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JÁN HALUŠKA and ONDREJ HUTNÍK

Abstract. A class of generalized weighted quasi-arithmetic means in the integral
form M[a,b],g(p, f) is studied using the weighted integral form of Jensen’s inequality.
In particular, various inequalities and properties of the generalized weighted quasi-
arithmetic means are established with respect to the properties of input functions
p, f and g. Some well known inequalities as a consequence of our results are derived.

Introduction

In the discrete case, a mean of a nonnegative n-tuple of real numbers a = (a1,
. . . , an) with respect to a weight vector p = (p1, . . . , pn) of positive real numbers,
where

∑n
i=1 pi = 1, n ∈ N (the set of all positive integers), is defined with the

formula

M(p, a) = ϕ−1

(

n
∑

i=1

piϕ(ai)

)

, (1)

where ϕ is a continuous and strictly monotone function which has its inverse
function ϕ−1 satisfying the same conditions, [6]. Here ϕ is called the Kolmogoroff-
Nagumo function associated with (1). The mean of the form (1) is also referred to
as the quasi-arithmetic mean. This class of means comprises the commonly used
algebraic means and also other types of aggregation operators.

A considerable amount of literature about the concept of mean (or average) and
the properties of several means (e.g. the arithmetic mean, the geometric mean,
the power mean, the harmonic mean) has been appeared in the 19th century.
A. N. Kolmogoroff [10] and M. Nagumo [13] were the first who investigated the
characteristic properties of means in general. They considered mostly the case of
equal weights. The generalization to arbitrary weights and the characterization of
means of the form (1) are due to B. de Finetti [3], B. Jessen [8], T. Kitagawa [9],
J. Aczél [1] and many others.

Integral analogue of means (1) was established in 1930ties by A. N.Kolmogoroff,
M. Nagumo and B. de Finetti. They showed that all types of the so called intrinsic
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means may be expressed via

MF (ϕ) = ϕ−1

(∫

R

ϕ(x) dF (x)

)

, (2)

where F (x) is a distribution and ϕ(x) is a continuous real increasing function on
R (the set of all real numbers), cf. [6]. The integral (2) is meant in the sense
of Lebesgue-Stieltjes. This form of means coincides with class of the so called
integral ϕ-means. Recently, it is well known that many types of means may be
rewritten according to the pattern given with the formula (2), e.g. the Stolarsky’s
means [19].

In this paper we study the quasi-arithmetic non-symmetrical weighted mean (3)
proposed by F. Qi in [18]. In Section 2, we state an analogue of Jensen’s inequality
for the weighted integral means as well as its conversion. This enables us to derive
various inequalities for means M[a,b],g(p, f), a < b, with respect to the convexity
property of functions f and g. Also a comparison theorem between generalized
weighted quasi-arithmetic means is established. As a consequence we derive the
weighted integral version of Wang-Wang’s geometric-harmonic mean inequality,
Chebyshev’s integral inequality and the well known Pólya-Knopp’s inequality.

1. Preliminaries

Let [a, b] ⊂ R, a < b, be an interval. Denote by L1([a, b]) the vector space of all
real Lebesgue integrable functions defined on the interval [a, b] with the classical
Lebesgue measure. Let us denote by L+

1 ([a, b]) the positive cone of L1([a, b]), i.e.
the vector space of all real positive Lebesgue integrable functions on [a, b]. In what
follows ‖p‖[a,b] denotes the finite L1-norm of a function p ∈ L+

1 ([a, b]).

Definition 1.1. Let (p, f) ∈ L+
1 ([a, b]) × L+

1 ([a, b]) and g : [0,∞] → R be a
real continuous and strictly monotone function. The generalized weighted quasi-
arithmetic mean of function f with respect to weight function p is a number
M[a,b],g(p, f) ∈ R, where

M[a,b],g(p, f) = g−1

(

1

‖p‖[a,b]

∫ b

a

p(x)g(f(x)) dx

)

, (3)

where g−1 denotes the inverse function to the function g.

In what follows, g is always a real continuous and strictly monotone function
(in accordance with Definition 1.1).

