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1 Introduction

The Kolmogoroff integrals of the first and second types belong to the
basics of the integration theory, c.f. [11], [4]. The also well-known Do-
brakov integral. This integral generalized the Lebesgue integration to
Banach spaces with respect to the operator valued measure. Recall the
definition of this integral, c.f. [1], Definition 2. If X,Y are two Banach
spaces, ∆ a δ-ring of subsets of a set T 6= ∅, L(X,Y ) the space of all
continuous operators L : X → Y, m : ∆→ L(X,Y ) a measure σ-additive
in the strong operator topology, then we say that a measurable function
f : T → X is integrable in the sense of Dobrakov if there exists a sequence
of simple functions fn : T → X,n ∈ N, converging m-a.e. to f and the in-
tegrals

R
.
fndm are uniformly σ-additive measures on σ(∆) (the σ-algebra
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generated by ∆). The integral of the function f on E ∈ σ(∆) is defined by
the equality

R
E
fdm = limn→∞

R
E
fndm. A very excellent review paper

about Dobrakov integral is [12].
The description of the theory of complete bornological locally convex

topological vector spaces (for short, C. B. L. C. S.), we can find in [9], [10],
and [13]. The generalization of Dobrakov integration theory to C.B.L.C.S.
was done by the author in [8]. The sense of this seemingly complicated
theory is that, that at the present, this is the only integration theory
which completely generalizes the Dobrakov integration to a class of non-
metrizable locally convex topological vector spaces.

In this paper, we will deal with the Kolmogoroff integral of the first
type. We will consider the Kolmogoroff integral scheme on sigma algebras
od sets of sets and, in the same time, generalize it to C.B.L.C.S. for vector
integrable function and operator valued measures. The main result of this
paper consists in proving that a function is integrable in this generalized
Kolmogoroff integral sense if and only if it is integrable in the Dobrakov
integration sense generalized to C.B.L.C.S., [8].

2 Preliminaries, Lattice structures

In this section we collect the needed definitions and results from [5],
[6], and [7].

C.B.L.C.S. Let X,Y be two C.B.L.C.S. over the field K of real R
or complex C numbers equipped with the bornologies BX ,BY .

One of equivalent definitions of C.B.L.C.S. is to define these spaces as
inductive limit of Banach spaces. Remind that a Banach disk U in X is
a set which is closed, absolutely convex and the linear span of which is a
Banach space. Let us denote by U the set of all Banach disks in X such
that U ∈ BX . So, the space X is an inductive limit of Banach spaces XU ,
U ∈ U ,

X = injlimU∈UXU , (1)

c.f. [10], where XU is a K-linear span of U ∈ U and the family U is directed
by inclusion and forms the basis of bornology BX (analogously for Y ; W
forms a basis of the bornology BY ). The basis U in the inductive limit
(1) need not be unambiguous and, in particular, it can be chosen such
that XU , U ∈ U are separable.

We say that a sequence of elements xn ∈ X, n ∈ N (the set of all
natural numbers), converges bornologically (in the sense of Mackey; more
precisely, bornologically with respect to the bornology BX) to x ∈ X, if
there exists B ∈ BX such that for every ε > 0 there exists n0 ∈ N such
that xn − x0 ∈ B for every n ≥ n0. Equivalently, we can deal with an
arbitrary basis U of BX instead the whole bornology BX in this definition.

Let U is a basis of bornology BX . We say that a sequence of elements
xn ∈ X, n ∈ N, converges bornologically with respect to the bornology
BX to x ∈ X, we write x = U- limn→∞ xn, if there exists U ∈ U such
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that for every ε > 0 there exists n0 ∈ N such that xn − x0 ∈ U for every
n ≥ n0.

The following examples show that each vector space X (or Y ) over the
field K can be equipped with various bornological bases of Banach disks
(defining this way various C.B.L.C.S.), moreover, with the property such
that U1 ∩ U2 6= {∅} for every U1,∈ U , U2 ∈ U .

Example 1 For the discrete bornology on the locally convex vector
space X, the sets B ∈ BX are finite subsets of X.

Another classical bornology consists of all sets which are bounded in
the von Neuman sense, i.e. for a locally convex topological vector space
X equipped with a family of seninorms Q, the set B is bounded (in other
words, belongs to the von Neuman bornology) if and only if for every
q ∈ Q there exists a constant Cq such that q(x) ≤ Cq for every x ∈ B.)

Example 2 For a given bornology BX , we may introduce a bornology
BX,x0 of the following type.

