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ON RANDOM FOURIER SERIES

MILOSLAV DUCHON — JAN HALUSKA

ABSTRACT. Some random trigonometric series in the context of the homoge-
neous and semihomogeneous Banach spaces of functions on the circle group are
investigated.

1. Introduction

In this paper we consider random trigonometric series

io: Zneint7 (1)

n—=——0oo

where 7 are complex random variables on a probability ({2, A, P), indepen-
dent and symmetric (that is, Z, and —Z  have the same distribution) and
we investigate some properties of these series such as a.s. (almost sure) Cesaro
summability, convergence a.s. and so on. It is well-known that a number of prop-
erties of (1) have the same probability. Let us mention, e.g., the Paley—Zygmund
theorem [3, Ch. V] dealing with the properties “(1) is a Fourier-Stieltjes series”,
“(1) represents a function in LP”, (1) < p < oo, “(1) converges almost ev-
erywhere” | and the Billard theorem [3, Ch. V] dealing with the properties
“(1) represents a bounded function”, “(1) represents a continuous function”,
“(1) converges everywhere”.

We establish and survey some results concerning similar properties which
cover some of the results given, e.g., in [3, Ch. V]. In order to do this we con-
sider so-called homogeneous Banach function spaces, B, in particular L? spaces,
1 < p < oo, continuous periodic functions and the dual spaces, B’, of homoge-
neous Banach spaces, in particular, bounded functions, measures and generalized
functions—distributions of Schwartz [4, 7]. We show, e.g., that sets of ele-
mentary events “(1) € B’” are random events (that (1) represents an element
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in B, B’, respectively), each of them has probability zero or one, moreover
(1) € B a.s. if and only if (1) converges a.s. in B, (1) € B" a.s. if and only if (1)
is bounded a.s. in B’ (i.e., (1) has bounded a.s. partial sums in B’).

2. Preliminaries

Throughout this paper, T or the circle means the group of real numbers
defined modulo 27, T'= R /27Z, R and Z being reals and integers, respectively,
t is a point on the circle, all measures and functions are defined on the circle,
and all integrals are taken over the circle T'. Basic reference is [3 and 4].

Remark. Although in [3] the only reference given in connection with homo-
geneous spaces 1s Katznelson’s course in 1964-5, homogeneous spaces were
considered many years ago by Shilov [5, 6 and 7] and later also by Wang [8].
This paper was written taking this remark into consideration.

Given an arbitrary ordinary trigonometric two-way series with z real or

complex numbers
>0

Z Zneint (2)
we write (2) € M(T) if (2) is a Fourier-Stieltjes series, i.e., there exists a (com-
plex) measure du(t) such that

7

z :/e_i"tdu(t), n=0,+1,42,...

We write (2) € LP(T) if (2) is the Fourier-Lebesgue series of a function
felr(T), 1<p<oo,and (2) € C(T) if (2) is a Fourier-Lebesgue series of a
continuous function f, i.e.,

1
o 2r
We say also that (2) represents du or f. Recall also that by definition the
Fejér sums of (2) are the trigonometric polynomials

N
onl(zit) =on(t) = Z(l — N|7:L|_| 1) Znemt, N=1,2,...

—-N

z

e (1) dt, n=0,+1,+2,...

It is well-known that if (2) converges, i.e.,

N
lim E Znemt
N—oo
N
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exists, then o, (2;t) converges for N — oo, but the converse does not hold.
We write o, (2;t) = on(f;t) or on(u;t) if (2) is a Fourier series of f or p,
respectively.

We consider M(T), LP(T), C(T) as Banach spaces on the circle; L'(T) as
a closed subspace of M and C as a closed subspace of L>. We shall write ||- Hp
for the norm in LP, 1 <p < cc.

Recall the following important results ([9, pp. 136, 145]).

PROPOSITION. For the series (2) we have
(1) (2) € L? if and only if (o) convergesin LP?, 1 < p < oo;
(ii

) (2) € C if and only if (o) converges in C;
(iii) (2) € M if and only if s1]1Vp loally < oo;
) (2)

(iv) (2) e L? ifandon]yifsupHUNHp<oo, l1<p<Loo.
N

As a consequence we have that “(1) € LP”, “(1) € C'” and “(1) € M7 are
random events. Since the zero-one law applies, each of them has probability zero
or one [3, Ch. V]. Moreover, we may apply Theorem 1 of [3, p. 11] and obtain
[3, p. 40] the following

(1) € M a.s. if and only if (1) is a.s. bounded in M

(
(1) € L? a.s. if and only if (1) converges a.s. in LP, 1 < p < oo;
(1) € L? a.s. if and only if (1) is a.s. bounded in LP, 1 < p < oo;
(1) € C a.s. if and only if (1) converges a.s. in C'.

