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Abstract

In this paper we will deal with a subset of a group of all unimodular
3× 3 matrices (noncommutative group of matrices A, such that det(A) =
1) derived from geometrical nets with 3 quotients (bases). The research
is inspired with diatonic scales in music.
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1 Introduction

Considering the 12-granulation of octave in European music, the ambiguous
intervals in the 17-valued Just Intonation Set are the second and the minor
seventh and the tritone (the relative frequencies 10/9, 9/8, 8/7; and 7/4, 16/9,
18/10; and 45/32, 64/45, respectively). Pythagorean Tuning we can consider
also 17- or more valued. Indian shrutis yield another type of ambiguity – it is
present in the form of ragas which are restrictions of 22-tone Pythagorean scale
mostly to 7 tone scales. Finally, scales of Pacific region, Slendro and Pelog,
represent fuzzy type of uncertainty because there is no crisp defined pitch of
tones. In this paper we will study the ambiguity of European tone systems
which contain the major scale.

Precise the question as follows: find all 5-limit 12-tone tone systems contain-
ing the C-major scale (relative frequencies 1/1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8,
and 2/1).

It is known that each tone system (and scales in particular) can be repre-
sented via a geometrical net which is a generalization of the geometrical pro-
gression notion. So, let us search the answer to the question in the form of
geometrical net. The results will be then consequences of solutions of Diophan-
tine equations describing the basic acoustic relations among octave, perfect fifth
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and major (minor) third. The 12-granule system has properties of the Just In-
tonation Set (it involves octave, perfect fifth, perfect fourth, major third, minor
third, major whole tone, minor whole tone, diatonic semitone and chromatic
semitone) and also of Pythagorean Tuning. Further, there are applications to
superparticular ratios.

The ratios 256/243, 25/24, 16/15 are known as the minor Pythagorean, chro-
matic, and diatonic semitone, respectively. Just Intonation [when we avoid the
minor seventh (7/4) and the second (8/7)] is constructed on the basis of the chro-
matic and diatonic semitones. This tone system is often mentioned in Europe
as the most natural tuning from many viewpoints (physical, psycho-acoustical,
polyphonic, etc.). On the other side, Pythagorean Tuning is based exclusively
on the minor Pythagorean semitone, diesis (256/243). Thus the Just Intonation
Set and Pythagorean Tuning are considered by music theoreticians as two fully
incompatible tone systems.

This viewpoint is not correct. In fact, not only the diatonic and chromatic
but also the minor Pythagorean semitone (together with the diatonic semitone
and its complement to the major whole tone) can serve as a basis for the con-
struction of 12-granule diatonic scales, cf. Table 3. Further, we will show in this
paper why the gypsy scales are important tone systems.

For the sake of brevity, we will use the following notation of the geometric
net (more precisely, the n-quotient geometric net) 〈Γi〉 in R:

〈Γi〉 = 〈Xνi,· ; |νi,·| = i, . . . ≤ ν0,· ≤ ν1,· ≤ . . . ≤ νi,· ≤ . . .〉νi,·∈Z3 ,

where

X = (X1, X2, · · · , Xn) ∈ Rn, νi,· = (νi,1, νi,2, . . . , νi,n) ∈ Zn,

νi,· ≤ νi+1,· ⇔ νi,k ≤ νi+1,k (k = 1, 2, . . . , n),

|νi,·| = νi,1 + νi,2 + . . .+ νi,n, X
νi,· = X

νi,1
1 X

νi,2
2 . . . Xνi,n

n i ∈ Z, n ∈ N ,
and N , Z, R are the sets of all natural, integer, and real numbers, respectively.

We say that the (n-quotient) geometrical net is an M -granule (n-quotient)
tone system if XM,· = 2 (octave). The M -granule (n-quotient) tone system is
scale (an M -granule n-quotient scale) if it is a chain, a sequence.