Let the base U of the bornology BX,x0 in X consist of all Banach disks
such that there exists x0 6= 0, x0 ∈ X such that x0 ∈ XU1 ∩XU2 for every
linear spans (i.e, vector spaces) XU1 ∩XU2 of U1 ∈ U , U2 ∈ U in X.

In other words, each subspace XU in the inductive limit (1) contains a
point x0 6= 0, x0 ∈ X, which is called the marked element. Clearly, each
subspace XU contains also a line connecting points 0 and x0 ∈ X.

Operator spaces On U the lattice operations are defined as fol-
lows. For U1, U2 ∈ U we have: U1 ∧U2 = U1 ∩U2, U1 ∨U2 = acs(U1 ∪U2),
where acs denotes the topological closure of the absolutely convex span
of the set. Analogously for W. For (U1,W1), (U2,W2) ∈ U ×W, we write
(U1,W1)� (U2,W2) if and only if U1 ⊂ U2 and W1 ⊃W2.

We use Φ to denote a class of all functions U → W with an order <
defined as follows: for ϕ,ψ ∈ Φ we write ϕ < ψ whenever ϕ(U) ⊂ ψ(U)
for every U ∈ U . Denote by L(X,Y ) the space of all continuous linear
operators L : X → Y . We suppose L(X,Y ) ⊂ Φ. For a more detail
description of the lattice structure of L(X,Y ) when both X,Y are C. B.
L. C. S., c.f. [6].

Set functions Let T 6= ∅ be a set. Denote by 2T the potential set
of the set T and by ∆ ⊂ 2T a δ-ring of sets. If A is a system of subsets of
the set T , then σ(A) denotes the σ-algebra generated by the system A.
Denote by Σ = σ(∆). We use χE to denote the characteristic function
of the set E. By pU : X → [0,∞] we denote Minkowski functional of
the set U ∈ U , i.e., pU = infx∈λU |λ| (if U does not absorb x ∈ X, we
put pU (x) = ∞.). Similarly, pW denotes Minkowski functional of the set
W ∈ W.

For (U,W ) ∈ U × W, denote by m̂U,W a (U,W )-semivariation of a
charge (= finitely additive measure) m : ∆→ L(X,Y ), where

m̂U,W (E) = sup pW

 
IX
i=1

m(E ∩ Ei)xi
!
, E ∈ Σ,
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where the supremum is taken over all finite sets {xi ∈ X; xi ∈ U, i =
1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. It is well-known
that m̂U,W , is a submeasure, i.e. a monotone, subadditive set function,
and m̂U,W (∅) = 0. Denote by ∆U,W ⊂ ∆ the largest δ-ring of sets E ∈ ∆,
such that m̂U,W (E) <∞. Denote by m̂U,W = {m̂U,W ; (U,W ) ∈ U ×W}.

ForW ∈ W, denote by |µ|W a W -semivariation of a charge µ : Σ→ Y ,
where

|µ|W (E) = sup pW

 
IX
i=1

λiµ(E ∩ Ei)
!
, E ∈ Σ,

where the supremum is taken over all finite sets of scalars {λi ∈ K; |λi| ≤
1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. The W -
semivariation |µ|W , is a submeasure. Denote by µW = {µW ; W ∈ W}.

For a more detail description the basic L(X,Y )-measure set structures
when both X,Y are C. B. L. C. S., c.f. [5].

In the theory of integration in Banach spaces we suppose the gener-
alizations of the classical notions, such as almost uniform convergence,
almost everywhere convergence, and convergence in measure of measur-
able functions and relations among them as commonly well-known. All
this theory can be generalized to C. B. L. C. S. as follows.

Null sets Let βU,W be a lattice of submeasures βU,W : Σ→ [0,∞],
(U,W ) ∈ U ×W, such that βU2,W2 ∧ βU3,W3 = βU2∧U3,W2∨W3 , βU2,W2 ∨
βU3,W3 = βU2∨U3,W2∧W3 , (U2,W2), (U3,W3) ∈ U × W. For instance,
βU,W = m̂U,W , where XU and YW have marked elements.

Denote by O(βU,W ) = {N ∈ Σ; βU,W (N) = 0}, (U,W ) ∈ U ×W. The
set N ∈ Σ is called βU,W -null if there exists a couple (U,W ) ∈ U × W,
such that βU,W (N) = 0. We say that an assertion holds βU,W -almost
everywhere, shortly βU,W -a.e., if it holds everywhere except in a βU,W -
null set. A set E ∈ Σ is said to be of finite submeasure βU,W if there
exists a couple (U,W ) ∈ U ×W, such that βU,W (E) <∞.

