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Abstract. The first author introduced an integration theory of vec-
tor functions with respect to an operator-valued measure in complete
bornological locally convex topological vector spaces. In this paper
some important results behind this Dobrakov-type integration tech-
nique in non-metrizable spaces are given.

1 Introduction

A large number of different methods of integration of Banach-space-valued func-
tions have been introduced based on the various possible constructions of the
Lebesgue integral. Among them only the Dobrakov integral, cf. [5] and [6], de-
fined in Banach spaces dealing with an operator-valued measure σ-additive in
the strong operator topology, is the complete all pervading generalization of the
abstract Lebesgue integral. For the reader’s convenience let us briefly recall the
definition of the Dobrakov integral.

Let X and Y be two Banach spaces, ∆ be a δ-ring of subsets of a non-
void set T , L(X,Y) be the space of all continuous operators L : X → Y,
and m : ∆ → L(X,Y) be an operator-valued measure σ-additive in the strong
operator topology of L(X,Y), i.e. m(·)x : ∆ → Y is a Y-valued vector measure
for every x ∈ X. We say that a measurable function f : T → X is integrable in
the sense of Dobrakov if there exists a sequence of simple functions fn : T → X,
n ∈ N, converging m-a.e. to f and the integrals

∫
·
fn dm are uniformly σ-

additive measures on σ(∆) (i.e. σ-algebra generated by ∆). The integral of the
function f on E ∈ σ(∆) is defined by the equality

∫

E

f dm = lim
n→∞

∫

E

fn dm,

cf. [5], Definition 2. For an excellent review paper on Dobrakov integral see [20].
It is well-known, cf. [5], that the Dobrakov integral yields a greater class of
integrable functions than the also well-known (Lebesgue-type) integral of R. G.
Bartle, cf. [1], considering the same measure and set systems.

There is a natural tendency to generalize integrations from Banach spaces
to ”higher floors”. For instance, there is a question how to construct a theory of
integration in locally convex spaces which are non-metrizable. The bornological
character of the bilinear integration theory developed in [22] shows the fitness
of developing a bilinear integration theory in the context of bornological convex
vector spaces.

In general, bornological vector spaces, cf. [23], provide an ideal setting for
many problems in non-commutative geometry and representation theory, but
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they are also quite useful for many other purposes. They give rise to a very nice
theory of smooth representations of locally compact groups, cf. [18], or they
allow to take into account the analytical extra structure on sheaves of smooth
or holomorphic functions, cf. [24]. Bornological spaces of vector-valued functions
were studied in [9] and of null sequences in [3].

In this paper we deal with the complete bornological locally convex topolog-
ical vector spaces (C. B. L. C. S., for short) which include:

(i) all Banach spaces, in general non-separable;

(ii) all Fréchet spaces (i.e. the complete metrizable linear spaces);

(iii) a large number of non-metrizable locally convex spaces, e.g. various
types of nuclear spaces, Schwartz spaces, DF -spaces and LB-spaces, etc.,
cf. [17], many of which have their origin in practical needs of theoretical
physics, see e.g. [19].

In [11]–[13] the first author developed a new technique for C. B. L. C. S.
and operator-valued measure. The specificity of this technique is that we work
with lattices. In places where an object appears in the classical theory, e.g. a
submeasure, a norm, a metric, a unit sphere, an Lp-space, a σ-ideal of null sets,
etc., in this theory we work with lattices of submeasures, norms, etc. So, we can
see an interesting union of the measure and integration theory with the lattice
theory in the frame of functional analysis. The sense of this theory is that,
at the present, this is the only integration theory which completely generalizes
the Dobrakov integration to a class of non-metrizable locally convex topological
vector spaces.

Some theorems on integrable functions and convergence theorems for such an
integral are proved in [14]. The construction and existence of product measures
in C. B. L. C. S. in connection with this integration technique is given in [2]. A
Fubini-type theorem is also given therein.

In order to state our results we first give a brief development of a theory of
integration in C. B. L. C. S. in the following section. In the third section we give
some easy, but important results which are useful in this integration technique
in many cases, e.g. when studying classes of integrable functions, convergence
questions, or generalized Lp-spaces related to a bornological operator-valued
measure.

2 Preliminaries

In this section we collect the needed definitions and results from [11], [12],
and [13]. The complete description of the theory of C. B. L. C. S. may be found
in [15], [16] and [21].

2.1 C. B. L. C. S.

Let X,Y be two C. B. L. C. S. over the field K of real R or complex numbers
C, equipped with the bornologies BX, BY, respectively. One of the equivalent
definitions of C. B. L. C. S. is to define these spaces as the inductive limit of
Banach spaces. Remind that a (separable) Banach disk in the space X is a
set U which is closed, absolutely convex and the linear span XU of which is a
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(separable) Banach space. Let us denote by U the set of all Banach disks U in
X such that U ∈ BX. So, the space X is an inductive limit of Banach spaces
XU , U ∈ U , i.e.

X = injlim
U∈U

XU ,

cf. [16], where the family U is directed by inclusion and forms the basis of
bornology BX (analogously for Y and W). The basis U in the inductive limit
need not be unambiguous and, in particular, it may be chosen such that XU ,
U ∈ U , are separable, cf. [16], § 13.2, Th. 3.

We say that the basis U of bornology BX has a vacuum vector 2 U0 ∈ U , if
U0 ⊂ U for every U ∈ U . Let the bases U , W be chosen to consist of all BX-,
BY-bounded Banach disks in X, Y, with vacuum vectors U0 ∈ U , U0 6= {0},
and W0 ∈ W , W0 6= {0}, respectively.

The convergence on C. B. L. C. S. is called the bornological convergence
which is also a sequential convergence, cf. [8]. We say that a sequence of elements
xn ∈ X, n ∈ N (the set of all natural numbers), converges bornologically with
respect to the bornology BX with the basis U (shortly, U-converges) to x ∈ X,
if there exists U ∈ U such that for every ε > 0 there exists n0 ∈ N such that
(xn−x) ∈ U for every n ≥ n0. We write x = U-limn→∞ xn. To be more precise
we will sometimes call this U -convergence of elements from X to show explicitly
which U ∈ U we have in the mind.

