net-submeasures
is an F-class of D-net-submeasures if it satisfies the following conditions:

(a) µf ∈ DF implies µ−f ∈ DF and µf (E) = µ−f (E),

(b) µf ∈ DF and µg ∈ DF implies µf+g ∈ DF and

µf+g(E) ≤ µf (E) + µg(E)

for every f, g ∈ F and E ⊂ R.
If, moreover, there exists a D-net-submeasure α on 2R such that

(c) µf (E) ≤ α(E) · ‖f‖E
for every finite interval E ⊂ R, then we say that the F-class of D-net-

submeasures is α-dominated. For an α-dominated F-class of D-net-submeasures
we write DαF .

Remark 2.2 Note that although both α and ‖f‖· are D-(net)-submeasures,
their product need not be a D-(net)-submeasure in general.

Definition 2.3 Let α be a D-net-submeasure on 2R. A net of D-net-submeasures
µ(ω), ω ∈ Ω, is α-equicontinuous if for every ε > 0 there exist a finite E ∈ 2R

and κ > 0, such that α(E) < κ and the net µ(ω)(R \E), ω ∈ Ω, is eventually in
the interval [0; ε).

Definition 2.4 Let β be a D-net-submeasure on 2R. A net of D-net-submeasures
µ(ω), ω ∈ Ω, is uniformly absolutely β-continuous if for every ε > 0 there exists
η > 0, such that for every A ∈ 2R with β(A) < η, the net µ(ω)(A), ω ∈ Ω, is
eventually in the interval [0; ε).

Example 2.5 Let (R,Σ, λ) be the Lebesgue measure space. If F1 is the
space of all integrable functions, then the following D-net-submeasure

µf (E) = inf
A∈Σ,E⊂A

∫

A

|f | dλ ≤ α(E) · ‖f‖E , E ∈ 2R, f ∈ F1,

is α-dominated, where α(E) = infA∈Σ,E⊂A λ(A).

Example 2.6 Let F1 be the space of all real measurable functions, and λ
be a Borel measure. Then the D-net-submeasure

µf (E) = α({t ∈ E; |f(t)| ≥ δ}) ≤ α(E) · ‖f‖E ,

is α-dominated, where α is the same as in previous example.

Example 2.7 The D-net-submeasure µf is not λ-dominated in general in
Example 1.7, because the condition (c) in Definition 2.1 does not hold e.g. for
f(x) = x, x > 0, and λ the Lebesgue measure.
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3 Constructing new D-net-submeasures

It is obvious from definition that the D-(net)-submeasures are not subad-
ditive in general. But according to the results in [6] it is, in fact, inessential,
because every D-(net)-submeasure µ is equivalent to a subadditive D-(net)-
submeasure η such that, in addition, µ is absolutely η-continuous. Therefore,
in the sequel of this paper, we reduce our considerations to the case of the
subadditive D-net-submeasures even if it is not explicitly stated.

Definition 3.1 Let F1,F2, be two (l, ‖ · ‖)-groups of functions and let β
be a D-net-submeasure. A net fω ∈ F1, ω ∈ Ω, of functions β-converges to a
function f ∈ F2 if for every δ > 0,

lim
ω∈Ω

β({t ∈ R; |fω(t)− f(t)| ≥ δ}) = 0.

Theorem 3.2 Let α, β be D-net-submeasures on 2R. Let F1,F2, be two
(l, ‖·‖)-groups of functions and let a net fω ∈ F1, ω ∈ Ω, of functions β-converge
to a function f ∈ F2. If µfω (·) ∈ DαF1

, ω ∈ Ω, is a net of D-net-submeasures,
such that it is

(i) uniformly absolutely β-continuous, and

(ii) α-equicontinuous,

then the limit
µf (F ) = lim

ω∈Ω
µfω (F ), (1)

exists for every F ⊂ R and µf (·) is a D-net-submeasure.

Proof. Let F ⊂ R. If the limit µf (F ) exists for every F ⊂ R, then it is a
D-net-submeasure by Lemma 1.13. Show that µf (F ) exists.

Since R is complete, it is enough to show that for every ε > 0 there exists
ωε ∈ Ω, such that for every ω, ω′ ≥ ωε, there is |µfω (F )− µfω′ (F )| < ε.

By (ii) the net µfω (·), ω ∈ Ω, is α-equicontinuous. So, for a given ε > 0 there
exist E ⊂ R, κ > 0, and ω2 ∈ Ω, such that α(E) < κ and for every ω ≥ ω2,
with ω ∈ Ω, there is

µfω (R \ E) < ε. (2)

By Definition 2.1(b) we have that

µfω (E ∩ F ) ≤ µfω−fω′ (E ∩ F ) + µfω′ (E ∩ F ).