Convergences of functions, measurable functions, simple
functions For E ∈ Σ, R ∈ U , (U,W ) ∈ U ×W, we say that a sequence
fn : T → X,n ∈ N, of functions (R,E)-converges βU,W -a.e. to a function
f : T → X if limn→∞ pR(fn(t) − f(t)) = 0 for every t ∈ E \ N , where
N ∈ O(βU,W ). We say that a sequence fn : T → X,n ∈ N, of functions
(U , E)-converges βU,W -a.e. to a function f : T → X if there exist R ∈
U , (U,W ) ∈ U ×W, such that the sequence fn, n ∈ N, of functions (R,E)-
converges βU,W -a.e. to f . We write f = U-limn→∞fn βU,W -a.e. If
E = T , then we will simply say that the sequence R-converges βU,W -a.e.,
resp. U-converges βU,W -a.e.

For E ∈ Σ, R ∈ U , (U,W ) ∈ U × W, we say that a sequence fn :
T → X,n ∈ N, of functions (R,E)-converges uniformly to a function
f : T → X if limn→∞ ‖fn − f‖E,R = 0, where ‖f‖E,R = supt∈E pR(f(t)).
We say that a sequence fn : T → X,n ∈ N, of functions (R,E)-converges
βU,W -almost uniformly to a function f : T → X if for every ε > 0 there
exists a set N ∈ Σ, such that βU,W (N) < ε and the sequence fn, n ∈ N, of
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functions (R,E\N)-converges uniformly to f . We say that a sequence fn :
T → X,n ∈ N, of functions (U , E)-converges βU,W -almost uniformly to a
function f : T → X if there exist R ∈ U , (U,W ) ∈ U ×W, such that the
sequence fn, n ∈ N, of functions (R,E)-converges βU,W -almost uniformly
to f . If E = T , then we will simply say that the sequence of functions
R-converges uniformly, resp. R-converges βU,W -almost uniformly, resp.
U-converges βU,W -almost uniformly.

For a more detail description of described convergences of functions in
C. B. L. C. S., c.f. [7].

We use MU to denote the space of all U-measurable functions, the
largest vector space of functions f : T → X with the property: there
exists R ∈ U , such that for every U ⊃ R,U ∈ U and δ > 0 the set
{t ∈ T ; pU (f(t)) ≥ δ} ∈ Σ. In what follows we deal only with functions
which are U-measurable.

A function f : T → X is called ∆-simple if f(T ) is a finite set and
f−1(x) ∈ ∆ for every x ∈ X \ {0}. The space of all ∆-simple functions is
denoted by S. For (U,W ) ∈ U ×W, a function f : T → X is said to be
∆U,W -simple if f =

PI
i=1 xiχEi , where xi ∈ XU , Ei ∈ ∆U,W , Ei∩Ej = ∅,

for i 6= j, i, j = 1, 2, . . . , I. The space of all ∆U,W -simple functions is
denoted by SU,W . A function f ∈ S is said to be ∆U,W -simple if there
exists a couple (U,W ) ∈ U × W, such that f ∈ SU,W . The space of all
∆U,W -simple functions is denoted by SU,W .

Measure structures The Dobrakov integral is defined in Banach
spaces. Since X,Y are inductive limits of Banach spaces, there is a natural
question whether an integral in C. B. L. C. S. can be defined as a finite sum
of Dobrakov’s integrals in various Banach spaces, the choice of which may
depend on the function which we integrate. In the paper [5] we showed
that such an integral can be constructed. A suitable class of operator
measures in C. B. L. C. S. which allow such a generalization is a class of
all σΦ-additive measures. The idea consists of the fact that the σ-finiteness
of measure in the classical Lebesgue integration brings no new quality. In
the case of C. B. L. C. S., we put and use an additional condition about
σ-finiteness of measure and this enables us the generalization of the whole
Dobrakov integration to C. B. L. C. S.

For (U,W ) ∈ U×W, we say that a charge m is of σ-finite (U,W )-semi-
variation if there exist sets Ei ∈ ∆U,W , i ∈ N, such that T =

S∞
i=1 Ei.

For ϕ ∈ Φ, we say that a charge m is of σϕ-finite (U ,W)-semivariation
if for every U ∈ U , the charge m is of σ-finite (U , ϕ(U))-semivariation.