Remark 2.1 A classical bornology consists of all sets which are bounded in
the von Neumann sense, i.e. for a locally convex topological vector space X

equipped with a family of seminorms Q, the set B is bounded (or belongs to
the von Neumann bornology) if and only if for every q ∈ Q there exists a
constant Cq such that q(x) ≤ Cq for every x ∈ B. In this case the bornological
convergence implies the topological convergence. On the other hand, we can
introduce the von Neumann bornology on an arbitrary complete locally convex
space X and the topological completeness of X implies the completeness in the
sense of bornology, cf. [21].

Note that each vector space X (or Y) over the field K can be equipped with
various bornological bases of Banach disks (defining this way various C. B. L.
C. S.), moreover, with the property such that U1 ∩ U2 6= {∅} for every U1 ∈ U ,
U2 ∈ U .

2.2 Operator structures

On U the lattice operations are defined as follows: for U1, U2 ∈ U we have
U1∧U2 = U1∩U2, and U1∨U2 = acs(U1∪U2), where acs denotes the topological
closure of the absolutely convex span of the set. Analogously for W . For
(U1,W1), (U2,W2) ∈ U ×W, we write (U1,W1) ≪ (U2,W2) if and only if U1 ⊂
U2, and W1 ⊃W2.

We use Φ to denote the class of all functions U → W with order < defined as
follows: for ϕ, ψ ∈ Φ we write ϕ < ψ whenever ϕ(U) ⊂ ψ(U) for every U ∈ U .

Denote by L(X,Y) the space of all continuous linear operators L : X →
Y. We suppose L(X,Y) ⊂ Φ. The bornologies BX, BY are supposed to

2in literature we can find also as terms as the ground state or fiducial vector or marked
element or mother wavelet depending on the context
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be stronger than the corresponding von Neumann bornologies, i.e. the vector
operations on the space L(X,Y) are compatible with the topologies, and the
bornological convergence implies the topological convergence. Note that in the
terminology [21] the space L(X,Y) (as an inductive limit of seminormed spaces)
is a bornological convex vector space. For a more detailed explanation of the
topological and bornological methods of functional analysis in connection with
operators, cf. [25].

2.3 Set structures

Let T 6= ∅ be a set. Denote by ∆ ⊂ 2T a δ-ring of subsets of T . If A is a
system of subsets of the set T , then σ(A) denotes the σ-algebra generated by
the system A. Denote by Σ = σ(∆). We use χE to denote the characteristic
function of the set E. By pU : X → [0,∞] we denote the Minkowski functional
of the set U ∈ U , i.e. pU (x) = infx∈λU |λ| (if U does not absorb x ∈ X, we
put pU (x) = ∞). Similarly, pW denotes the Minkowski functional of the set
W ∈ W .

For every (U,W ) ∈ U × W denote by m̂U,W : Σ → [0,∞] a (U,W )-semi-
variation of a charge (= finitely additive measure) m : ∆ → L(X,Y) given
by

m̂U,W (E) = sup pW

(
I∑

i=1

m(E ∩ Ei)xi

)
, E ∈ Σ,

where the supremum is taken over all finite sets {xi ∈ U, i = 1, 2, . . . , I} and
all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. It is well-known that m̂U,W is a
submeasure on Σ, i.e. a monotone, subadditive set function with m̂U,W (∅) = 0
for every (U,W ) ∈ U ×W. Denote by m̂U ,W = {m̂U,W ; (U,W ) ∈ U ×W}, and
by ∆U,W ⊂ ∆ the largest δ-ring of sets E ∈ ∆, such that m̂U,W (E) <∞.

For every (U,W ) ∈ U ×W, denote by ‖m‖U,W : Σ → [0,∞] a scalar (U,W )-
semivariation of a charge m : ∆ → L(X,Y) defined as

‖m‖U,W (E) = sup

∥∥∥∥∥
I∑

i=1

λim(E ∩ Ei)

∥∥∥∥∥
U,W

, E ∈ Σ,

where ‖L‖U,W = supx∈U pW (L(x)) and the supremum is taken over all finite sets
of scalars {λi ∈ K; |λi| ≤ 1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i =
1, 2, . . . , I}. The scalar (U,W )-semivariation ‖m‖U,W is also a submeasure on
Σ. Denote by ‖m‖U ,W = {‖m‖U,W ; (U,W ) ∈ U ×W}.

For every (U,W ) ∈ U ×W, denote by varU,W (m, ·) : Σ → [0,∞] a (U,W )-
variation of a charge m : ∆ → L(X,Y) given as

varU,W (m, E) = sup

I∑

i=1

‖m(E ∩ Ei)‖U,W , E ∈ Σ,

where the supremum is taken over all finite collections of disjoint sets Ei ∈ ∆,
i = 1, 2, . . . , I. The (U,W )-variation varU,W (m, ·) is also a submeasure on Σ.
Clearly, for every set E ∈ Σ the inequality

‖m‖U,W (E) ≤ m̂U,W (E) ≤ varU,W (m, E)

holds. It is also not hard to find examples showing the existence of such a
measure m and a set E ∈ Σ with m̂U,W (E) <∞ but varU,W (m, E) = ∞.
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2.4 Basic convergences of functions

For (U,W ) ∈ U ×W, let βU ,W be a lattice of submeasures βU,W : Σ → [0,∞],
where lattice operations are defined as

βU2,W2
∧ βU3,W3

= βU2∧U3,W2∨W3
,

βU2,W2
∨ βU3,W3

= βU2∨U3,W2∧W3
,

for (U2,W2), (U3,W3) ∈ U ×W, (e.g. βU ,W = m̂U ,W , or ‖m‖U ,W).
Denote by O(βU,W ) = {N ∈ Σ; βU,W (N) = 0, (U,W ) ∈ U ×W}. The set

N ∈ Σ is called βU ,W -null if there exists a couple (U,W ) ∈ U ×W, such that
βU,W (N) = 0. We say that an assertion holds βU ,W-almost everywhere, shortly
βU ,W-a.e., if it holds everywhere except in a βU ,W-null set. A set E ∈ Σ is said
to be of finite submeasure βU ,W if there exists a couple (U,W ) ∈ U ×W, such
that βU,W (E) <∞.

The following definitions introduce the analogies of the notions of conver-
gence almost everywhere and convergence almost uniform in the case of operator
valued charges in C. B. L. C. S.

Definition 2.2 Let E ∈ Σ and R ∈ U , (U,W ) ∈ U × W. We say that a
sequence fn : T → X, n ∈ N, of functions (R,E)-converges βU,W -a.e. to a
function f : T → X if limn→∞ pR(fn(t) − f(t)) = 0 for every t ∈ E \N , where
N ∈ O(βU,W ).