In this paper, we will consider the case of geometrical nets with n = 3 and
M = 12. 12-granulation of octave is typical for European music. Both Slendro
and Pelog can be derived from a theoretical 10-equally tempered master scale,
i.e. music of the Pacific region uses 10-granulation within octave.
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2 Unimodular (12, 7, 4)-matrices

Definition 1 We say that a matrix

A =




ν12,1 ν12,2 ν12,3

ν7,1 ν7,2 ν7,3

ν4,1 ν4,2 ν4,3




of nonnegative integers, is a (12, 7, 4)-matrix, if

0 ≤ ν4,1 ≤ ν7,1 ≤ ν12,1, 0 ≤ ν4,2 ≤ ν7,2 ≤ ν12,2, 0 ≤ ν4,3 ≤ ν7,3 ≤ ν12,3

and
νi,1 + νi,2 + νi,3 = i, i = 4, 7, 12.

In other words, we say that a matrix (νi,j)
1,2,3
12,7,4 ∈ N 3 × N 3 is a (12, 7,

4)-matrix, cf. [8], if 0 ≤ ν4,· ≤ ν7,· ≤ ν12,· and |νi,·| = i, i = 12, 7, 4.

Definition 2 If to a given (12, 7, 4)-matrix A there exists an M -granule
n-quotient scale S (tone system S), then we say that the scale S (tone system
S) is generated by A.

We will find appropriate (12, 7, 4)-matrices and then construct and consider
the needed generated 12-granule 3-quotient systems.

Theorem 1 Let A = (νi,j)
j=1,2,3
i=12,7,4 ∈ N 3 ×N 3 with detA 6= 0.

Then there exists a unique X ∈ Q3, such that

Xν12,· = 2/1, Xν7,· = 3/2, Xν4,· = 5/4, (1)

and the following statements are equivalent:

(i) X ∈ Q3;

(ii) detA = 1,

where Q denotes the set of all rational numbers. The values are as follows:

X1 = detA
√

2D2,13D3,15D5,1 , X2 = detA
√

2D2,23D3,25D5,2 , X3 = detA
√

2D2,33D3,35D5,3 ,

where

D2,1 =

∣∣∣∣∣
1 ν12,2 ν12,3

−1 ν7,2 ν7,3

−2 ν4,2 ν4,3

∣∣∣∣∣ , D2,2 =

∣∣∣∣∣
ν12,1 1 ν12,3

ν7,1 −1 ν7,3

ν4,1 −2 ν4,3

∣∣∣∣∣ , D2,3 =

∣∣∣∣∣
ν12,1 ν12,2 1
ν7,1 ν7,2 −1
ν4,1 ν4,2 −2

∣∣∣∣∣ ,

D3,1 =

∣∣∣∣∣
0 ν12,2 ν12,3

1 ν7,2 ν7,3

0 ν4,2 ν4,3

∣∣∣∣∣ , D3,2 =

∣∣∣∣∣
ν12,1 0 ν12,3

ν7,1 1 ν7,3

ν4,1 0 ν4,3

∣∣∣∣∣ , D3,3 =

∣∣∣∣∣
ν12,1 ν12,2 0
ν7,1 ν7,2 1
ν4,1 ν4,2 0

∣∣∣∣∣ ,

D5,1 =

∣∣∣∣∣
0 ν12,2 ν12,3

0 ν7,2 ν7,3

1 ν4,2 ν4,3

∣∣∣∣∣ , D5,2 =

∣∣∣∣∣
ν12,1 0 ν12,3

ν7,1 0 ν7,3

ν4,1 1 ν4,3

∣∣∣∣∣ , D5,3 =

∣∣∣∣∣
ν12,1 ν12,2 0
ν7,1 ν7,2 0
ν4,1 ν4,2 1

∣∣∣∣∣ .
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Proof. (i)⇒ (ii) IfX1, X2, X3 ∈ Q, then there exist p ∈ P and E2,X1 , . . . , Ep,X3 ∈
Z such that

X1 = 2E2,X1 3E3,X1 . . . pEp,X1 ,
X2 = 2E2,X2 3E3,X2 . . . pEp,X2 ,
X3 = 2E2,X3 3E3,X3 . . . pEp,X3 .

(2)

Combining (1) and (2),



E2,X1 E2,X2 E2,X3

E3,X1 E3,X2 E3,X3

E5,X1 E5,X2 E5,X3

E7,X1 E7,X2 E7,X3

. . .
Ep,X1 Ep,X2 Ep,X3







ν12,1 ν7,1 ν4,1

ν12,2 ν7,2 ν4,2

ν12,3 ν7,3 ν4,3


 =




1 −1 −2
0 1 0
0 0 1
0 0 0

. . .
0 0 0



.