We say that a charge m is of σΦ-finite (U ,W)-semivariation if there
exists a function ϕ ∈ Φ such that for every U ∈ U the charge is of σϕ-finite
(U ,W)-semivariation.

Let W ∈ W. We say that a charge µ : Σ → Y is a (W,σ)-additive
vector measure, if µ is an YW -valued (countable additive)vector measure.

Definition 1 We say that a charge µ : Σ → Y is a (W, σ)-additive
vector measure, if there exists W ∈ W, such that µ is a (W,σ)-additive
vector measure.
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Note that if µ : Σ → Y is a (W,σ)-additive vector measure and W ⊂
W1,W,W1 ∈ W, then µ is a (W1, σ)-additive vector measure.

Let W ∈ W. Let νn : Σ→ Y, n ∈ N, be a sequence of (W,σ)-additive
vector measures. Recall the following notion. If for every ε > 0, E ∈
Σ, pW (νn(E)) < ∞ and Ei ∈ Σ, Ei ∩ Ej = ∅, i 6= j, i, j ∈ N, there
exist J0 ∈ N, such that for every J ≥ J0, pW

�
νn
�S∞

i=J+1Ei ∩ E
��
< ε

uniformly for every n ∈ N, then we say that the sequence of measures
νn, n ∈ N, is uniformly (W,σ)-additive on Σ, c.f. [8].

Note that if a sequence νn, n ∈ N, of measures is uniformly (W,σ)--
additive on Σ,W ∈ W, then the sequence νn, n ∈ N, of measures is
uniformly (W1, σ)-additive on Σ whenever W1 ⊃W,W1 ∈ W.

Definition 2 We say that the family of measures νn : Σ→ Y, n ∈ N,
is uniformly (W, σ)-additive on Σ if there exists W ∈ W, such that the
family νn, n ∈ N, of measures is uniformly (W,σ)-additive on Σ.

The following definition generalizes the notion of the σ-additivity of
an operator valued measure in the strong operator topology in Banach
spaces, c.f. [1], to C. B. L. C. S.

Definition 3 Let ϕ ∈ Φ. We say that a charge m : ∆ → L(X,Y ) is
a σϕ-additive measure if m is of σϕ-finite (U ,W)-semivariation, and for
every A ∈ ∆U,ϕ(U), the charge m(A ∩ ·)x : Σ→ Y is a (ϕ(U), σ)-additive
measure for every x ∈ XU , U ∈ U . We say that a charge m : ∆→ L(X,Y )
is a σΦ-additive measure if there exists ϕ ∈ Φ,such that m is a σϕ-additive
measure.

In what follows the measure m is supposed to be σΦ-additive.
If ϕ ≤ ψ,ϕ, ψ ∈ Φ, and a charge m : ∆ → L(X,Y ) is a σϕ-additive

measure, then m is a σψ-additive measure. Indeed, the measure m is of
σψ-finite (U ,W)-semivariation. The assertion that for every A ∈ ∆U,W ,
the charge m(A ∩ ·)x : Σ → Y is a (ψ(U), σ)-additive measure for every
x ∈ XU , is implied from the inequality pψ(U)(y) ≤ pϕ(U)(y), y ∈ Y.

Generalized Dobrakov integral in C. B. L. C. S. Let f ∈
MU . For every m̂U,W -null set N , the function f ·χN is said to be m̂U,W -
null. The family of all m̂U,W -null functions we will denote by HU,W . For
f ∈ HU,W , define

R
E
fχNdm =

R
N∩E fndm = 0, E ∈ Σ.

It is easy to see that the family HU,W is a vector space.
The description of the following integral we can find in [8].

Definition 4 Let m : ∆ → L(X,Y ) be a σΦ-additive measure. A
function f ∈MU is said to be ∆U,W -integrable, we write f ∈ IU,W , if

(a) there exists a sequence fn ∈ SU,W , n ∈ N, of functions, such that

U- lim
n→∞

fn = f m̂U,W -a.e.,

(b) the integrals
R
E
fndm, n ∈ N, are uniformly (W, σ)-additive meas-

ures on Σ.
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The integral of the function f ∈ IU,W on a set E ∈ Σ, is defined by
the equality Z

E

fdm =W- lim
n→∞

Z

E

fndm.