We say that a sequence fn : T → X, n ∈ N, of functions (U , E)-converges
βU ,W-a.e. to a function f : T → X if there exist R ∈ U , (U,W ) ∈ U ×W, such
that the sequence fn, n ∈ N, of functions (R,E)-converges βU,W -a.e. to f . We
write f = U-limn→∞ fn βU ,W-a.e.

If E = T , then we will simply say that the sequence R-converges βU,W -a.e.,
resp. U-converges βU ,W-a.e.

Definition 2.3 Let E ∈ Σ andR ∈ U , (U,W ) ∈ U×W. We say that a sequence
fn : T → X, n ∈ N, of functions (R,E)-converges uniformly to a function
f : T → X, if limn→∞ ‖fn − f‖E,R = 0, where ‖f‖E,R = supt∈E pR(f(t)).

We say that a sequence fn : T → X, n ∈ N, of functions (R,E)-converges
βU,W -almost uniformly to a function f : T → X if for every ε > 0 there exists
a set N ∈ Σ, such that βU,W (N) < ε and the sequence fn, n ∈ N, of functions
(R,E \N)-converges uniformly to f .

We say that a sequence fn : T → X, n ∈ N, of functions (U , E)-converges
βU ,W-almost uniformly to a function f : T → X, if there exist R ∈ U , (U,W ) ∈
U ×W , such that the sequence fn, n ∈ N, of functions (R,E)-converges βU,W -
almost uniformly to f .

If E = T , then we will simply say that the sequence of functions R-converges
uniformly, resp. R-converges βU,W -almost uniformly, resp. U-converges βU ,W -
almost uniformly.

For a more detailed explanation of described convergences of functions in C.
B. L. C. S., cf. [12].

2.5 Measure structures

The Dobrakov integral is defined in Banach spaces. Since X and Y are inductive
limits of Banach spaces, the question is whether an integral in C. B. L. C. S. may
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be defined as a finite sum of Dobrakov integrals in various Banach spaces the
choice of which may depend on the function which we integrate. A suitable class
of operator measures in C. B. L. C. S. which allow such a generalization is a class
of all σ-additive bornological measures. The basic idea consists in additional
condition about σ-finiteness of measure which enables the generalization of the
whole Dobrakov integration to C. B. L. C. S.

Let (U,W ) ∈ U × W. We say that a charge m is of σ-finite (U,W )-
semivariation if there exist sets En ∈ ∆U,W , n ∈ N, such that T =

⋃∞
n=1En.

For ϕ ∈ Φ, we say that a charge m is of σϕ-finite (U ,W)-semivariation if for
every U ∈ U , the charge m is of σ-finite (U,ϕ(U))-semivariation.

Definition 2.4 We say that a charge m is of σ-finite (U ,W)-semivariation if
there exists a function ϕ ∈ Φ such that m is of σϕ-finite (U ,W)-semivariation.

In what follows we suppose the charge m is of σ-finite (U ,W)-semivariation.
To be more exact we will sometimes specify that a charge m is of σϕ-finite
(U ,W)-semivariation to indicate that ϕ is that function in Definition 2.4 which
provides the σ-finiteness of the (U ,W)-semivariation of m.

Let W ∈ W . We say that a charge µ : Σ → Y is a (W,σ)-additive vector
measure, if µ is a YW -valued (countable additive) vector measure.

Definition 2.5 We say that a charge µ : Σ → Y is a (W , σ)-additive vector
measure, if there exists W ∈ W such that µ is a (W,σ)-additive vector measure.

Note that if W ∈ W and µ : Σ → Y is a (W,σ)-additive vector measure,
then µ is a (W1, σ)-additive vector measure whenever W ⊂W1, W1 ∈ W .

Let W ∈ W and let νn : Σ → Y, n ∈ N, be a sequence of (W,σ)-additive
vector measures. If for every ε > 0, E ∈ Σ with pW (νn(E)) < ∞, and Ei ∈ Σ,
Ei ∩ Ej = ∅, i 6= j, i, j ∈ N, there exists J0 ∈ N such that for every J ≥ J0,

pW

(
νn

(
∞⋃

i=J+1

Ei ∩ E

))
< ε

uniformly for every n ∈ N, then we say that the sequence of measures νn, n ∈ N,
is uniformly (W,σ)-additive on Σ.

Note that if a sequence νn, n ∈ N, of measures is uniformly (W,σ)-additive
on Σ for W ∈ W , then the sequence νn, n ∈ N, of measures is uniformly
(W1, σ)-additive on Σ whenever W1 ⊃W , W1 ∈ W .

Definition 2.6 We say that the family of measures νn : Σ → Y, n ∈ N, is
uniformly (W , σ)-additive on Σ, if there exists W ∈ W such that the family of
measures νn, n ∈ N, is uniformly (W,σ)-additive on Σ.

The following definition generalizes the notion of the σ-additivity of an op-
erator valued measure in the strong operator topology in Banach spaces, cf. [5],
to C. B. L. C. S.

Definition 2.7 Let ϕ ∈ Φ. We say that a charge m : ∆ → L(X,Y) is a
σϕ-additive measure if m is of σϕ-finite (U ,W)-semivariation, and for every
A ∈ ∆U,ϕ(U), the charge m(A∩ ·)x : Σ → Y is a (ϕ(U), σ)-additive measure for
every x ∈ XU , U ∈ U . We say that a charge m : ∆ → L(X,Y) is a σ-additive
(bornological) measure if there exists ϕ ∈ Φ, such that m is a σϕ-additive
measure.
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In what follows a charge m is supposed to be a σ-additive bornological
measure. Note that if ϕ < ψ, ϕ, ψ ∈ Φ, and a charge m : ∆ → L(X,Y) is a
σϕ-additive measure, then m is a σψ-additive measure.

2.6 A generalized Dobrakov integral in C. B. L. C. S.

We use M∆,U to denote the space of all (∆,U)-measurable functions, i.e. the
largest vector space of functions f : T → X with the property: there exists R ∈
U , such that for every U ∈ U , U ⊃ R, and δ > 0 the set {t ∈ T ; pU (f(t)) ≥ δ} ∈
Σ. In what follows we deal only with functions which are (∆,U)-measurable.