(ii)⇒ (i) Since detA = 1,



E2,X1 E2,X2 E2,X3

E3,X1 E3,X2 E3,X3

E5,X1 E5,X2 E5,X3

E7x E7,X2 E7,X3

. . .
Ep,X1 Ep,X2 Ep,X3




=




D2,X1 D2,X2 D2,X3

D3,X1 D3,X2 D3,X3

D5,X1 D5,X2 D5,X3

0 0 0
. . .

0 0 0



.
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Theorem 2 No 12-granule 1- or 2- rational interval system is generated by
any (12, 7, 4)-matrix.

Proof. The analysis of all (12, 7, 4)-matrices with detA = 1 contains no case
D2,X1 = D3,X1 = D5,X1 = 0. So, D2

2,X1
+ D2

3,X1
+ D2

5,X1
> 0. Analogously,

D2
2,X2

+ D2
3,X2

+ D2
5,X2

> 0, D2
2,X3

+ D2
3,X3

+ D2
5,X3

> 0. The assertion for 1-
interval system is trivial. 2

Corollary 3 Neither the 12-tone Equal Temperament nor Pythagorean Tun-
ing are generated by any (12, 7, 4)-matrix.

Theorem 4 Let A be a (12, 7, 4)-matrix. Then

D2
2,X1

+D2
2,X2

+D2
2,X3

> 0, D2
3,X1

+D2
3,X2

+D2
3,X3

> 0, D2
5,X1

+D2
5,X2

+D2
5,X3

> 0,

where D2,X1 , D2,X2 , D2,X3 , D3,X1 , D3,X2 , D3,X3 , D5,X1 , D5,X2 , D5,X3 are as in The-
orem 1.
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Proof. At first, note that a (12, 7, 4)-matrix exists, e.g. the matrix A∗ in
Theorem 8. If D2

5,X1
+D2

5,X2
+D2

5,X3
= 0, then there exist no ν4,1, ν4,2, ν4,3 in

A such that Xν4,1
1 X

ν4,2
2 X

ν4,3
3 = 5/4. A contradiction. Similarly for the numbers

2 and 3. 2

Theorem 5 Let A be an unimodular (12, 7, 4)-matrix. Then X1 6= X2, X2 6=
X3, X3 6= X1.

Proof. If 1 < X1 = X2 = X3, then X1 /∈ Q. A contradiction.
Suppose X1 = X2 6= Z (the cases X2 = X3 6= X1, X1 = X3 6= X2 are

symmetric). By Definition 1 and Definition 2,

X
4−ν4,3
1 X

ν4,3
3 = 5/4, X7−ν7,3

1 X
ν7,3
3 = 3/2, X12−ν12,3

1 X
ν12,3
3 = 2/1. (3)

By Theorem 1, X1 = 2α3β5γ , X3 = 2δ3ε5θ, for some α, β, γ, δ, ε, θ ∈ Z.
Then (3) implies

α(12−ν12,3)+ν12,3δ = 1, β(12−ν12,3)+ν12,3ε = 0, γ(12−ν12,3)+ν12,3θ = 0, (4)

α(7− ν7,3) + ν7,3δ = −1, β(7− ν7,3) + ν7,3ε = 1, γ(7− ν7,3) + ν7,3θ = 0, (5)

α(4− ν4,3) + ν4,3δ = −2, β(4− ν4,3) + ν4,3ε = 0, γ(4− ν4,3) + ν4,3θ = 1. (6)

If ε = β, then (4) implies β = 1/7 /∈ Z. If γ = θ, then (5) implies γ = 1/4 /∈ Z.
So, ε 6= β, θ 6= γ. Then (4), and (5) imply

ν12,3 =
−12β
ε− β =

−12γ
θ − γ , ν4,3 =

−4β
ε− β =

1− 4γ
θ − γ . (7)

If β 6= 0, then (6) implies

−12β
−4β

=
−12γ
1− 4γ

,

which implies 0 = 1. If β = 0 then (6) implies 0 = γ = 1/4. A contradiction.
2

Corollary 6 If S (S) is a 12-granule 3-quotient (2/1, 3/2, 5/4)-scale (sys-
tem) with X1, X2, X3 ∈ Q, then we can redenote (order) X1, X2, X3, such that
1 < X1 < X2 < X3 < 10/9.
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3 TDS geometrical nets

Now, we restrict the class of all 12-granule 3-quotient geometrical nets gen-
erated by (12, 7, 4)-matrices to TDS geometrical nets.