[(1) is a.s. bounded means that its partial sums are a.s. bounded].

Let us recall also the meaning of the general Paley—Zygmund Theorem (3,
Th. 1, p. 45]): either (1) is a.s. divergent almost everywhere and not a Fourier—
—Stieltjes series or else it converges a.s. almost everywhere to a function which is
nearly bounded (that is to a function F such that exp(rF?) € L? for all r > 0
a.s.).

As for the Billard Theorem ([3, Th. 3, p. 49]) it says that the following state-
ments are equivalent: a) (1) represents a.s. a bounded function; b) (1) represents
a.s. a continuous function; ¢) (1) converges uniformly a.s.; d) (1) converges ev-
erywhere a.s.

3. Homogeneous Banach spaces

Now we shall show that the results mentioned for the spaces L?, 1 < p < oo,
and C are valid for function spaces B(T) other than L?, 1 < p < oo, and
C including at least so-called homogeneous Banach spaces over T'. These are,
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by definition, the linear subspaces of L'(T') endowed with a norm || ||z under
which we have a Banach space such that

@) [IFlly < Nfll for all f € B(T);
(i) if fe B(T) and s € T, then f, € B(T) and ||f,|z =fll5
[fo(t) = f(t = 5)];
(iti) lim |If, ~ fll 5 =0 for all f € B(T).

(See [1; 4; 5; 6; 7].)
We shall make use of the following result valid for the homogeneous Banach
spaces; note that the proof requires the integration of B(T')-valued functions on

T [5; 6; 7].

PROPOSITION 1. Let B(T) be a homogeneous Banach space over T. Then
the following conditions are equivalent:

a) (2) € B(T);
b) (o) converges in B(T) for N — oo (i.e., (2) is summable in B(T)).

Proof. That a) implies b) was, in fact, proved by Silov [5; 6; 7, VIL
&1, Th. 2] because the Silov definition of the homogeneous Banach space differs
only little from the Katznelson definition (used here) of the homogeneous
Banach space for which the similar result is proved in [4, I. Th. 2.12].

If (6y), for N — oo, converges in B(T), it converges to some function f
in B(T), and hence (o) converges to f in L'(T), from which we deduce that
z, = % [emmtf(t)dt, ie., (2) € B(T), hence b) implies a) and the proof is
complete. O

We are now in state to establish the following result.

THEOREM 1. Let B(T) be a homogeneous Banach space over T'. Then “(1) €
B(T)” is a random event which has probability zero or one. Moreover (1) € B(T)
a.s. if and only if (1) is a.s. convergent in B(T).

Proof. That “(1) € B(T)” is a random event follows from the fact that
(2) € B(T) if and only if (o), for N — oo, converges in B(T) (see Propo-
sition 1). Moreover, since “(1) € B(T)” does not depend on the values of any
finite number of Z (i.e., “(1) € B(T)” is an asymptotic property of Z ) the
zero-one law applies ([3, I 6]) and so “(1) € B(T)” has probability zero or one.
Since Z, are independent symmetric random variables (1) € B(T) if and only
if (1) converges a.s. in B(T') because a.s. summability implies a.s. convergence

([3, Th. 1, p. 11]). 0

In order to show a significance of the Theorem 1 we will furnish some homo-
geneous Banach spaces.
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1. All spaces LP(T), 1 <p < .
2. C(T)—the space of all continuous 2r-periodic functions; the norm ||f|| =

max [ £(1)].

3. C™(T)—the subspace of C(T) of all n-times continuously differentiable
functions; the norm

"1
I£1,, = g Symax|fO@)].

4. L(l)(T)—the Banach space of all functions f on T such that f is abso-
lutely continuous; the norm

Al ey = I+ 11

Recall that the Banach spaces B(T) in L'(T) satisfying the first two condi-
tions for a homogeneous Banach space and not necessarily the third condition
are called semihomogeneous Banach spaces over T'. So the (“great”) Lipschitz
spaces Lip_(T), 0 < a <1, of all continuous functions f on T for which

plitn-sol
wlo A

with the norm

|f(t+R)— f(t)]
||

1 llLip, = Sup F(8)] + sup
h#0

are the Banach subspaces of L!(T) satisfying the first two conditions for a
homogeneous Banach space, the third condition is not satisfied, hence they are
semihomogeneous Banach spaces. Clearly every homogeneous Banach space is a
semihomogeneous Banach space.