Means M[a,b],g(p, f) include many commonly used two variable integral means
as particular cases when taking the suitable functions p, f and g. For instance,

(a) for g(x) = x = I(x) (the identity function) we get the weighted arithmetic
mean

M[a,b],g(p, f) = A[a,b](p, f) =
1

‖p‖[a,b]

∫ b

a

p(x)f(x) dx;
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(b) for g(x) = x−1 we obtain the weighted harmonic mean

M[a,b],g(p, f) = H[a,b](p, f) =

(

1

‖p‖[a,b]

∫ b

a

p(x)

f(x)
dx

)−1

;

(c) for g(x) = xr we have the weighted power mean of order r

M[a,b],g(p, f) = M [r](f ; p; a, b) =







(

1
‖p‖[a,b]

∫ b

a p(x)f(x)r dx
)

1
r

, r 6= 0

exp
(

1
‖p‖[a,b]

∫ b

a
p(x) ln f(x) dx

)

, r = 0
.

The case r = 0 corresponds to the weighted geometric mean and r = 2 is
called the weighted Euclidean quadratic mean.

(d) if we replace p(x) by p(x)f r(x) and g(x) by xs−r in (3), then we get the
generalized weighted mean values

M[a,b],g(p, f) = Mp,f (r, s; a, b) =

(

∫ b

a
p(x)fs(x) dx

∫ b

a p(x)f r(x) dx

)
1

s−r

;

(e) if p(x) is a constant function on [0, 2π] and f(x) is of the form

f(x) =

{

(un cos2 x + vn sin2 x)
1
n , n 6= 0

ucos2 xvsin2 x, n = 0
,

then we obtain the generalization of arithmetic-geometric mean of Gauss

M[a,b],g(p, f) = Mg,n(u, v) = g−1

(

1

2π

∫ 2π

0

g(f(x)) dx

)

for n 6= 0. Choosing n = 2 and g(x) = x−1 we get original Gauss’
arithmetic-geometric mean. For n = −2 and g(t) = t−2 the mean may
be found in [16], the case n = 1 and g(t) = ln t was studied in [2].

Note that means M[a,b],g(p, f) generalize also logarithmic means L(a, b), identric
means I(a, b), one-parameter means Jr(a, b), abstracted means Mg(a, b), extended
mean values E(r, s; a, b), generalized logarithmic means Sr(a, b), and many others.
Hence, from M[a,b],g(p, f) we may deduce most of the two variable means. Further
possible extension of means M[a,b],g(p, f) could be considered when f is of the

form f(θ) = |h(reıθ)|, where 0 < r < 1 and h is an analytic function in the open
unit disk D = {z : |z| < 1} of the complex plane C. In that case choosing a = 0,
b = 2π, g(x) = xq for 0 < q < ∞ and p(x) ≡ 1 on [0, 2π], we get the integral mean
of order q, cf. [4],

M[a,b],g(p, f) = Mq(r, h) =

(

1

2π

∫ 2π

0

|h(reıθ)|q dθ

)

1
q

.
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2. Jensen’s inequality and its conversion

Many mathematical investigations deal with problems about operator of means
depending of the behavior of the input functions p, f and g, resp. how functions
behave under the action of means. The most known case is that of Jensen’s convex
functions, which originally deal with the arithmetic mean.

In general measure theoretical notation the Jensen’s inequality theorem sounds
as follows: let (Ω, A, µ) be a measurable space, such that µ(Ω) = 1. If f is a real
µ-integrable function and ϕ is a convex (concave) function on the range of f , then

ϕ

(∫

Ω

f dµ

)

≤

∫

Ω

ϕ ◦ f dµ,

(

ϕ

(∫

Ω

f dµ

)

≥

∫

Ω

ϕ ◦ f dµ,

)

cf. [17]. The following Lemma 2.1 is a direct application of this general statement

to our particular situation when µ([a, b]) = 1 and dµ = p(x)
‖p‖[a,b]

dx.

Lemma 2.1 (Jensen’s Inequality). Let (p, f) ∈ L+
1 ([a, b])×L+

1 ([a, b]) such that
α < f(x) < β for all x ∈ [a, b], where −∞ < α < β < ∞.

(i) If g is a convex function on (α, β), then

g
(

A[a,b](p, f)
)

≤ A[a,b](p, g ◦ f).