Definition 2.8 A function f : T → X is called ∆-simple if f(T ) is a finite set
and f−1(x) ∈ ∆ for every x ∈ X \ {0}. Let S denote the space of all ∆-simple
functions.

For (U,W ) ∈ U × W, a function f : T → X is said to be ∆U,W -simple if

f =
∑I

i=1 xiχEi
, where xi ∈ XU , Ei ∈ ∆U,W , such that Ei ∩ Ej = ∅, for i 6= j,

i, j = 1, 2, . . . , I. The space of all ∆U,W -simple functions is denoted by SU,W .
A function f ∈ S is said to be ∆U ,W -simple if there exists a couple (U,W ) ∈

U ×W , such that f ∈ SU,W . The space of all ∆U ,W-simple functions is denoted
by SU ,W .

For every E ∈ Σ and f ∈ SU,W , (U,W ) ∈ U ×W, we define the integral by

the formula
∫
E

f dm =
∑I
i=1 m(E ∩ Ei)xi, where f =

∑I
i=1 xiχEi

, xi ∈ XU ,
Ei ∈ ∆U,W , Ei ∩ Ej = ∅, i 6= j, i, j = 1, 2, . . . , I. Note that for the function
f ∈ SU,W the integral

∫
·
f dm is a (W,σ)-additive measure on Σ.

The following result is a version of the classical Vitali-Hahn-Saks-Nikodym
theorem in our setting, cf. [4].

Theorem 2.9 Let γn : Σ → Y, n ∈ N, be (W , σ)-additive measures and let
W-limn→∞ γn(E) = γ(E) exist in Y for each E ∈ Σ. Then γn, n ∈ N, are uni-
formly (W , σ)-additive measures on Σ, and consequently, γ is a (W , σ)-additive
measure on Σ.

The following theorem gives a construction of the integral.

Theorem 2.10 [cf. [13], Theorem 3.8] Let m be a σ-additive measure and f ∈
M∆,U . If there exists a sequence fn ∈ SU ,W , n ∈ N, of functions, such that

(a) U-limn→∞ fn = f m̂U ,W-a.e.,

(b) the integrals
∫
· fn dm, n ∈ N, are uniformly (W , σ)-additive measures on

Σ,

then the limit ν(E, f) = W-limn→∞

∫
E

fn dm exists uniformly in E ∈ Σ.

Definition 2.11 A function f ∈ M∆,U is said to be ∆U ,W -integrable if there
exists a sequence fn ∈ SU ,W , n ∈ N, of functions, such that

(a) U-limn→∞ fn = f m̂U ,W-a.e.,

(b)
∫
E

fn dm, n ∈ N, are uniformly (W , σ)-additive measures on Σ.
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Let IU ,W,∆ denote the family of all ∆U ,W-integrable functions. Then the inte-
gral of the function f ∈ IU ,W,∆ on a set E ∈ Σ is defined by the equality

yE =

∫

E

f dm = W- lim
n→∞

∫

E

fn dm.

Some basic properties of the above defined integral are summarized in the
following theorems, cf. [13].

Theorem 2.12 [cf. [13], Theorem 4.2] Let ν(E, f) =
∫
E

f dm, E ∈ Σ and
f ∈ IU ,W,∆. Then ν(·, f) : Σ → Y is a (W , σ)-additive measure.

Theorem 2.13 [cf. [13], Theorem 4.3] A function f ∈ M∆,U is ∆U ,W -integrable
if and only if there exists a sequence fn ∈ SU ,W , n ∈ N, of functions such that

(a) (U , E)-converges m̂U ,W-a.e. to f , and

(b) the limit W- limn→∞

∫
E

fn dm = ν(E) exists

for every E ∈ Σ. In this case
∫
E

f dm = W-limn→∞

∫
E

fn dm for every set
E ∈ Σ and this limit is uniform on Σ.

Combining Theorems 2.10 and 2.13 for ∆U ,W -simple functions yields

Theorem 2.14 Let fn, n ∈ N, be a sequence of ∆U ,W-simple functions U-
converging m̂U ,W-a.e. to f ∈ M∆,U . Then the following statements are equiva-
lent:

(i) for every set E ∈ Σ there exists a limit

W- lim
n→∞

∫

E

fn dm = ν(E) ∈ Y;

(ii) the integrals
∫
· fn dm, n ∈ N, are uniformly (W , σ)-additive measures on

Σ;

(iii) the limit W-limn→∞

∫
E

fn dm = ν(E) exists in Y uniformly with respect
to E ∈ Σ.

Moreover, ν is a (W , σ)-additive measure on Σ.

Proof. Since
∫
· fn dm, n ∈ N are (W , σ)-additive measures on Σ, then by

Theorem 2.9 (i)⇒(ii). By Theorem 2.10 (ii)⇒(iii) and obviously (iii)⇒(i). The
last assertion follows directly from Theorem 2.9. 2

An example of a Dobrakov-type integral in C. B. L. C. S. is given in [14].

3 Vector integral inequalities

In this section we present some useful inequalities which are important tools
and play a key role in this integration technique in C. B. L. C. S. In order to
state our results, we need the following notions and notations from [10]: for a
function f : T → X denote N(f) = {t ∈ T ; f(t) 6= 0}. Recall also that for
(U,W ) ∈ U × W a scalar function f : T → K is said to be measurable in the
sense of Halmos if N(f) ∩ f−1(B) ∈ σ(∆U,W ) for each Borel set B ∈ K.
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Proposition 3.1 Let (U,W ) ∈ U ×W and f be a ∆U,W -measurable function.
Then there exists a sequence fn, n = 1, 2, . . ., of ∆U,W -simple functions U -
converging on the whole T to f such that

pU (fn(t)) ≤ pU (f(t)),

for each t ∈ T and n ∈ N.

Proof. Let kn, n = 1, 2, . . ., be a sequence of ∆U,W -simple functions U -
converging on the whole T to f . Then pU (kn(·)) converges to pU (f(·)) in T and
pU (f(·)) is a measurable function (in the sense of Halmos [10]). Therefore, by
Theorem 20.B therein, there exists a non-decreasing sequence hn, n = 1, 2, . . .,
of non-negative σ(∆U,W )-simple functions such that hn(t) ≤ pU (f(t)) for t ∈
T . Since N(f) ∈ σ(∆U,W ), there exists An ∈ ∆U,W , n = 1, 2, . . ., such that
An ր N(f). Then gn = hnχAn

, n = 1, 2, . . ., are ∆U,W -simple functions and
gn(t) ≤ pU (f(t)) for t ∈ T . Putting

fn(t) =

{
kn(t)gn(t)
pU (kn(t)) , t ∈ N(f) ∩N(kn),

0, otherwise
,

the sequence fn, n = 1, 2, . . ., satisfies the conditions of the proposition. 2

Let us recall two basic results of our interest from [5], Lemma 1, and [13],
Lemma 3.7, collected in the following lemma.