5. The Banach spaces lip(T), 0 < a < 1, of all functions f in Lip_(T') for
which
y |F(t+h)— f(t)]
im sup

h—oo ¢ |h|a

=0

with the norm HfHLip and lip, (¢), putting lip,(T') = C*(T), are homogeneous
Banach spaces.
Let us give some examples of semihomogeneous Banach spaces.

(a) Lipschitz spaces Lip_(T), 0 < o < 1. Recall that lip_(T), 0 < o < 1
lip,(T) = CYT) are the maximal homogeneous Banach spaces in Lip_(T)
0 <a <1, Lip,(T), respectively.

Y

Y
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(b) L°(T)—the space of all essentially bounded functions in L'(T) with
the norm || f||,, = esssup ‘f(t)‘ The maximal homogeneous Banach space in
t

L>(T) is the space C(T).

(¢) CBV(T)— the space of all continuous functions on T' with bounded total
variation V7™ f with the norm || f||, = ||f||; +V¢™f . The maximal homogeneous
Banach space in CBV(T) is L()(T).

(d) BV(T)—the space of all functions on T with bounded total variation
Vo%f with the norm |||, = [|f]l, + Vozﬂf-

4. Duals of homogeneous Banach spaces

Let now B(T) be a homogeneous Banach space and B'(T) its dual space
(the space of all continuous linear forms on B(T)). If uw € B'(T), the complex
number defined by z, = u(e™") is called the nth Fourier coefficient of u.
Remark. If B(T) is a homogeneous Banach space over T, then for every f &
B(T) and n € Z the function ¢ — f(n)ei"t belongs to B(T) ([4, p. 6. Lemma
1.9 and p. 17, Ex. 13]). It follows that if the Fourier-Lebesgue coefficient f(n)
of f is not zero, then the exponential ¢+ — ¢! belongs to the space B(T) for
this n € Z. So we may say that the exponential * — €™ belongs to the space
B(T) if there exists a function f € B(T) such that f(n) is not zero. With
regard to this fact we will suppose tacitly for the sake of simplicity that B(T)
is a homogeneous Banach space containing all exponentials t — ™!, n € Z.

We shall write (2) € B'(T) if z, = u(e™*""), n € Z, for some u € B'(T),

ie., if z, is the nth Fourier coefficient of some u € B'(T), in such a case

N

o, (z,t) = Z(l — NL—IJ1> Znei"t

—-N

N
:_2];(1— N|Z_|1>ﬁ(n)emt:UN(u,t), N=1,2,...

By means of the functions o, (2,t) or o, (u,t), alinear form, denoted by o (),
belonging to B'(T') is defined, namely

(fion(z)) = %/f(t) oy(z,t)dt
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for all f € B(T). In particular, for v € B'(T), the linear forms o, (u) are
elements from B'(T) and

<f70n(u)> = %/f(t) on(u,t)dt

- ZN(l - it

for all f € B(T). We remark that for every u € B/(T') the sequence from B'(T),

oy (u) converges weak star to u, i.e.,

lim <f, UN(u)> = (f,u)

N—oo

for all f € B(T) ([4, p. 35, Parseval’s formulal]). We denote the norm of o (%)
as that of an element of B'(T) by HO‘N(Z)‘

following result.

We are now ready to state the

BU(T)"

PROPOSITION 2. Let B(T) be a homogeneous Banach space over T ad B'(T)
be its dual space. Then the following conditions are equivalent:

a) (2) € B(T);

b) SupHO‘N(Z)‘ < 00.
N

B'(T)

Proof of this proposition requires only small modification of the arguments

in [4, p. 36-37].

THEOREM 2. Let B(T) be a homogeneous Banach space over T and B'(T)
be its dual space. Then “(1) € B'(T)” is a random event which has probability

zero or one. Moreover (1) € B'(T) a.s. if and only if (1) is a.s. bounded in
B(T).