(ii) If g is a concave function on (α, β), then
(

g
(

A[a,b](p, f)
)

≥ A[a,b](p, g ◦ f)
)

,

where A[a,b](p, f) denotes the weighted arithmetic mean of the function f on [a, b].

Corollary 2.2. Let (p, f) ∈ L+
1 ([a, b]) × L+

1 ([a, b]) such that α < f(x) < β for
all x ∈ [a, b], where −∞ < α < β < ∞.

(i) If g is a convex increasing or concave decreasing function on (α, β), then

A[a,b](p, f) ≤ M[a,b],g(p, f).

(ii) If g is a convex decreasing of concave increasing function on (α, β), then

A[a,b](p, f) ≥ M[a,b],g(p, f).

Proof. Let g be a convex increasing function. According to Jensen’s inequality
we get

g−1
(

g
(

A[a,b](p, f)
))

≤ g−1
(

A[a,b](p, g ◦ f)
)

,

which is equivalent to

A[a,b](p, f) ≤ M[a,b],g(p, f).

Proofs of the remaining parts are similar. �
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Some elementary properties of M[a,b],g(p, f) derived by the use of the weighted
integral analogue of Jensen’s inequality may be found in [5]. Also some well known
inequalities among weighted means in integral form may be obtained as its direct
corollaries.

The following theorem corresponds to some conversions of the Jensen’s inequal-
ity for convex (concave) functions in the case of M[a,b],g(p, f).

Theorem 2.3. Let (p, f) ∈ L+
1 ([a, b]) × L+

1 ([a, b]), such that f : [a, b] → [α, β],
and g : [α, β] → R, where −∞ < α < β < ∞.

(i) If g is convex on [α, β], then

g
(

M[a,b],g(p, f)
)

≤
g(α)

(

β − A[a,b](p, f)
)

β − α
+

g(β)
(

A[a,b](p, f) − α
)

β − α
.

(ii) If g is concave on [α, β], then

g
(

M[a,b],g(p, f)
)

≥
g(α)

(

β − A[a,b](p, f)
)

β − α
+

g(β)
(

A[a,b](p, f) − α
)

β − α
.

Proof. We will prove only the item (i). The item (ii) may be proved analogously.
Suppose that g is a convex function on the interval [α, β]. Let us consider the

following integral
∫ b

a

p(x)g(f(x)) dx.

Putting

λ(x) =
f(x) − α

β − α
, (4)

we have
f(x) = (1 − λ(x))α + λ(x)β,

for all x ∈ [a, b]. Since α ≤ f(x) ≤ β for all x ∈ [a, b] and g is convex on [α, β], we
have

∫ b

a

p(x)g(f(x)) dx ≤

∫ b

a

p(x)
(

(1 − λ(x))g(α) + λ(x)g(β)
)

dx

= g(α)

∫ b

a

p(x)
(

1 − λ(x)
)

dx + g(β)

∫ b

a

p(x)λ(x) dx.

By (4) we get
∫ b

a

p(x)λ(x) dx =
1

β − α

(

∫ b

a

p(x)f(x) dx − α ‖p‖[a,b]

)

and therefore
∫ b

a

p(x)g(f(x)) dx ≤
g(α)

β − α

(

β ‖p‖[a,b] −

∫ b

a

p(x)f(x) dx

)

+
g(β)

β − α

(

∫ b

a

p(x)f(x) dx − α ‖p‖[a,b]

)

.
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Since ‖p‖[a,b] is positive and finite, we may write

g
(

M[a,b],g(p, f)
)

=
1

‖p‖[a,b]

∫ b

a

p(x)g(f(x)) dx

≤
g(α)

(

β − 1
‖p‖[a,b]

∫ b

a p(x)f(x) dx
)

β − α
+

g(β)
(

1
‖p‖[a,b]

∫ b

a p(x)f(x) dx − α
)

β − α

=
g(α)

(

β − A[a,b](p, f)
)

β − α
+

g(β)
(

A[a,b](p, f) − α
)

β − α
.

The proof is complete. �

3. Some inequalities among means

In this section we investigate some more properties of the class of generalized
weighted quasi-arithmetic means expressed in the integral form. Summarizing
elementary properties of M[a,b],g(p, f) related to convexity (concavity) of functions
f, g we obtain the following easy lemma. For the proof, cf. [5].