Lemma 3.2 Let (U,W ) ∈ U ×W. If f ∈ SU,W and E ∈ σ(∆U,W ), then

m̂U,W (E) = sup

{
pW

(∫

E

f dm

)
; f ∈ SU,W , ‖f‖E,U ≤ 1

}

and

pW

(∫

E

f dm

)
≤ ‖f‖E,U · m̂U,W (E).

For (U,W ) ∈ U × W denote by IU,W the set of all Dobrakov’s integrable
functions with respect to Banach spaces XU , YW . Our aim is to prove that
the assertion of Lemma 3.2 holds also when replacing ∆U,W -simple by ∆U,W -
integrable functions.

Lemma 3.3 Let (U,W ) ∈ U ×W. Then

m̂U,W (E) = sup

{
pW

(∫

E

f dm

)
; f ∈ IU,W , ‖f‖E,U ≤ 1

}

for every set E ∈ Σ. Hence for every f ∈ IU,W and every set E ∈ Σ the
inequality

pW

(∫

E

f dm

)
≤ ‖f‖E,U · m̂U,W (E) (1)

holds.
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Proof. The fact that the supremum does not increase when replacing ∆U,W -
simple functions by ∆U,W -integrable functions is obvious from the definition of
(U,W )-semivariation m̂U,W .

Let us consider E ∈ Σ and f ∈ IU,W with ‖f‖E,U ≤ 1. Since f is ∆U,W -
measurable, then by Proposition 3.1 there exists a sequence fn, n = 1, 2, . . .,
of ∆U,W -simple functions U -converging on the whole T to f such that for each
t ∈ T , pU (fn(t)) ≤ pU (f(t)) for each n ∈ N. Using notation of Theorem 1 in [5]
put

F =

∞⋃

n=1

{
t ∈ T ; pU (fn(t)) > 0

}
.

Then there is a set N ∈ σ(∆U,W ), N ⊂ F , and a nondecreasing sequence of sets
Fj,k ∈ ∆U,W , j, k ∈ N, with

⋃∞
j=1

⋃∞
k=1 Fj,k = F \N , such that

∫
E

fnχN dm = 0
for every E ∈ Σ and n ∈ N, and, moreover, the sequence fn, n = 1, 2, . . .,
uniformly U -converges to the function f on every set Fj,k, j, k ∈ N. Put G =
F \N . Consequently, for each n and each couple (j, k) we have

pW

(∫

E

f dm

)
≤ pW

(∫

E∩(G\Fj,k)

f dm

)
+ pW

(∫

E∩Fj,k

(f − fn) dm

)

+ pW

(∫

E∩Fj,k

fn dm

)
.

Let ε > 0 be chosen arbitrarily. Since the integral
∫
·
f dm is a uniformly (W,σ)-

additive measure on Σ, then

pW

(∫

E∩(G\Fj,k)

f dm

)
<
ε

2

for sufficiently large j = j0 and k = k0. Since the sequence fn, n = 1, 2, . . .,
uniformly U -converges to f on each Fj,k, j, k ∈ N, then by Lemma 3.2

pW

(∫

E∩Fj,k

fn dm −

∫

E∩Fj,k

fr dm

)
≤ ‖fn − fr‖Fj,k,U · m̂U,W (Fj,k),

and hence the sequence
∫
E∩Fj,k

fn dm, n = 1, 2, . . ., is uniformly Cauchy (in

YW ) with respect to E ∈ Σ. Thus
∫

E∩Fj,k

f dm = W - lim
r→∞

∫

E∩Fj,k

fr dm.

Consequently,

pW

(∫

E∩Fj,k

(f − fn) dm

)
= lim

r→∞
pW

(∫

E∩Fj,k

(fr − fn) dm

)

≤ lim
r→∞

‖fr − fn‖Fj,k,U · m̂U,W (Fj,k)

= ‖f − fn‖Fj,k,U · m̂U,W (Fj,k) <
ε

2

for sufficiently large n = n0. The fact that fn0
is ∆U,W -simple with ‖fn0

‖E,U ≤ 1
completes the proof. 2
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The inequality (1) plays a fundamental role showing the importance of the
(U,W )-semivariation m̂U,W in this integration theory. We only demonstrate its
using when proving the following basic result on integrable functions. Recall
that a charge m : ∆ → L(X,Y) is of continuous (U,W )-semivariation on ∆U,W

if En ∈ ∆U,W , n = 1, 2, . . . such that En ց ∅ implies m̂U,W (En) → 0. Further
theorems on integrable functions and convergence theorems are proved in [14].

Theorem 3.4 Let (U,W ) ∈ U×W and let a charge m be of continuous (U,W )-
semivariation on ∆U,W . If A ∈ ∆U,W and f is a U -bounded ∆U,W -measurable
function on T , then fχA ∈ IU,W .

Proof. Let us consider a sequence fn, n = 1, 2, . . ., of ∆U,W -simple functions,
such that the sequence fnχA, n = 1, 2, . . ., U -converges on the whole space T to
the function fχA and ‖fn‖A,U ≤ ‖f‖A,U for every n ∈ N. Then the inequality

pW

(∫

E

fnχA dm

)
≤ ‖f‖A,U · m̂U,W (A ∩E), n ∈ N, E ∈ Σ, A ∈ ∆U,W ,

and the fact that m is of continuous (U,W )-semivariation on ∆U,W imply the
uniform (W,σ)-additivity of the integrals

∫
· fnχA dm, n ∈ N, on Σ. This proves

the theorem. 2

Note that without the assumption m is of continuous (U,W )-semivariation
on ∆U,W the preceding theorem does not hold even in the case when a charge
m : ∆ → L(X,Y) is σ-additive in the equibornology of the space L(X,Y), i.e.,
if for every (U,W ) ∈ U ×W the restriction mU,W (E)x = m(E)x, E ∈ ∆U,W ,
of a charge m to the set system ∆U,W is a σ-additive vector measure in the
uniform topology of the space L(XU ,YW ), cf. [14].