Definition 3 We say that a 12-granule 3-quotient geometrical net 〈Γi〉 gen-
erated by a (12, 7, 4)-matrix A is a TDS geometrical net if

ν2,· = 2ν7,· − ν12,·, ν5,· = ν12,· − ν7,·, ν9,· = ν12,· − ν7,· + ν4,·, ν11,· = ν7,· + ν4,·,

and for every i ∈ Z, there exists p ∈ N , 0 ≤ p < 12, and q ∈ N , such that
νi,· = qν12,· + νp,·.

Note that the members Γi, i = 1, 3, 6, 8, 10, mentioned in Definition 3, are
determined ambiguously.

Theorem 7 According to the symmetry, all generators X ∈ Q3 for TDS
geometrical nets

〈Γi〉 = 〈Xνi,· ; |νi,·| = i, 0 ≤ ν0,· ≤ ν1,· ≤ . . . ≤ νi,· ≤ . . .〉νi,·∈N 3

with the subsequences

〈Γ12l〉 =
〈
2l
〉
, 〈Γ12l+7〉 =

〈
3 · 2l−1

〉
, 〈Γ12l+4〉 =

〈
5 · 2l−2

〉

are the following:

(25/24, 135/128, 16/15), (256/243, 135/128, 16/15), (25/24, 16/15, 27/25).

Proof. The analysis of the Diophantine equation

det[(νi,j)
j=1,2,3
i=12,7,4] = 1, 0 ≤ ν4,· ≤ ν7,· ≤ ν12,·, |νi,·| = i

in N 3 ×N 3 with the additional (not restricting the solution) condition

2ν7,· − ν12,· ≥ 0

yields the following matrices (excluding symmetries, i.e. permutations of columns):

A1 =




2 7 3
1 4 2
1 2 1


 , A2 =




2 5 5
1 3 3
1 1 2


 ,

A3 =




5 4 3
3 2 2
2 1 1


 , A4 =




1 2 9
1 1 5
0 1 3


 ,
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A5 =




1 3 8
1 2 4
0 1 3


 , A6 =




1 4 7
1 2 4
1 1 2


 ,

A7 =




1 5 6
1 3 3
1 2 1


 , A8 =




2 3 7
1 2 4
1 0 3


 .

Apply Theorem 1 and find all sequences by the algorithm in Definition 3.
Excluding all such sequences 〈Γi〉 which do not satisfy the condition ν0,· ≤ ν1,· ≤
. . . ≤ νi,· ≤ . . ., we obtain the following three matrices: A1, A2, A3.

In Table 1, Table 2, and Table 3 there are all TDS-geometrical nets 〈Γi〉 (in
the sixths column, there is a musical denotation) corresponding to the matrices
A1, A2, and A3. 2

In the connection with the previous theorem we mention here that the anal-
ysis of all (12, 7, 4)-matrices A with detA = 1 yields the following surprising
statement.

Theorem 8 According to the symmetry,

A3 =




5 4 3
3 2 2
2 1 1




is the unique unimodular matrix which is the unique solution of the Diophantine
equation det[(νi,j)

j=1,2,3
i=12,7,4] = 1, 0 < ν4,· < ν7,· < ν12,·, |νi,·| = i.

Corollary 9 By Corollary 6, let 1 < X < X2 < X3 < 10/9. By Theorem 1,
for A3 we have:




D2,X1 D2,X2 D2,X3

D3,X1 D3,X2 D3,X3

D5,X1 D5,X2 D5,X3


 =



−3 4 0
−1 −1 3
2 −1 −2


 .

4 Construction of generated tone systems

In this section we will generate 12-granule 3-quotient tone systems.
The values X,X2, X3 ∈ R in the following theorem not be necessary rational.