Lemma 3.1. Let (p, k) ∈ L+
1 ([a, b]) × L+

1 ([a, b]) and let hi ∈ L+
1 ([a, b]) be a

sequence of functions, i = 1, . . . , n; n ∈ N. Let δ ∈ R.

(a) If g : [0,∞) → R is a convex function and f : [0,∞) → R is a concave
function on [a, b], then
(i) M[a,b],g(p, k) ≥ M[a,b],(−g)(p, k) and M[a,b],f(p, k) ≤ M[a,b],(−f)(p, k);
(ii) M[a,b],f(p, k) ≤ M[a,b],g(p, k);
(iii) M[a,b],f(p, δ) ≤ δ ≤ M[a,b],g(p, δ), where δ = δ(x) ≥ 0 is a constant

function for x ∈ [a, b];
(iv)

∑n
i=1 M[a,b],f(p, hi) ≤ M[a,b],g (p,

∑n
i=1 hi);

(v) if f(x) ≥ g(x) for all x ∈ [a, b], then M[a,b],f(p, g) ≤ A[a,b](p, g) ≤
A[a,b](p, f) ≤ M[a,b],g(p, f).

(b) If g : [0,∞) → R is a concave function and f : [0,∞) → R is a convex
function on [a, b], then the above inequalities (i)–(v) are in the reversed
order.

Jensen’s inequality provides very important tool for a kind of comparison of
means. Therefore, we state the following comparison theorem between means
M[a,b],gk

(p, f) and M[a,b],gk−1
(p, f).

Theorem 3.2. Let (p, f) ∈ L+
1 ([a, b]) × L+

1 ([a, b]) such that f : [a, b] → [α, β].
Let gk, k = 1, 2, . . . , m be one to one functions defined on [α, β]. Let us denote
G1 = g1, G2 = g2 ◦ g−1

1 , . . . , Gk+1 = gk+1 ◦ g−1
k for k = 1, 2, . . . , m − 1.

(i) If either Gk are concave increasing or convex decreasing on the range of gk,
for k = 1, 2, . . . , m, then

M[a,b],gk
(p, f) ≤ M[a,b],gk−1

(p, f), k = 1, 2, . . . , m.
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(ii) If either Gk are concave decreasing or convex increasing on the range of gk,
for k = 1, 2, . . . , m, then

M[a,b],gk
(p, f) ≥ M[a,b],gk−1

(p, f), k = 1, 2, . . . , m.

Proof. Let us suppose that Gk = gk ◦ g−1
k−1 are concave increasing functions for

k = 1, 2, . . . , m. By Jensen’s inequality we have

1

‖p‖[a,b]

∫ b

a

p(x)Gk

(

gk−1(f(x))
)

dx ≤ Gk

(

1

‖p‖[a,b]

∫ b

a

p(x)gk−1(f(x)) dx

)

,

for k = 1, 2, . . . , m. Since the functions Gk are increasing, it follows that gk are
increasing too, and therefore for k = 1, 2, . . . , m we get

g−1
k

(

1

‖p‖[a,b]

∫ b

a

p(x)Gk

(

gk−1(f(x))
)

dx

)

≤ (g−1
k ◦ Gk)

(

1

‖p‖[a,b]

∫ b

a

p(x)gk−1(f(x)) dx

)

.

Using the fact g−1
k ◦Gk = g−1

k−1 and Gk◦gk−1 = gk, we finally obtain the inequality

g−1
k

(

1

‖p‖[a,b]

∫ b

a

p(x)gk(f(x)) dx

)

≤ g−1
k−1

(

1

‖p‖[a,b]

∫ b

a

p(x)gk−1(f(x)) dx

)

,

for k = 1, 2, . . . , m, which corresponds to M[a,b],gk
(p, f) ≤ M[a,b],gk−1

(p, f).
Proofs of the remaining parts are similar. �

Lemma 3.3. Let p ∈ L+
1 ([a, b]) and f : [a, b] → R be a continuous and inte-

grable function with the continuous first derivative on (a, b).

(i) If f is a strictly monotone and convex function on [a, b], then

A[a,b](p, f) ≤ f
(

A[a,b](p(x)f ′(x), x)
)

.

(ii) If f is a strictly monotone and concave function on [a, b], then

A[a,b](p, f) ≥ f
(

A[a,b](p(x)f ′(x), x)
)

.