Similarly as Theorem 3.4 we may prove

Theorem 3.5 Let (U,W ) ∈ U ×W. Let f be a ∆U,W -measurable function and

∫

F

pU (f) dvarU,W (m, ·) <∞,

where F = {t ∈ T ; pU (f(t)) > 0}. Then f is a ∆U,W -integrable function and
the inequality

varU,W

(∫

·

f dm, E

)
≤

∫

E

pU (f) dvarU,W (m, E)

holds for every set E ∈ Σ.

Note that there are functions f such that varU,W (
∫
·
f dm, E) = 0 for every

set E ∈ Σ, but in the same time it may happen
∫
T
pU (f) dvarU,W (m, ·) = ∞.

Let Z be a complete bornological locally convex topological vector space with
the bornology BZ equipped with the basis of Banach disks V . Let (U,W, V ) ∈
U ×W × V , K ∈ L(Y,Z) and m : ∆ → L(X,Y) be a σ-additive bornological
measure. Then clearly the set function Km : ∆ → L(X,Z) given by Km(E) =
K[m(E)] for E ∈ ∆, is a σ-additive bornological measure. Since

(K̂m)U,V (E) ≤ ‖K‖W,V · m̂U,W (E)
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for every set E ∈ Σ, then every ∆U,W -simple function f is also ∆U,V -simple
(with respect to the measure Km) and there holds

K

(∫

E

f dm

)
=

∫

E

f d(Km)

for every set E ∈ Σ. From this fact, using Theorem 2.13 we get directly that
every ∆U,W -integrable function f is also ∆U,V -integrable (with respect to the
measure Km) and for every set E ∈ Σ there holds

K

(∫

E

f dm

)
=

∫

E

f d(Km).

Let γ : ∆ → Y be a vector measure. For every W ∈ W , denote by γW :
Σ → [0,∞] a W -supremation of γ given by

γW (E) = sup{pW (γ(F )); F ⊂ E,F ∈ ∆}, E ∈ Σ.

We put γW (T ) = sup{γW (E);E ∈ Σ}. Recall that if γ : Σ → Y is a (W,σ)-
additive measure on Σ, then according to [4] (Proposition I.1.11 and Theo-
rem I.2.4) the set function γW is a (W -bounded) continuous submeasure on Σ,
see also [20], Theorem 3.

For every W ∈ W , denote by |µ|W : Σ → [0,∞] a W -semivariation of a
charge µ : Σ → Y given by

|µ|W (E) = sup pW

(
I∑

i=1

λiµ(E ∩ Ei)

)
, E ∈ Σ,

where the supremum is taken over all finite sets of scalars {λi ∈ K; |λi| ≤ 1, i =
1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. The W -semivariation
|µ|W is a submeasure on Σ.

Now, the result of Lemma 3.3 may be extended as follows:

Lemma 3.6 Let (U,W ) ∈ U ×W and f ∈ IU,W . Then there exist a sequence
fn, n = 1, 2, . . . of ∆U,W -simple functions and a set M ∈ Σ, M ∈ O(m̂U,W ),
such that

(i) the sequence fn U -converges on T \M to f ;

(ii) pU (fn(t)) ≤ pU (f(t)) for t ∈ T \M ; and

(iii) W -limn→∞

∫
E

fn dm =
∫
E

f dm for E ∈ Σ, the limit being uniform with
respect to E ∈ Σ.

Consequently,

m̂U,W (E) = sup

{
pW

(∫

E

f dm

)
; f ∈ IU,W , ‖f‖E,U ≤ 1

}

for every set E ∈ Σ and hence for every f ∈ IU,W and every set E ∈ Σ the
inequality (1) holds.
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Proof. From Proposition 3.1 and Definition 2.11 there exist two sequences
kn and hn, n = 1, 2, . . ., of ∆U,W -simple functions and a set M ∈ Σ, M ∈
O(m̂U,W ), such that kn U -converges on T \M to f with pU (kn(t)) ≤ pU (f(t)) for
all t ∈ T \M , and hn U -converges on T \M to f such that γn(·) =

∫
·
hn dm, n =

1, 2, . . ., are uniformly (W,σ)-additive measures on Σ with W -limn→∞ γn(E) =∫
E

f dm for E ∈ Σ.
Put ηn(·) =

∫
·
kn dm for n = 1, 2, . . . and ν(E) =

∫
E

f dm for E ∈ Σ. Let

F =

∞⋃

n=1

{
t ∈ T \M ; pU (hn) + pU (kn) > 0

}
,

and define

λW (E) =

∞∑

n=1

1

2n

(
γW,n(E)

1 + γW,n(T )
+

ηW,n(E)

1 + ηW,n(T )

)
, E ∈ Σ.

Since γn, ηn, n = 1, 2, . . ., are (W,σ)-additive measures on Σ, then γW,n, ηW,n
are (W -bounded) continuous submeasures on Σ for all n ∈ N. Clearly, λW
is a (W -bounded) submeasure on Σ. To show continuity, for a given ε > 0
choose n0 such that 1

2n0
< ε

2 and consider sets Er ∈ Σ, r = 1, 2, . . ., such that
Er ց ∅. From continuity of γW,n, ηW,n, n = 1, 2, . . . , n0, there exists r0 such
that (γW,n(Er) + ηW,n(Er)) <

ε
2 for r ≥ r0 and n = 1, 2, . . . , n0, which implies

λW (Er) < ε. Thus λW is a continuous submeasure on Σ.
Consider the sequence K = {h1,k1,h2,k2, . . . ,hn,kn, . . .}. Clearly, K is

a sequence of ∆U,W -simple functions U -converging to f in T \ M . Then by
Egoroff-Luzin theorem, cf. [20], Theorem 5, there exist a set N ∈ F ∩ σ(∆U,W )
with λW (N) = 0 and a sequence of sets Fj,k ∈ ∆U,W , j, k = 1, 2, . . ., with⋃∞
j=1

⋃∞
k=1 Fj,k = F \N , such that K uniformly U -converges to f on each Fj,k,

j, k ∈ N. Thus we may choose a subsequence nj,k, j, k ∈ N, such that for every
couple (j, k) there is

‖hnj,k
− knj,k

‖Fj,k,U · m̂U,W (Fj,k) <
1

2jk
.