Theorem 10 Let A be a (12, 7, 4)-matrix and corresponding X,X2, X3 ∈ R
as in Theorem 1.

Put
ν∗2,1 = 2ν7,1 − ν12,1, ν

∗
2,2 = 2ν7,2 − ν12,2, ν

∗
2,3 = 2ν7,3 − ν12,3,

ν∗5,1 = ν12,1 − ν7,1, ν
∗
5,2 = ν12,2 − ν7,2, ν

∗
5,3 = ν12,3 − ν7,3,

ν∗9,1 = ν12,1 − ν7,1 + ν4,1, ν
∗
9,2 = ν12,2 − ν7,2 + ν4,2, ν

∗
9,3 = ν12,3 − ν7,3 + ν4,3,

ν∗11,1 = ν7,1 + ν4,1, ν
∗
11,2 = ν7,2 + ν4,2, ν

∗
11,3 = ν7,3 + ν4,3.
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. . . . . . . . . . . . . . .
X0

1X
0
2X

0
3 203050 1/1 1.0 C

X1
1X

0
2X

0
3 2−33−152 25/24 1.041666666 C]

X0
1X

0
2X

1
3 20335−2 27/25 1.08 D[

X1
1X

0
2X

1
3 2−33250 9/8 1.125 D

X2
1X

0
2X

1
3 2−63152 75/64 1.171875 D]

X1
1X

1
2X

1
3 21315−1 6/5 1.2 E[

X2
1X

1
2X

1
3 2−23051 5/4 1.25 E

X2
1X

2
2X

1
3 223−150 4/3 1.333333333 F

X3
1X

2
2X

1
3 2−13−252 25/18 1.388888888 F]

X2
1X

2
2X

2
3 22325−2 36/25 1.44 G[

X3
1X

2
2X

2
3 2−13150 3/2 1.5 G

X4
1X

2
2X

2
3 2−43052 25/16 1.5625 G]

X3
1X

3
2X

2
3 23305−1 8/5 1.6 A[

X4
1X

3
2X

2
3 203−151 5/3 1.666666666 A

X5
1X

3
2X

2
3 2−33−253 125/72 1.736111111 A]

X4
1X

3
2X

3
3 20325−1 9/5 1.8 B[

X5
1X

3
2X

3
3 2−33151 15/8 1.875 B

X5
1X

4
2X

3
3 213050 2/1 2.0 C′

. . . . . . . . . . . . . . .

Table 1: Class G, semitones (X1, X2, X3) = (25/24, 16/15, 27/25)

. . . . . . . . . . . . . . .
X0

1X
0
2X

0
4 203050 1/1 1.0 C

X0
1X

0
2X

1
4 2−73351 135/128 1.0546875 C]

X0
1X

1
2X

0
4 243−15−1 16/15 1.066666666 D[

X0
1X

1
2X

1
4 2−33250 9/8 1.125 D

X1
1X

1
2X

1
4 2−63152 75/64 1.171875 D]

X0
1X

2
2X

1
4 21315−1 6/5 1.2 E[

X1
1X

2
2X

1
4 2−23051 5/4 1.25 E

X1
1X

3
2X

1
4 223−150 4/3 1.333333333 F

X1
1X

3
2X

2
4 2−53251 45/32 1.40625 F]

X1
1X

4
2X

1
4 263−25−1 64/45 1.422222222 G[

X1
1X

4
2X

2
4 2−13150 3/2 1.5 G

X2
1X

4
2X

2
4 2−43052 25/16 1.5625 G]

X1
1X

5
2X

2
4 23305−1 8/5 1.6 A[

X2
1X

5
2X

2
4 203−151 5/3 1.666666666 A

X2
1X

5
2X

3
4 2−73252 225/128 1.7578125 A]

X2
1X

6
2X

2
4 243−250 16/9 1.777777777 B[

X2
1X

6
2X

3
4 2−33151 15/8 1.875 B

X2
1X

7
2X

3
4 213050 2/1 2.0 C′

. . . . . . . . . . . . . . .