3 The generalized Kolmogoroff integral
of the first type in complete bornological
locally convex spaces

Definition of the generalized Kolmogoroff integral of the
first type, properties Let E ∈ Σ, (U,W ) ∈ U ×W. By a countable
∆U,W -partition of the set E we will call a countable system ω(E) = (Ei)
pairwise disjoint sets Ei ∈ ∆U,W , such that

S∞
i=1Ei = E. If ω1(E) = (Ei)

and ω2(E) = (Fj) are two countable ∆U,W -partitions of the set E then
we say that ω2(E) is a refinement of the partition ω1(E) if to every set Fj
there exists Ei, such that Fj ⊂ Ei. In this case we write ω1(E) ≤ ω2(E).
The set ΩU,W (E) of all countable ∆U,W -partitions of the set E with this
order is a direction.

The first part of the following definition is only an application of the
classical Kolmogoroff’s definition for Banach spaces to the context we
mention.

Definition 5 Let (U,W ) ∈ U ×W. A function f : T → X is said to
be KI

U,W -integrable on E, if f : T → XU and E ∈ Σ, there exists y ∈ YW
and for every ε > 0 there exists a countable ∆U,W -partition ωε(E), such
that for every countable partition (Ei) = ω(E) ≥ ωε(E) and arbitrary
points ti ∈ Ei the series

P∞
i=1 m(Ei)f(ti) converges unconditionally in

YW and

pW

 ∞X
i=1

m(Ei)f(ti)− y

!
< ε.

The value y is said to be a KI
U,W -integral on E, we write KI

U,W (E, f,m) =
y.

We say that the function f : T → X is KI
U,W -integrable (generalized

Kolmogoroff integrable in the C. B. L. C. S.) if there exist (U,W ) ∈ U×W,
such that f is an KI

U,W -integrable function. We write KI
U,W(E, f,m) = y,

or simply We write KI(E, f,m) = y.

The following assertions can be proved directly from Definition 5.

Lemma 1 Let (U,W ) ∈ U ×W. Let f : T → X be a KI
U,W -integrable

function on E ∈ σ(∆U,W ), let (Ei), i ∈ N, be a countable ∆U,W -partition
of the set E. Then f is KI

U,W -integrable on every Ei and

KI(E, f,m) =

∞X
i=1

KI(E, fi,m), (2)

where the series converges unconditionally in YW .
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Lemma 2 Let f ∈ σ(∆U,W , X), where σ(∆U,W , X) is a closure of
σ(∆U,W , X) with respect to the seminorm ‖.‖T,U in the Banach space of
all U-bounded functions on T , let E ∈ Σ and m̂U,W (E) <∞.

Then f is KI
U,W -integrable on E, the function fχE is ∆U,W -integrable

and KI(E, f,m) =
R
E
fdm.

Lemma 3 Let (U,W ) ∈ U × W. Let f : T → X be a ∆U,W -
measurable function, let F = {t ∈ T ; f(t) 6= 0}. Let there exist sets
Fk ∈ σ(∆U,W ), k ∈ N, such that Fk ↗ F and fχFk is a ∆U,W -integrable
for k ∈ N. Then the function f is ∆U,W -integrable if and only if there
exists a σ-additive vector measure η : Σ → YW , such that η(E ∩ Fk) =R
E
fχFkdm for every k ∈ N and every E ∈ Σ. In this case η(E) =

R
E
fdm

for every E ∈ Σ.

Equivalence theorem

Theorem 1 A ∆U,W -measurable function f : T → X is ∆U,W -integrable
on Σ if and only if it is KI

U,W -integrable on Σ. In this case,

Z

E

fdm = KI(E, f,m) (3)

for every set E ∈ Σ.

Proof. We have to prove that for (U,W ) ∈ U ×W, a ∆U,W -measurable
function f : T → X is ∆U,W -integrable on Σ if and only if it is KI

U,W -
integrable on Σ. In this case,

Z

E

fdm = KI
U,W (E, f,m) (4)

for every set E ∈ Σ.
Let f : T → X be a ∆U,W -measurable function. Take a sequence fn :

T → X,n ∈ N, of ∆U,W -simple functions, such that limn→∞ pu(fn(t) −
f(t)) = 0 and p(fn(t)) ↗ p(f(t)) for every t ∈ T . As we noted before,
u ∈ U can be chosen such that XU to be a separable Banach space. Then
by Theorem 13(1) in [2] there exists a σ-additive measure ηFU,W : F ∩
σ(∆U,W )→ [0, 1], such that N ∈ F ∩ σ(∆U,W ) and ηFU,W (N) = O implies
m̂U,W (N) = O. By the Egoroff—Luzin Theorem, c.f. [1], there exists a
set N ∈ F ∩ σ(∆U,W ) and a sequence of sets Fk ∈ F ∩∆U,W , k ∈ N, such
that ηFU,W (N) = 0, Fk ↗ F \ N , and the sequence fn, n ∈ N, converges
uniformly to the function f on every set Fk, k ∈ N. Clearly we can change
the function f with the function fχF\N . Since the semivariation m̂U,W is
σ-finite on T , without loss of generality we let m̂U,W (Fk) < ∞ for every
k ∈ N. Then for every k ∈ N, the function fχFk and also fχFk+1\Fk are