Put fj,k = knj,k
χN + knj,k

χFj,k
for every (j, k). Then fj,k, j, k ∈ N, is a se-

quence of ∆U,W -simple functions U -converging to the function f in T \M with
pU (fj,k(t)) ≤ pU (f(t)) for t ∈ T \M .

Let G = F \N . Since M ∈ O(m̂U,W ), then by Lemma 3.2 we get γW,n(M) =
ηW,n(M) = 0 for all n ∈ N and hence λW (M) = 0. Moreover, as λW (M) =
λW (N) = 0, and ηn(E ∩N) = ηn(E ∩M) = γn(E ∩N) = γn(E ∩M) = 0 for
all n ∈ N, then clearly, fj,k(t) = 0 for t ∈ E ∩ (G \ Fj,k). Therefore

pW


ν(E) −

∫

E

J∑

j=1

fj,k dm


 ≤ pW




J∑

j=1

∫

E∩Fj,k

(fj,k − hnj,k
) dm




+ pW




J∑

j=1

∫

E∩(G\Fj,k)

fnj,k
dm




+ pW

(
ν(E) −

∫

E

hnj,k
dm

)
.
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Using Lemma 3.2 and the definition of W -variation we get

pW


ν(E) −

∫

E

J∑

j=1

fj,k dm


 ≤

J∑

j=1

‖knj,k
− hnj,k

‖Fj,k,U · m̂U,W (Fj,k)

+

J∑

j=1

|γnj,k
|W (G \ Fj,k)

+ pW
(
ν(E) − γnj,k

(E)
)
.

Let ε > 0 be chosen arbitrarily and choose k0 such that 1
2jk0

< ε
3 , j =

1, 2, . . . , J . Since ν(E) = W -limk→∞ γnj,k
(E) uniformly with respect to E ∈ Σ

for every j = 1, 2, . . . , J , we may choose k1 ≥ k0 such that

pW
(
ν(E) − γnj,k

(E)
)
<
ε

3
, j = 1, 2, . . . , J,

for all k ≥ k1 and for all E ∈ Σ. Thus choosing k ≥ k1 we have

‖knj,k
− hnj,k

‖Fj,k,U · m̂U,W (Fj,k) <
ε

3
, j = 1, 2, . . . , J, (2)

and
pW
(
ν(E) − γnj,k

(E)
)
<
ε

3
, j = 1, 2, . . . , J, (3)

for all E ∈ Σ. Since γn, n = 1, 2, . . ., are uniformly (W,σ)-additive measures on
Σ, then its W -semivariations |γn|W (·), n = 1, 2, . . ., are uniformly continuous on
Σ, and since (G\Fj,k) ց ∅, then there exists k2 ≥ k1 such that |γn|W (G\Fj,k) <
ε
3 for all k ≥ k2 and for all n ∈ N. Thus, in particular,

|γnj,k
|W (G \ Fj,k) <

ε

3
, j = 1, 2, . . . , J, (4)

for k ≥ k2. Consequently, from (2), (3) and (4) we have

pW


ν(E) −

∫

E

J∑

j=1

fj,k dm


 < ε

for k ≥ k2 and E ∈ Σ. Since ε is an arbitrary positive number, E is an arbitrary
element in Σ and YW is a complete space, the existence and the uniformity in
E ∈ Σ of the limit W -limk→∞

∫
E

fk dm = ν(E) is proved. The remaining parts
are immediate from (i), (ii), (iii) and the definition of m̂U,W . 2

A possible way how to improve the inequality (1) given in Lemma 3.6 is to
consider the notion of L1

U,W -gauge of a ∆U,W -measurable function which is a
generalization of the classical L1-norm and also of the notion of the (U,W )-
semivariation m̂U,W (see Corollary 3.17 and Remark 3.10, respectively), simi-
larly as in [6].

Definition 3.7 Let (U,W ) ∈ U × W. Let g be a ∆U,W -measurable function
and E ∈ Σ. Then the L1

U,W -gauge of the function g on the set E, denoted
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by m̂U,W (g, E), is a non-negative not necessarily finite number defined by the
equality

m̂U,W (g, E) = sup

{
pW

(∫

E

f dm

)}
,

where the supremum is taken over all f ∈ SU,W such that pU (f(t)) ≤ pU (g(t))
for each t ∈ E. The L1

U,W -gauge of the function g is then defined by

m̂U,W (g, T ) = sup
E∈Σ

m̂U,W (g, E).

From this definition we immediately get the following theorem summarizing
basic properties of L1

U,W -gauge m̂U,W (·, ·).

Theorem 3.8 Let (U,W ) ∈ U ×W. Let g be a ∆U,W -measurable function and
let E ∈ Σ. Then

(a) m̂U,W (g, ·) is a monotone and countably subadditive set function on Σ
with m̂U,W (g, ∅) = 0;

(b) m̂U,W (α · g, E) = |α| · m̂U,W (g, E) for each scalar α;

(c) inft∈E pU (g(t)) · m̂U,W (E) ≤ m̂U,W (g, E) ≤ ‖g‖E,U · m̂U,W (E);

(d) if h is a ∆U,W -measurable function with pU (h(t)) ≤ pU (g(t)) m̂U,W -a.e.
on E, then m̂U,W (h, E) ≤ m̂U,W (g, E);

(e) m̂U,W (g, E) = m̂U,W (g, {t ∈ E; pU (g(t)) > 0});

(f) m̂U,W (g, E) = 0 if and only if m̂U,W ({t ∈ E; pU (g(t)) > 0}) = 0.

Observe that according to (a) m̂U,W (g, ·) is a σ-subadditive submeasure on
Σ. Also, the assertion (f) of the previous theorem implies

Corollary 3.9 Let (U,W ) ∈ U × W and g be a ∆U,W -measurable function.
Then m̂U,W (g, T ) = 0 if and only if g = 0 m̂U,W -a.e.

Remark 3.10 From assertion (c) of Theorem 3.8 it is obvious that if pU (x) = 1,
then m̂U,W (E) = m̂U,W (x · χE , E) for each set E ∈ Σ. Therefore the L1

U,W -
gauge m̂U,W (·, ·) generalizes the notion of the (U,W )-semivariation m̂U,W .

From the assertion of the remark we get the following form of the Čebyšev’s
inequality in our setting.