This implies

|µfω (E ∩ F )− µfω′ (E ∩ F )| ≤ µfω−fω′ (E ∩ F ). (3)

By (3), monotonicity, and subadditivity of µfω (·) and µfω′ (·), we get

|µfω (F )− µfω′ (F )|
≤ |µfω (F ∩ (R \ E)) + µfω (F ∩ E) + µfω′ (F ∩ (R \ E))− µfω′ (F ∩ E)|
≤ |µfω (F ∩ (R \ E))|+ |µfω′ (F ∩ (R \ E))|+ |µfω−fω′ (E ∩ F )|.
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Clearly, F ∩ (R \ E) ⊂ R \ E. By (2),

|µfω (F )− µfω′ (F )| ≤ 2ε+ µfω−fω′ (E ∩ F )

for every ω, ω′ ≥ ω2. By Definition 2.1(c) we obtain

µfω−fω′ (E ∩ F ) ≤ µfω−fω′ (E) ≤ α(E) · ‖fω − fω′‖E < κ · ‖fω − fω′‖E .
Then for a given ε > 0 there exists δ = ε/κ > 0, such that

‖fω − fω′‖E < δ ⇒ µfω−fω′ (E ∩ F ) < ε. (4)

Put G = {t ∈ R; |fω(t)− fω′(t)| < δ}. From subadditivity of µfω−fω′ (·) we have

µfω−fω′ (F ∩ E) ≤ µfω−fω′ (F ∩ E ∩G) + µfω−fω′ ((F ∩ E) \G). (5)

By (4) and (5) we get

|µfω (F )− µfω′ (F )| ≤ 3ε+ µfω−fω′ ((E ∩ F ) \G). (6)

The net fω, ω ∈ Ω, of functions β-converges to f . Denote by χA the charac-
teristic function of the set A ⊂ R. Since β is a monotone set function, the net
fωχA, ω ∈ Ω, of functions β-converges to fωχA, ω ∈ Ω as well, where A ⊂ R.
Therefore, for every η > 0 there exists ω1 ∈ Ω, such that for every ω ≥ ω1 with
ω ∈ Ω,

β{t ∈ A; |fω(t)− fω′(t)| ≥ δ} < η. (7)

¿From uniform absolute β-continuity of µfω (·), ω ∈ Ω, we obtain that for
every ε > 0 there exist η > 0 and ω3 ∈ Ω such that for every ω ≥ ω3 with
ω ∈ Ω,

A ⊂ R, β(A) < η ⇒ µfω (A) < ε. (8)

Further, if µfω (A) < ε, ω ∈ Ω, A ⊂ R, then

µfω−fω′ (A) ≤ µfω (A) + µfω′ (A) < 2ε (9)

for every ω, ω′ ≥ ω3.
Put A = (E ∩ F ) \ G and take ωε ∈ Ω, such that ωε ≥ ω1, ωε ≥ ω2 and

ωε ≥ ω3. Then (6), (7), (8), and (9) imply that for every F ⊂ R and ε > 0 there
exists ωε = ω1 ∈ Ω such that for every ω ≥ ωε there is |µfω (F )−µfω′ (F )| < 5ε.
Hence the result. 2

Remark 3.3 It is clear that the family {µf (·)} ∪ {µfω (·); ω ∈ Ω} is uni-
formly absolutely β-continuous and α-equicontinuous. Also, it may be easily
verified that for a fixed directed set Ω, the limit (1) does not depend on the
choice of the net of functions fω ∈ F1, ω ∈ Ω.

For β a D-net-submeasure, the following concept of β-approximate continuity
is a generalization of the notion of approximate continuity, cf. e.g. [9].

Definition 3.4 Let β : 2R → [0,∞) be a D-net-submeasure. A β-density

of a set F ⊂ R at t ∈ R, written Dβ
F (t), is limβ(E ∩ F )/β(E) provided the

limit exists, where the limit is taken over E, t ∈ E, and β(E) approaching 0.
A point t is a point of β-density of F if Dβ

F (t) = 1. A function f : R → R is
said to be β-approximately continuous at t if t is a point of β-density of a set
F and f is continuous at t with respect to F . A function f is β-approximately
continuous in (a, b), where a, b ∈ R, a < b, if f is β-approximately continuous
at each t ∈ (a, b).

7



For our next result we need the following theorem which generalizes the
result from [14], Theorem 1.

Theorem 3.5 Let β be a D-net-submeasure and F be a space of all β-ap-
proximately continuous real functions on R. If a net fω : R → R, ω ∈ Ω, of
monotone functions β-converges to f ∈ F on a finite interval (a, b), a < b, then
a net {fω}ω∈Ω, of functions β-converges to f in each point of the β-approximate
continuity of f .

Proof. Let {fω}ω∈Ω be a net of nondecreasing functions and t0 ∈ (a, b) be
a point of the β-approximate continuity of f . Suppose the contrary, i.e. that
a net {fω(t0)}ω∈Ω does not β-converge to f(t0). Then there exists η > 0 such
that

lim sup
ω′:ω≥ω′

|fω(t0)− f(t0)| ≥ η.

Let us define a set

Ω = {ω ∈ Ω; |fω(t0)− f(t0)| ≥ η}.

Clearly, the sets Ω and Ω are cofinal. We define sets

Ω′ = {ω ∈ Ω; fω(t0) ≥ f(t0) + η}

and
Ω′′ = {ω ∈ Ω; fω(t0) ≤ f(t0)− η}.

