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1 Introduction

In [1], [2], [7], there is given a generalization of Kurzweil integration pat-
tern to complete vector lattices, Riesz spaces, and to compact topological
spaces, respectively. Concerning the Fubini theorem, in [4], we generalized
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the Dobrakov integral to complete bornological locally convex spaces. This
generalization involves the Fubini theorem. In [9], the problem of the ex-
istence of the product measure in the context of locally convex spaces for
bilinear integrals is solved in general.

In this paper, we show a general scheme how to prove a Fubini-type
theorem for operator valued measures and Kurzweil-Henstock type integra-
tion in vector spaces. We do not touch the problems about the existence of
the product measure and partial integrals. They are solved in the classical
case but, in the operator measure setting, there are known only some spe-
cial results. Moreover, we do not consider the problem of measurability of
integrable functions in the general context.

2 Preliminaries

2.1 Construction of the integral

To recall the construction of the Kurzweil-Henstock integral, cf. [8].
The following definition introduces the set structure on the domain of

functions which we integrate, the set T .

Definition 1 Let T 6= ∅ be a compact topological space. Let U be the
class of all functions u : T → 2T such that for every t ∈ T , u(t) is an open
neighbourhood of the point t. Denote by B the σ-algebra of all Borel subsets
of T . We say that π is a partition of the set T if

π = {(E(i), t(i)); t(i) ∈ E(i), E(i) ∈ B, i = 1, 2, . . . , I},

where the sets E(i), i = 1, 2, . . . , I, are pairwise disjoint, the union of them
is the whole set T , and E is the closure of E in the topology of the space
T . By A we denote the class of all partitions π of the set T such that
E(i) ⊂ u(t(i)), u ∈ U, i = 1, 2, . . . , I.

For T is compact, A(u) 6= ∅ for every u ∈ U (the Cousin lemma, cf. [5],
Proposition 5.1.8., pp. 73 – 74).

To construct the integral, we will consider the following construction of
measure.

Let X,Y be two real or complex vector spaces. Let L(X,Y ) be the space
of all linear operators L : X → Y . Let DX 6= ∅, DY 6= ∅ be two lattices of
Banach disks such that

⋃
D∈DX D = X and

⋃
D∈DY D = Y .
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Example 1 The simplest situation occurs, when X and Y are Banach
spaces over the field K where K = R (the field of all real numbers) or C
(the field of all complex numbers). In this case, DX = {λH∗;λ ∈ K} and
H∗ may be taken as only one Banach disk. Similarly for Y . In the setting
of this paper, the cardinality of the set of such “generators” H∗ is arbitrary
(including e.g. the cardinality of the set of all real numbers or of all real
functions defined on the interval [0, 1] in particular). Note also, that no
order structures are supposed on X or Y .

Example 2 The mentioned general situation, the lattice of Banach disks,
can be introduced for every real or complex vector spaces X and Y . Indeed,
let D̃X be the set of all Banach disks of the vector space X. If H ′,H ′′ ∈ D̃X ,
the lattice operation may be defined, e.g., as follows:

H ′ ∧H ′′ = H ′ ∩H ′′,H ′ ∨H ′′ = acs(H ′ ∪H ′′), (1)

where acs denotes the topological closure of the absolutely convex span of
the set. For more details, cf. [3], Lemma 1.7.

Example 3 A lattice D̂X which differs from D̃X , cf. Example 2. Let
D̂X consist of all Banach disks of finite dimensional vector subspaces of the
vector space X. The lattice operations on D̂X may be given by (1).

Let QX = {pH1 ;H1 ∈ DX} where pH1 is the Minkowski functional of H1.
Similarly, QY = {pH2 ;H2 ∈ DY }. Minkowski functionals pH1 ∈ QX , pH2 ∈
QY are norms and the linear spans X(H1), Y (H2) are Banach spaces in this
case. Note that the trivial case H0 = {0} ∈ DX will not deform the theory
when putting pH0(x) = ∞ for every x ∈ X (analogously for Y ). We will
suppose this everywhere in the ongoing text.

We say that the sequence Ln ∈ L(X,Y ), n = 1, 2, . . ., of operators
(DX , DY )-converges to the operator L ∈ L(X,Y ) if there existH1 ∈ DX , H2 ∈
DY , such that Ln ∈ L(X,Y ) converges to the operator L ∈ L(X,Y ) in the
strong operator topology for the Banach spaces X(H1) and Y (H2). Let the
measure m : B → L(X,Y ) be σ-additive with respect to the (DX , DY )-
convergence on the space L(X,Y ).