∆U,W -integrable. By Lemma 1 , they are KI
U,W -integrable on F and both

these integrals are equal on every set E ∈ Σ, m̂U,W (E) <∞.
Suppose first that the function fχF\N is KI

U,W -integrable on F \N . By
the assertion of Lemma 1(1) the KI

U,W -integral E → KI(E, f,m), E ∈ Σ,
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is a σ-additive YW -valued vector measure, fχF\N is a ∆U,W -integrable
and (4) holds by Lemma 2.

Conversely, let the function fχF\N be ∆U,W -integrable. Take ε > 0,
let k ∈ N, is fixed. Then from the KI

U,W -integrability of the function
fχFk+1\Fk on Fk+1\Fk, there exists a finite ∆U,W -partition ωε(Fk+1\Fk),
such that for every countable ∆U,W -partition (Ek,i) = ωε(Fk+1 \ Fk) ≥
ωε(Fk+1 \ Fk), arbitrary points tk,i ∈ Ek,i and every E ∈ Σ, the seriesP∞
i=1 m(E ∩ Ek,i)f(tk,i) converges unconditionally in YW and it is true

pW

 ∞X
i=1

m(E ∩ Ek,i)f(tk,i)−
Z

E∩(Fk+1\Fk)

fdm)

!
≤ ε

2(k+1)
(5)

Set ωε(F \ N) =
P∞
i=1 ωε(Fk+1 \ N) and take a countable ∆U,W -

partition ω(F \ N) ≥ ωε(F \ N). Then ω(F \ N) =
P∞
k=1 ω(Fk+1 \ Fk),

where ω(Fk+1\Fk) = (Ek,i) ≥ ωε(Fk+1\Fk) is a countable ∆U,W -partition
for every k ∈ N. Take arbitrary points tk,i ∈ Ek,i. We assert that the
series

P∞
k=1

P∞
i=1 m(Ek,i)f(tk,i) converges unconditionally in YW . By [3],

Lemma 4, this is equivalent to two assertions:
(a) For every k ∈ N, the series

P∞
i=1 m(Ek,i)f(tk,i) is unconditional

convergent in YW , which follows from the KI
U,W -integrability of the func-

tion f on Fk+1 \ Fk,
(b) For every sequence of subsets Ik = N, k ∈ N, the series

∞X

k=1

X
i∈Ik

m(Ek,i)f(tk,i)

is unconditionally convergent in YW . This holds since for a fixed Ik, k ∈ N,
with respect to (5) we have:

pw

0
@X
i∈Ik

m(Ek,i)f(tk,i)− yk

1
A < ε2−(k+1),

where

yk =

Z

A

fdm,A =

0
@[
i∈Ik

Ek,i

1
A ∩ (Fk+1 \ Fk),

for every k ∈ N, and the series
P∞
k=1 yk is unconditionally convergent in

YW which follows from the σ-additivity of the integral

E →
Z

E

fχF\Ndm,E ∈ Σ.

By (5) we have

pw

 ∞X

k=1

∞X
i=1

m(Ek,i)f(tk,i)−
Z

F\N
fdm

!
< ε.

Thus the function fχF\N is KI
U,W -integrable on F \ N by Definition 4

and (4) holds. Therefore the function fχF\N is KI -integrable. 2
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[8] HALUŠKA, J.: On integration in complete bornological locally con-
vex spaces. Czechoslovak Math. J. 47(1997), 205 – 219.

[9] HOGBE-NLEND, H.: Bornologies and Functional Analysis. North-
Holland, Amsterdam – New York – Oxford, 1977.

[10] JARCHOW, H.: Locally Convex Spaces. Teubner, Stuttgart, 1981.

[11] KOLMOGOROFF, A. N.: Untersuchungen über den Integral-
begriff. Math. Ann. 103(1930), 654–696. http://www-gdz.sub.uni-
goettingen.de

[12] PANCHAPAGESAN, T. V.: On the distinguishing features of
the Dobrakovintegral. Divulgacionas matemaáticas 3(1995), 92–113.
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