Proof. Let us define θ by

θ =

∫ b

a p(x)f ′(x)xdx
∫ b

a
p(x)f ′(x) dx

. (5)

Since f is strictly monotone on [a, b], it follows that θ ∈ (a, b). The convexity of f
ensures that f ′ is nondecreasing on (a, b) and

f(x) + f ′(x)(θ − x) ≤ f(θ),

cf. [14]. Multiplying both sides of the above inequality by p(x)
‖p‖[a,b]

, we have

p(x)f(x)

‖p‖[a,b]
+

p(x)f ′(x)(θ − x)

‖p‖[a,b]
≤

p(x)f(θ)

‖p‖[a,b]
. (6)
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Integrating (6) with respect to x we may write
∫ b

a
p(x)f(x) dx

‖p‖[a,b]
+ θ ·

∫ b

a
p(x)f ′(x) dx

‖p‖[a,b]
−

∫ b

a
p(x)f ′(x)xdx

‖p‖[a,b]
≤ f(θ).

Replacing θ by (5) we obtain

∫ b

a p(x)f(x) dx

‖p‖[a,b]
≤ f

(

∫ b

a p(x)f ′(x)xdx
∫ b

a
p(x)f ′(x) dx

)

,

i.e. A[a,b](p, f) ≤ f
(

A[a,b](p(x)f ′(x), x)
)

. �

Example 3.4. Let [a, b] = (0, 1/2] and suppose p ∈ L+
1 ((0, 1/2]). Let f(x) =

ln 1−x
x on (0, 1/2]. It is easy to verify that function f(x) is strictly decreasing and

convex on (0, 1/2] and f ′(x) = 1
x(x−1) , i.e. the assumptions of Lemma 3.3(a) are

satisfied. Thus,

1

‖p‖(0,1/2]

∫ 1/2

0

p(x) ln
1 − x

x
dx ≤ ln





∫ 1/2

0
p(x)

x(x−1) dx −
∫ 1/2

0
p(x)
x−1 dx

∫ 1/2

0
p(x)
x−1 dx





= ln

(

∫ 1/2

0
p(x)

x dx
∫ 1/2

0
p(x)
1−x dx

)

.

The above inequality may be rewritten as follows

exp

(

1

‖p‖(0,1/2]

∫ 1/2

0

p(x) ln
1 − x

x
dx

)

≤

∫ 1/2

0
p(x)

x dx
∫ 1/2

0
p(x)
1−x dx

,

which is equivalent to

exp
(

1
‖p‖(0,1/2]

∫ 1/2

0
p(x) ln(1 − x) dx

)

exp
(

1
‖p‖(0,1/2]

∫ 1/2

0
p(x) ln xdx

) ≤

∫ 1/2

0
p(x)

x dx
∫ 1/2

0
p(x)
1−x dx

. (7)

Using the notation

G(0,1/2](p(x), g(x)) = exp

(

1

‖p‖(0,1/2]

∫ 1/2

0

p(x) ln g(x) dx

)

,

for the weighted geometric mean and

H(0,1/2](p(x), g(x)) =

(

1

‖p‖(0,1/2]

∫ 1/2

0

p(x)

g(x)
dx

)−1

,

for the weighted harmonic mean, we may rewrite the inequality (7) as follows

G(0,1/2](p(x), 1 − x)

G(0,1/2](p(x), x)
≤

H(0,1/2](p(x), 1 − x)

H(0,1/2](p(x), x)
,
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which is equivalent to the weighted integral inequality of Wang-Wang, cf. [11], in
the form

H(0,1/2](p(x), x)

H(0,1/2](p(x), 1 − x)
≤

G(0,1/2](p(x), x)

G(0,1/2](p(x), 1 − x)
.

The following theorem is an easy corollary of Lemma 3.3.

Theorem 3.5. Let p ∈ L+
1 ([a, b]). Suppose f : [a, b] → [α, β] is a continuous

and integrable function on [a, b] with the continuous first derivative on (a, b), and
g : [α, β] → R.

(i) If either g is a convex increasing or concave decreasing function on [α, β]
and f is a strictly monotone and concave function on [a, b], then

f
(

A[a,b](p(x)f ′(x), x)
)

≤ M[a,b],g(p, f).