Now we are able to define the following Kurzweil-Henstock-type integral
with respect to the operator valued measure:

Definition 2 Let H1 ∈ DX and H2 ∈ DY . A function f : T → X is
called to be (H1,H2)-integrable if f(T ) ⊂ X(H1) and there exists y ∈ Y (H2)
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such that
∀ε > 0, ∃u ∈ U,∀π ∈ A(u),

there holds
pH2(S(f, π)− y) < ε,

where
S(f, π) = ΣI

i=1m(E(i))f(t(i)).

The function f : T → X is called integrable if there exist H1 ∈ DX and
H2 ∈ DY such that f is (H1,H2)-integrable. The element y ∈ Y is called
integral and written

y =
∫

T
fdm.

Remark 1 It can be proved that the value of the integral is unique if it
exists, the integral is a linear operator and a finitely additive set function.
It is not hard to see that the integral of every simple function exists and,
therefore, every simple function is integrable.

2.2 Formulation of the Fubini theorem

To formulate and prove the Fubini theorem, we need to introduce some
additional denotations.

Let T1 6= ∅ and T2 6= ∅ be two compact topological spaces. Then T =
T1 × T2 is a compact topological space, too.

Let B1 and B2 be two σ-algebras of all Borel subsets of T1 and T2, re-
spectively. Let B denotes the smallest σ-algebra generated by all rectangles
of the type E1 × E2, where E1 ∈ B1 and E2 ∈ B2, respectively.

Let X 6= ∅, Y 6= ∅, and Z 6= ∅ be three real or complex vector spaces. Let
DX 6= ∅, DY 6= ∅, and DZ 6= ∅ be three lattices of Banach disks such that⋃
D∈DX D = X,

⋃
D∈DY D = Y , and

⋃
D∈DZ D = Z. Denote by QX , QY , QZ

the systems of all Minkowski functionals corresponding to Banach disks from
DX , DY , DZ , respectively.

Denote by L(X,Y ), L(Y, Z), and L(X,Z) the vector spaces of all linear
operators acting from X → Y , Y → Z, and X → Z respectively.

Let m1 : B1 → L(X,Y ) and m2 : B2 → L(Y, Z) be two operator valued
measures σ-additive with respect to the (DX , DY )- and (DY , DZ)- conver-
gences. We say that the product measure m1 ⊗m2 of measures m1 and m2

exists on B if there exists a unique L(X,Z)-valued measure m σ-additive in
the (DX , DZ)-convergence such that for every E1 ∈ B1 and E2 ∈ B2,

m(E1 × E2) = (m1 ⊗m2)(E1 × E2) = m2(E2)m1(E1).
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For the σ-additive product measures which are σ-additive in operator topolo-
gies, cf. [9].

Let the function f : T = T1 × T2 → X be given. Denote the following
functions if they exist in their domains:

f1 : T1 × T2 → X, f1(t1, t2) = f(t1, t2), (2)

f2 : T2 → Y, f2(t2) =
∫

T1

f1(·1, t2)dm1, (3)

f3 :
∫

T2

f2(·2)dm2 =
∫

T2

(∫

T1

f1(·1, ·2)dm1

)
dm2 = ỹ ∈ Z. (4)

If the integral ỹ exists, it is called the multiple integral.
If the integral

y⊗ =
∫

T
f dm =

∫

T1×T2

f d(m1 ⊗m2) (5)

exists, it is called it the product integral.
Concerning the integral (5), we will use the symbols ε⊗, U⊗, π⊗, A⊗,

S⊗ (cf. Definition 1 and Definition 2) in the proof of the Fubini theorem.

Definition 3 By (H2,H3)-semivariation we mean the function

‖m2‖H2,H3 : B2 → [0,∞]

defined as follows:

‖m2‖H2,H3(E2) = sup pH3




I2∑

j=1

m2(E(j)
2 )x(j)
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 (6)

where H2 ∈ DX ,H3 ∈ DZ and the supremum is taken over the all fi-
nite disjoint partitions E(j)

2 ∈ B2, j = 1, 2, . . . , I2, the union of them is
E2 and over all the collections of elements x(j)

2 ∈ H2, j = 1, 2, . . . , I2; if
sup pH3

(∑I2
j=1m1(E(j)

2 )x(j)
2

)
) does not exist or when H2 = {0} or H3 = {0},

we put ‖m2‖H2,H3(E2) =∞.
We say that the measure m2 is of finite semivariation if there exist H2 ∈

DX ,H3 ∈ DZ and K <∞ such that

‖m2‖H2,H3(T2) = K.
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It is easy to see that ‖m2‖H2,H3 is a monotone, σ-subadditive set function
such that ‖m2‖H2,H3(∅) = 0, where H2 6= {0},H3 6= {0}.

Let us introduce the following seminorm on the set of all functions f2 :
T2 → Y .