Since Ω = Ω′ ∪ Ω′′, there are two possible cases:

(i) the sets Ω′ and Ω are cofinal, or

(ii) the sets Ω′′ and Ω are cofinal.

Let us suppose that the case (i) is true. The net {fω}ω∈Ω′ is the subnet of
{fω}ω∈Ω and for every ω ∈ Ω′ we have

fω(t0) ≥ f(t0) + η.

Since t0 is the point of the β-approximate continuity of f , there exists a mea-
surable subset F of (a, b) such that t0 is the point of its β-density and f |F is
β-continuous at t0. There exists δ > 0 such that for every t′ ∈ F we have
|f(t′)− f(t0)| < η/2 whenever 0 ≤ t′ − t0 < δ and so

fω(t′)− f(t′) ≥ fω(t0)− f(t′) ≥ f(t0) + η − f(t′) >
η

2

for arbitrary ω ∈ Ω′. It follows that

(t0, t0 + δ) ∩ F ⊂
⋂

ω∈Ω′

{
t; fω(t)− f(t) >

η

2

}
.

Since t0 is the point of β-density of F , then

µ
(

(t0, t0 + δ) ∩ F
)
> 0.
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Hence

inf
ω∈Ω′

µ
({
t; fω(t)− f(t) >

η

2

})
≥ µ

(
(t0, t0 + δ) ∩ F

)
> 0,

but it denies the β-convergence in measure of the net {fω}ω∈Ω to the limit f .
Analogously we proceed in the case (ii). This proves the theorem. 2

Using the fact that a measurable function is β-a.e. approximately continu-
ous, cf. [9], and from Theorem 3.5 we get the following corollary.

Corollary 3.6 Let β be a D-net-submeasure. Let F be a space of all β-ap-
proximately continuous real functions on R. If a net fω : R → R, ω ∈ Ω, of
monotone functions β-converges to f ∈ F on a finite interval (a, b), a < b, then
the net fω, ω ∈ Ω, of functions β-a.e. converges to f on (a, b).

Now we are able to prove the following main result of this section.

Theorem 3.7 Let α, β be D-net-submeasures. Let F1 be an (l, ‖·‖)-group of
functions and F2 be an (l, ‖·‖)-group of functions β-approximately continuous on
each open finite interval, such that each f ∈ F2 is a β-limit of a net of monotone
functions from F1. If µ·(·) is defined as in Theorem 3.2, then {µf (·); f ∈ F2}
is an α-dominated F2-class of D-net-submeasures, i.e.

DαF2
= {µf (·); f ∈ F2}.

Proof. Let F ⊂ R. We have to verify conditions of Definition 2.1.

(a) Clearly, µf (F ) = µ−f (F ).

(b) If a net gω ∈ F1, ω ∈ Ω, of functions β-converges to g ∈ F2, and µg(F ) =
limω∈Ω µgω (F ) exists, then µf+g(F ) exists and µf+g(F ) = µf (F )+µg(F ).
This yields from the equality

µf+g(F ) = lim
ω∈Ω

µfω+gω (F )

and the obvious inclusion
{
t ∈ F ;

∣∣∣[fω(t) + gω(t)]− [f(t) + g(t)]
∣∣∣ ≥ δ

2

}

⊂ {t ∈ F ; |fω(t)− f(t)| ≥ δ} ∪ {t ∈ F ; |gω(t)− g(t)| ≥ δ}, δ > 0.

(c) Let a net fω ∈ F1, ω ∈ Ω, of monotone functions β-converge to a function
f ∈ F2. Let µfω (·), ω ∈ Ω, be a net of D-net-submeasures, such that it is
uniformly absolutely β-continuous and α-equicontinuous.

Let us show that for µf (F ) given by (1) the inequality

µf (F ) ≤ α(F ) · ‖f‖F
holds, where F = (a, b), for a, b ∈ R with a < b.

By Theorem 3.5 and Corollary 3.6 the net fω, ω ∈ Ω, of functions β-a.e.
converges to f on F . Hence, there exists H ⊂ R, such that ‖fω‖F\H
converges to ‖f‖F\H and β(H) = 0. Then

lim
ω∈Ω

µfω (F \H) ≤ α(F ) · lim
ω∈Ω
‖fω‖F\H ,
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i.e.
µfω (F \H) ≤ α(F ) · ‖f‖F\H .

By uniform absolute β-continuity of µfω (·), ω ∈ Ω, we have that β(H) = 0
and ω ∈ Ω imply µfω (H) = 0. Thus,

µf (H) = lim
ω∈Ω

µfω (H) = 0.

So,

µf (F ) ≤ µf (F \H) + µf (H) = µf (F \H)
≤ α(F ) · ‖f‖F\H ≤ α(F ) · ‖f‖F .

This completes the proof. 2

Corollary 3.8 Combining Theorems 3.2 and 3.7, we see that we have de-
scribed a recursive procedure how to create new classes of D-net-submeasures
from given ones.
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