Proof. “(1) € B'(T)” is a random event, since (2) € B'(T) if and only
if the sequence ¢, (z) is bounded in B'(T) (see Proposition 2). Since “(1) €
B'(T)” does not depend on the values of any finite number of Z _, (“(1) €
B'(T)” is an asymptotic property of Z, , similarly as “(1) € B(T)” was) the
zero-one law applies ([3, I. 6]) and so “(1) € B'(T)” has probability zero or one.
Since Z, are independent symmetric random variables we have (1) € B'(T) a.s.

if and only if (1) is a.s. bounded in B'(T'), because a.s. summability boundedness
implies a.s. boundedness ([3, p. 11, Th. 1]). O

Let us recall that for B(T') = C(T') the dual space B'(T) is identified with the
space M(T) by (f,u) = [ fdu; for B(T) = LP(T), 1 < p < oo, the dual space
B'(T) is the space LY(T), 1 < g < oo, with ]lj + % = 1. As for the space L'(T)

it is well-known that it is not the dual space of any Banach space, but it is the
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dual space of L>=(T) if L>(T) is endowed with weak star topology o(L>,L').
Let us remark that the condition sup Han(z)Hl < o0 1s not, in general, sufficient
N

for (2) € LY(T) (only for (2) € M(T)) and in fact, (2) € L (T) if and only if
the sequence (UN(Z,t)> is weakly compact, i.e., some subsequence <0‘N(k)(Z,t)>
converges (weakly) in L'(T') or equivalently for some subsequence <0‘N(k)(Z,t)>
the set functions

are uniformly (or equi-) absolutely continuous (]2, II. 12.2.9]).

As for B(T) = C™(T) recall that the elements of the dual space B'(T) are
called (Schwartz) distributions or generalized functions of order m, B'(T) =
D™(T). Since C™T(T) c C™(T) we have D™(T) C D™T1(T), and we write
D(T) =JD™(T) for the space of all distributions.

We may now state the following corollary.

COROLLARY. “(1) e LP", 1 < p < oo, “(l)e M” “(1) e D™7”, “(1) € D~
are random events which have probability zero or one. Further

(1) € L? a.s., 1 < p < oo, ifand only if (1) is a.s. bounded in L?, 1 < p < oo;
(2) € M a.s. if and only if (1) is a.s. bounded in M .

5. Semihomogeneous spaces

We have seen that Theorem 1 and Theorem 2 deal with the homogeneous
Banach spaces of functions and the duals of homogeneous Banach spaces of
functions, respectively. We have also seen that there are important Banach spaces
B(T) of functions which are semihomogeneous but not homogeneous. Many of
them are, however, convolutable ([8]), i.e., for every f € LY(T) and g € B(T)
the convolution function f*g, (f*g)(t) = [ g(t—s)f(s)ds, belongs to B(T') and
|f*9llg < K|lgll g, (K—a positive finite number). For example, all the spaces
BV(T), CBV(T), Lip (T), L>=(T) (and, of course, all the homogeneous Banach
spaces) are convolutable.

In the following (2) € BV(T), (2) € CBV(T) mean that z, are the Fourier—
—Lebesgue coefficients of a function f in BV(T) or in CBV(T), respectively.

cf. [9], p. 138).

From the preceeding we obtain the following (

PROPOSITION 3.
1. For the space BV(T) the following conditions are equivalent:

(a) (2) € BV(T);
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(b) sup|loylly < oo
N

2. For the space CBV(T) the following conditions are equivalent:
(a) (2) € CBV(T);

(b) s1]1Vp loylly < oo and (o) converges uniformly in T.

Proof.

1. follows from the correspondence between M(T) and BV(T), taking in
account that BV(T) is convolutable, that sup||o,||,, means sup |loy|;, and
N N

sup ||oy ]|, < oo (using of course Proposition 2).
N

2. follows from 1. and Proposition 1 applied to C(T).

Note that L*(T) is contained also in Proposition 2. From the preceeding we
could derive the following:

“(1) € BV(T)” is a random event which has probability zero or one; (1) €
BV(T) a.s.if and only if (1) is a.s. bounded in BV(T'). Further “(1) € CBV(T)”
is a random event which has probability zero or one; (1) € CBV(T) a.s. if and
only if (1) is a.s. bounded in CBV(T') and convergent in C(T). It is interesting to
note that by the Billard Theorem [3, p. 52] (1) € BV(T) a.s. implies (1) € LY

a.s., and similarly (1) € Lip,(T') a.s. implies (1) € C'! a.s. O
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