Definition 4 Let f2 : T2 → Y . Denote by

‖f2‖H2 = sup
t∈T2

pH2(f2(t)),

where pH2 denotes the Minkowski functional of the set H2 ∈ DY ;
if supt∈T2

pH2(f2(t)) does not exist or H2 = {0}, we put ‖f2‖H2 =∞.

By Definition 4, we can reformulate (6) as follows:

‖m2‖H2,H3(E2) = sup
‖f‖H2

≤1
pH3

(∫

T2

f2 · χE2 dm2

)
= sup
‖f‖H2

≤1
pH3

(∫

E2

f2 dm2

)

where E2 ∈ B2 and f2 : T2 → Y are simple functions.
Immediately, Definition 4 also implies:

Lemma 1 Let H2 ∈ DY ,H3 ∈ DZ ,H2 6= {0},H3 6= {0}. For every
(H2,H3)-integrable function f2 : T2 → Y ,

pH3

(∫

T2

f2dm2

)
≤ ‖f2‖H2 · ‖m2‖H2,H3(T2).

The formulation of the Fubini theorem in its “skeleton” form is as follows.

Theorem 1 (Fubini) Let X,Y, Z be three real or complex vector spaces
equipped with lattices of Banach disks DX , DY , DZ , such that

⋃
D∈DX D =

X,
⋃
D∈DY D = Y,

⋃
D∈DZ D = Z, respectively. Let T1, T2 be two compact

spaces. Let B be the Borel σ-algebra of subsets of T1 × T2. Let m1 : B1 →
L(X,Y ),m2 : B2 → L(Y, Z) be two operator valued measures σ-additive in
the (DX , DY )- and (DY , DZ)- convergences. Let m1⊗m2 be a Borel measure
σ-additive in the (DX , DZ)- convergence. Let the measure m2 be of finite
semivariation. Let there exist

1. the product measure m1 ⊗m2 : B → L(X,Z);

2. the product integral y⊗ =
∫
T f dm =

∫
T1×T2

f d(m1 ⊗m2);

3. the multiple integral ỹ =
∫
T2

(∫
T1
f(·1, ·2)dm1

)
dm2.

Then y⊗ = ỹ.
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3 Proof of the theorem

By hypothesis, the integrals y⊗ and ỹ exist. For l = 1 and 2, let εl, Al,
Ul, ul, πl, Sl, Il, E

(i)
l , i = 1, . . . , Il, be associated to Tl with the same role

as ε, A, U , u, π, S, I, E(i), i = 1, . . . , I in Definitions 1 and 2 relatively to
T1 and T2, respectively.

Let ε1 > 0, ε2 > 0 be given.
By virtue of the Cousin’s lema, there hold

A1(u1) 6= ∅, A2(u2) 6= ∅.

Firstly, consider the integral sums S⊗(f, π⊗) of y⊗ which are of special form:

S⊗(f, π⊗) =
I2∑

j=1

I1∑

i=1

m2(E(j)
2 )m1(E(i)

1 )f(t(i)1 , t
(j)
2 ).

Let S2(f2, π2) =
∑I2
j=1 m2(E(j)

2 ) f2(t(j)2 ) be the integral sum of ỹ.
By Definition 2, there areH ′,H ′′ ∈ DZ such that y⊗−S⊗(f, π⊗) ∈ Z(H ′)

and ỹ−S2(f2, π2) ∈ Z(H ′′), respectively. Put H3 = H ′∨H ′′ ∈ DZ . Consider

pH3(S⊗(f, π⊗)− S2(f2, π2))

= pH3




I2∑

j=1

I1∑

i=1

m2(E(j)
2 )m1(E(i)

1 )f(t(i)1 , t
(j)
2 )−

I2∑

j=1

m2(E(j)
2 ) f2(t(j)2 )




= pH3




I2∑

j=1

m2(E(j)
2 )



I1∑

i=1

m1(E(i)
1 )f(t(i)1 , t

(j)
2 )− f2(t(j)2 )




 . (7)

The expression

Φ2(t2) =
I2∑

j=1



I1∑

i=1

m1(E(i)
1 )f(t(i)1 , t

(j)
2 )− f2(t(j)2 )


 χ

E
(j)
2

(t2)

is a simple function, Φ2 : T2 → X2 (and hence, it is integrable). So, we
may apply Lemma 1. To do this, replace the integrals f2(t(j)2 ) ∈ Z(H3),
j = 1, 2, . . . , I2, by their integral sums. We continue (7):

= pH3




I2∑

j=1

m2(E(j)
2 )