(ii) If either g is a concave increasing or convex decreasing function on [α, β]
and f is a strictly monotone and convex function on [a, b], then

f
(

A[a,b](p(x)f ′(x), x)
)

≥ M[a,b],g(p, f).

Proof. Let g be a concave decreasing function on [α, β] and f be a strictly
monotone and concave function on [a, b]. From Corollary 2.2 and Lemma 3.3 we
immediately get the inequalities

M[a,b],g(p, f) ≥ A[a,b](p(x), f(x)) ≥ f
(

A[a,b](p(x)f ′(x), x)
)

.

Remaining parts may be proved analogously. �

Theorem 3.6. Let (p, f) ∈ (L+
1 ([a, b])×L+

1 ([a, b])), where f : [a, b] → [α, β] is a
continuous function with the continuous first derivative on (a, b). Let g : [α, β] →
R.

(i) If either g is convex increasing or concave decreasing on [α, β], then

A[a,b](p, f) ≤ f(a) + M[a,b],g

(

p(x),

∫ x

a

f ′(t) dt

)

.

(ii) If either g is concave increasing or convex decreasing on [α, β], then

A[a,b](p, f) ≥ f(a) + M[a,b],g

(

p(x),

∫ x

a

f ′(t) dt

)

.

Proof. Consider the case when g is convex increasing on [α, β]. The direct
calculation yields

M[a,b],g

(

p(x),

∫ x

a

f ′(t) dt

)

≥ A[a,b]

(

p(x),

∫ x

a

f ′(t) dt

)

=
1

‖p‖[a,b]

∫ b

a

p(x)f(x) dx −
f(a)

‖p‖[a,b]

∫ b

a

p(x) dx = A[a,b](p, f) − f(a).

�
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Similar results we may obtain when considering integrals
∫ b

x
f ′(t) dt. An easy

corollary for the generalized weighted quasi-arithmetic mean of product of two
functions follows from the Chebyshev’s integral inequality in the following form,
cf. [12].

Lemma 3.7 (Chebyshev’s Inequality). Let p ∈ L+
1 ([a, b]) and let h, k : [a, b] →

R be two integrable functions, both increasing or both decreasing on [a, b]. Then

A[a,b](p, h) · A[a,b](p, k) ≤ A[a,b](p, hk). (8)

If one of the functions h or k is nonincreasing and the other nondecreasing, then
the inequality in (8) is reversed.

Theorem 3.8. Let p ∈ L+
1 ([a, b]), let h, k : [a, b] → [α, β] be two integrable

functions and f : [α, β] → R. Let g be a real continuous monotone function
defined on the range of hk.

(i) If g is convex increasing or concave decreasing, f is concave increasing
or convex decreasing and h, k are either both increasing or both decreasing
functions, then

M[a,b],f(p, h) · M[a,b],f(p, k) ≤ M[a,b],g(p, hk).

(ii) If g is concave increasing or convex decreasing, f is convex increasing or
concave decreasing and one of the functions h, k is nonincreasing and the
other one nondecreasing, then

M[a,b],f(p, h) · M[a,b],f(p, k) ≥ M[a,b],g(p, hk).

Proof. Let us prove the item (i). Suppose that h, k are both increasing func-
tions, g is convex increasing and f is concave increasing function. From Corol-
lary 2.2 it follows that

M[a,b],f(p, h) ≤ A[a,b](p, h) and M[a,b],f(p, k) ≤ A[a,b](p, k).

Since h, k are both increasing functions, then

M[a,b],f(p, h) · M[a,b],f(p, k) ≤ A[a,b](p, h) · A[a,b](p, k).

Applying Lemma 3.7 and Corollary 2.2 we get

M[a,b],f(p, h) · M[a,b],f(p, k) ≤ A[a,b](p, hk) ≤ M[a,b],g(p, hk).

Hence the result. Similarly we may prove the remaining parts. �

4. Some applications

In this section we deal with the geometric mean operator G : L+
1 ([0,∞)) →

L+
1 ([0,∞)) defined as follows: If f ∈ L+

1 ([0,∞)), then

[Gf ](x) = exp

(

1

x

∫ x

0

ln f(t) dt

)

, x ∈ (0,∞), (9)

i.e. we consider g−1(·) = exp(·) and the weighted function p(t) ≡ 1.
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There exist many inequalities involving the geometric mean operator (9), cf. [15].
We will prove the following generalization of the inequality considered in [7] and
give an easy corollary related to Pólya-Knopp’s inequality and its weighted form.