Theorem 3.11 Let (U,W ) ∈ U × W and g be a ∆U,W -measurable function.
Let E ∈ Σ and α > 0. Then

m̂U,W

(
{t ∈ E; pU (g(t)) ≥ α}

)
≤

m̂U,W (g, E)

α
.

Proof. Let F = {t ∈ E; pU (g(t)) ≥ α}. Then clearly F ∈ Σ. By (a) and (c)
of Theorem 3.8 we get

α · m̂U,W (F ) ≤ inf
t∈F

pU (g(t)) · m̂U,W (F ) ≤ m̂U,W (g, F ) ≤ m̂U,W (g, E).

Hence we have the result. 2
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Corollary 3.12 Let (U,W ) ∈ U × W, g be a ∆U,W -measurable function and
E ∈ Σ. If m̂U,W (g, E) <∞, then g is finite m̂U,W -a.e. in E. Consequently, if
m̂U,W (g, T ) <∞, then g is finite m̂U,W -a.e. in T .

Proof. Put F = {t ∈ E; pU (g(t)) = ∞} and Fn = {t ∈ E; pU (g(t)) ≥ n},
n = 1, 2, . . .. Then F ⊂ Fn and F, Fn ∈ Σ for each n ∈ N. By (a) of Theorem 3.8
and by Theorem 3.11 we have

m̂U,W (F ) ≤ m̂U,W (Fn) ≤
m̂U,W (g, E)

n
.

Assuming that m̂U,W (g, E) < ∞ the last term tends to 0 as n → ∞. Hence g

is finite m̂U,W -a.e. in E. The last assertion follows from the fact m̂U,W (g, T ) =
m̂U,W (g, N(g)). 2

Consequently, we may state the following lemma which is a generalization
of Lemma 3.3. It may be proved in the same way. Observe that by (c) of
Theorem 3.8 the obtained inequality (5) is much better than (1).

Lemma 3.13 Let (U,W ) ∈ U ×W, g be a ∆U,W -measurable function and let
E ∈ Σ. Then

m̂U,W (g, E) = sup

{
pW

(∫

E

f dm

)
; f ∈ IU,W , pU (f(t)) ≤ pU (g(t)), t ∈ E

}
.

Hence for every f ∈ IU,W and every set E ∈ Σ the inequality

pW

(∫

E

f dm

)
≤ m̂U,W (f , E) (5)

holds.

Using these results we may prove the triangle inequality:

Theorem 3.14 Let (U,W ) ∈ U × W, let f , g be ∆U,W -measurable functions
and E ∈ Σ. Then

m̂U,W (f + g, E) ≤ m̂U,W (f , E) + m̂U,W (g, E).

Proof. By assertion (e) of Theorem 3.8 we have

m̂U,W (f + g, E) = m̂U,W (f + g, E′),

where E′ = {t ∈ E, pU (f(t))+ pU (g(t)) > 0}. Let h be a ∆U,W -simple function
such that pU (h(t)) ≤ pU (f(t) + g(t)) for each t ∈ E′. Then for each t ∈ E′

h(t) =
h(t) · pU (f(t))

pU (f(t)) + pU (g(t))
+

h(t) · pU (g(t))

pU (f(t)) + pU (g(t))
.

Since by Theorem 3.2 in [14] both summands are ∆U,W -integrable functions,
using Lemma 3.13 we get

pW

(∫

E′

h dm

)
≤ pW

(∫

E′

h(t) · pU (f(t))

pU (f(t)) + pU (g(t))
dm

)

+ pW

(∫

E′

h(t) · pU (f(t))

pU (g(t)) + pU (g(t))
dm

)

≤ m̂U,W (f , E) + m̂U,W (g, E),
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which completes the proof. 2

Consequently, we have

m̂U,W (f + g, T ) = sup
E∈Σ

m̂U,W (f + g, E)

≤ sup
E∈Σ

m̂U,W (f , E) + sup
E∈Σ

m̂U,W (g, E)

= m̂U,W (f , T ) + m̂U,W (g, T ).

This implies that {g; g is a ∆U,W -measurable function: m̂U,W (g, T ) < ∞} is a
pseudo-normed space. Hence, m̂U,W (g, T ) may be called as an L1

U,W -pseudo-
norm of g.

From the definition of L1
U,W -gauge it is clear that it depends only on pU (g)

and E. Hence the results about L1
U,W -gauges for vector-valued functions remain

valid for scalar functions. The next result is a version of the Fatou lemma.
Observe that this theorem has no meaning for vector-valued functions in general.

Theorem 3.15 Let (U,W ) ∈ U × W. If m : ∆ → L(X,Y) is a σ-additive
bornological measure and fn : T → [0,∞), n = 1, 2, . . ., are ∆U,W -measurable
functions, then

m̂U,W (lim inf
n

fn, E) ≤ lim inf
n

m̂U,W (fn, E)

for each E ∈ Σ.

Proof. The assertion of theorem immediately follows from Theorem 4 in [6]
and the classical Fatou lemma, cf. [10]. 2

As a natural generalization of Theorem 3.4 in this setting we get the following
theorem. It may be proved in just the same way as Theorem 3.4.

Theorem 3.16 Let (U,W ) ∈ U × W. Let g be a ∆U,W -measurable function
and let its L1

U,W -gauge m̂U,W (g, ·) be continuous on Σ. Then g ∈ IU,W .

Note that for (U,W ) ∈ U ×W the inequality

m̂U,W (g, E) ≤

∫

E

pU (g) dvarU,W (m, ·) (6)

holds in general and it may happens that
∫
E
pU (g) dvarU,W (m, ·) = ∞ and

m̂U,W (g, E) < ∞. If
∫
T
pU (g) dvarU,W (m, ·) < ∞, then clearly the L1

U,W -
gauge m̂U,W (g, ·) is continuous on Σ and, in that case, m̂U,W (g, T ) <∞. From
this a natural question arises when the equality in (6) holds. This is answered
in the following result from which it is clear that the L1

U,W -gauge m̂U,W (·, ·)
generalizes the classical L1-norm. It is a corollary of Lemma 1 in [7].

Corollary 3.17 Let (U,W ) ∈ U ×W. If YW is the space of scalars of XU , or
m is a scalar measure such that m(E)x = m(E) · x, then

m̂U,W (g, E) =

∫

E

pU (g) dvarU,W (m, ·)

for each ∆U,W -measurable function g and for each set E ∈ Σ.
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