I1∑

i=1

m1(E(i)
1 )f(t(i)1 , t

(j)
2 )
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−
KI2∑

kj=1

m1(E(kj)
1 )f(t(kj)1 , t

(j)
2 )





+





KI2∑

kj=1

m1(E(kj)
1 )f(t(kj)1 , t

(j)
2 )−

∫

T1

f(., t(j)2 )dm1








 , (8)

where
KI2∑

kj=1

m1(E(kj)
1 )f(t(kj)1 , t

(j)
2 )

is an integrable sum of

I1∑

i=1

m1(E(i)
1 )f(t(i)1 , t

(j)
2 )

(it is simple and, hence, integrable). And, by construction,

KI2∑

kj=1

m1(E(kj)
1 )f(t(kj)1 , t

(j)
2 )

is an integrable sum of

f2(tj2) =
∫

T1

f(.1, t
(j)
2 )dm1.

The expression

pH2



KI2∑

kj=1

m1(E(kj)
1 )f(t(kj)1 , t

(j)
2 )−

∫

T1

f(., t(j)2 )dm1


 <

ε1

2
, j = 1, 2, . . . , I2,

by construction.
The expressions

pH2




I1∑

i=1

m1(E(i)
1 )f(t(i)1 , t

(j)
2 )−

KI2∑

kj=1

m1(E(kj)
1 )f(t(kj)1 , t

(j)
2 )


 , j = 1, 2, . . . , I2,

we make less than ε1
2 using a common refinement of the set T1. This refine-

ment is possible because of the special form of S⊗(f, π⊗).
Thus, the expression in braketts [. . .], cf. 8, can be made such that so

that ‖[. . .]‖H2,H3 ≤ ε1/2 + ε1/2 = ε1.
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For H2 ∈ DY and H3 ∈ DZ , and taking specially ε1 ≤ 1, the expression
in [. . .] is a collection of elements x(j)

2 ∈ H2, j = 1, 2, . . . , I2, satisfying Defi-
nition 3 with respect to the measure m2. Since the measure m2 is of finite
semivariation by assumption, there exists a constant K, 0 < K < ∞ such
that

‖m2‖H2,H3(T2) = K.

Clearly, if ε1 → 0, 0 < ε1 ≤ 1, then

sup
‖f‖H2

≤ε1≤1
pH3

(∫

T2

f2 dm2

)
≤ ‖m2‖H2,H3(T2) = sup

‖f‖H2
≤1
pH3

(∫

T2

f2 dm2

)
,

where f2 : T2 → Y is a simple function (the first supremum is taken over a
subset).

We have:

pH3(S⊗(f, π⊗)− (S2(f2, π2)) < ε1K (9)

and (9) implies ε1K > pH3(S⊗(f, π⊗)− ỹ + ỹ + S2(f2, π2)). Thus,

pH3(S⊗(f, π⊗)− ỹ) < pH3(S2(f2, π2)− ỹ) + ε1K < ε2 + ε1K. (10)

Denote by ε⊗ = ε2 + ε1K. For every t1 ∈ T1, t2 ∈ T2, denote by u⊗ the
function associated with ε⊗, where u⊗(t1, t2) = u1(t1)× u2(t2) ∈ U⊗. Then
the partition

π⊗ = {(E(i,j), (t(i)1 , t
(j)
2 )) : E(i,j) = E

(i)
1 ×E(j)

2 ,

(E(i)
1 , t

(i)
1 ) ∈ π1, (E

(j)
2 , t

(j)
2 ) ∈ π2, (t

(i)
1 , t

(j)
2 ) ∈ E(i,j)}

satisfies the condition

E(i,j) ⊂ u⊗(t(i)1 , t
(j)
2 ), i = 1, 2, . . . , I1; j = 1, 2, . . . , I2.

In other words, S⊗(f, π⊗) is an integral sum of the integral y. Since y
exists by assumption, (10) and Lemma 1 imply that for every integral sum
S⊗(f, π), where π ∈ A⊗(u⊗) is now an arbitrary partition, there holds:

ε⊗ > pH3(S⊗(f, π⊗)− S⊗(f, π) + S⊗(f, π)− ỹ) (11)
≥ pH3(S⊗(f, π⊗)− S⊗(f, π))− pH3(S⊗(f, π)− ỹ),

i.e.,
pH3(S⊗(f, π)− ỹ) < 2 ε⊗.

Therefore y⊗ = ỹ. 2
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[8] RIEČAN B. – NEUBRUNN T., Integral, Measure and Ordering,
Kluwer–Ister Science, Dordrecht – Bratislava, 1997.

[9] RAO CHIVUKULA R. – SASTRY A. S., Product vector measures via
Bartle Integrals, J. of Math. An and Appl. 96 (1983), 180 – 195.

10