Theorem 4.1. Let n be a natural and r, s, q be real numbers satisfying 2rn−1 >
q − srn. If

∫ ∞

0

tq−srn

|f(t)|r
n

dt < ∞,

then
∫ ∞

0

xq exp

[

r2nx−rn

∫ x

0

tr
n−1 ln |x−sf(t)| dt

]

dx

≤ Ce

∫ ∞

0

tq−srn

|f(t)|r
n

dt, (10)

where

C =
rn

2rn + rns − q − 1
.

Proof. Using the substitution t = xy, we may rewrite the left side of (10) as
follows

∫ ∞

0

xq exp

[

r2n

∫ 1

0

yrn−1 ln |x−sf(xy)| dy

]

dx.

Since e = exp
[

−r2n
∫ 1

0 yrn−1 ln y dy
]

, we have that (10) has the form

∫ ∞

0

xq exp

[

r2n

∫ 1

0

yrn−1 ln |x−sf(xy)| dy

]

dx ≤

≤ C · exp

[

−r2n

∫ 1

0

yrn−1 ln y dy

]

·

∫ ∞

0

tq−srn

|f(t)|r
n

dt.

The direct calculation yields

C

∫ ∞

0

tq−srn

|f(t)|r
n

dt ≥ exp

[

r2n

∫ 1

0

yrn−1 ln y dy

]

×

∫ ∞

0

xq exp

[

r2n

∫ 1

0

yrn−1 ln |x−sf(xy)| dy

]

dx

=

∫ ∞

0

xq exp

[

r2n

∫ 1

0

yrn−1 ln |x−syf(xy)| dy

]

dx.

Therefore, we get the inequality
∫ ∞

0

xq exp

[

rn

∫ 1

0

yrn−1 ln |x−syf(xy)|r
n

dy

]

dx ≤ C

∫ ∞

0

tq−srn

|f(t)|r
n

dt.

By Jensen’s inequality, the left side is dominated by

rn

∫ ∞

0

xq ·

(∫ 1

0

yrn−1|x−syf(xy)|r
n

dy

)

dx. (11)
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Applying Fubini’s theorem to (11) and using the substitution t = xy, we get

rn

∫ 1

0

yrn−1 ·

(∫ ∞

0

xq−srn

|f(xy)|r
n

dx

)

dy =

= rn

∫ 1

0

y2rn+srn−q−2 ·

(∫ ∞

0

tq−srn

|f(t)|r
n

dt

)

dy =

=
rn

2rn + srn − q − 1
·

∫ ∞

0

tq−srn

|f(t)|r
n

dt.

Hence the result. �

Note that from the inequality (10) we may obtain some well known inequalities
as direct consequences. For instance, the following Pólya–Knopp’s inequality.

Corollary 4.2. Let r = 1, q = s = n = 0 and f(t) ≥ 0. Then the inequality (10)
reduces to

∫ ∞

0

exp

[

1

x

∫ x

0

ln f(t) dt

]

dx ≤ e

∫ ∞

0

f(x) dx, (12)

or equivalently,
∫ ∞

0

[Gf ](x) dx ≤ e

∫ ∞

0

f(x) dx.

Some weighted versions of Pólya–Knopp’s inequality (12) may be also directly
derived from (10), for example:

∫ ∞

0

xq exp

[

1

x

∫ x

0

ln f(t) dt

]

dx ≤
e

1 − q

∫ ∞

0

xqf(x) dx,

for every q < 1, which is more general than (12).
Using Theorem 4.1 we may obtain some other interesting integral inequalities.

One of them is the Cochran–Lee’s type inequality.

Corollary 4.3. Let s = 0, let rn = λ > 0 and q be real numbers such that
2λ − 1 > q. Then (10) has the form

∫ ∞

0

xq exp

[

λ2

xλ

∫ x

0

tλ−1 ln |f(t)| dt

]

dx ≤ Ce

∫ ∞

0

xq|f(x)|λ dx,

where

C =
λ

2λ − q − 1
.
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