Table 2: Class R, semitones (X1, X2, X4) = (25/24, 16/15, 135/128)
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. . . . . . . . . . . . . . .
X0

5X
0
2X

0
4 203050 1/1 1.0 C

X0
5X

0
2X

1
4 2−73351 135/128 1.0546875 C]

X0
5X

1
2X

0
4 243−15−1 16/15 1.066666666 D[

X0
5X

1
2X

1
4 2−33250 9/8 1.125 D

X1
5X

1
2X

1
4 253−350 32/27 1.185185185 D]

X0
5X

1
2X

2
4 2−103551 1215/1024 1.186523438 E[

X1
5X

1
2X

2
4 2−23051 5/4 1.25 E

X1
5X

2
2X

2
4 223−150 4/3 1.333333333 F

X1
5X

2
2X

3
4 2−53251 45/32 1.40625 F]

X1
5X

3
2X

2
4 263−25−1 64/45 1.422222222 G[

X1
5X

3
2X

3
4 2−13150 3/2 1.5 G

X2
5X

3
2X

3
4 273−450 128/81 1.580246914 G]

X1
5X

3
2X

4
4 2−83451 405/256 1.58203125 A[

X2
5X

3
2X

4
4 203−151 5/3 1.666666666 A

X2
5X

3
2X

5
4 2−73252 225/128 1.7578125 A]

X2
5X

4
2X

4
4 243−250 16/9 1.777777777 B[

X2
5X

4
2X

5
4 2−33151 15/8 1.875 B

X2
5X

5
2X

5
4 213050 2/1 2.0 C′

. . . . . . . . . . . . . . .

Table 3: Class P , semitones (X5, X2, X4) = (256/243, 16/15, 135/128)

Put
C = X0

1X
0
2X

0
3 , D = X

ν∗2,1
1 X

ν∗2,2
2 X

ν∗2,3
3 , E = X

ν4,1
1 X

ν4,2
2 X

ν4,3
3 , F = X

ν∗5,1
1 X

ν∗5,2
2 X

ν∗5,3
3 ,

G = X
ν7,1
1 X

ν7,2
2 X

ν7,3
3 , A = X

ν∗9,1
1 X

ν∗9,2
2 X

ν∗9,3
3 , B = X

ν∗11,1
1 X

ν∗11,2
2 X

ν∗11,3
3 , C ′ =

X
ν12,1
1 X

ν12,2
2 X

ν12,3
3 , D′ = 2d.

Then

(i) C : E : G = G : B : D′ = F : A : C ′ = 1 : 5/4 : 3/2,

(ii) ν∗2,1 + ν∗2,2 + ν∗2,3 = 2, ν∗5,1 + ν∗5,2 + ν∗5,3 = 5,m∗9,1 + ν∗9,2 + ν∗9,3 = 9, ν∗11,1 +
ν∗11,2 + ν∗11,3 = 11.

Proof. (i) We have: 1 : (5/4) : (3/2) = C : E : G = 3/2 : ((3/2)(5/4)) : (3/2)2

= G : B : D′ = ((2)(2/3)) : ((2)(2/3)(5/4)) : 2 = F : A : C ′.
(ii) For 5, (ν12,1 − ν7,1) + (ν12,2 − ν7,2) + (ν12,3 − ν7,3) = (ν12,1 + ν12,2 +

ν12,3)− (ν7,1 + ν7,2 + ν7,3) = 12− 7 = 5, analogously for 2, 9, 11. 2

Corollary 11 If

0 = m0 ≤ ν∗2,1 ≤ ν4,1 ≤ ν∗5,1 ≤ ν7,1 ≤ ν∗9,1 ≤ ν∗11,1 ≤ ν12,1,
0 = n0 ≤ ν∗2,2 ≤ ν4,2 ≤ ν∗5,2 ≤ ν7,2 ≤ ν∗9,2 ≤ ν∗11,2 ≤ ν12,2,
0 = r0 ≤ ν∗2,3 ≤ ν4,3 ≤ ν∗5,3 ≤ ν7,3 ≤ ν∗9,3 ≤ ν∗11,3 ≤ ν12,3,

then numbers D,F,A,B can be taken as the 3rd, 6th, 10th, and 12th coordinates
of the 12-granule scale vector and put
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ν∗2,1 = ν2,1, ν
∗
2,2 = ν2,2, ν

∗
2,3 = ν2,3,

ν∗5,1 = ν5,1, ν
∗
5,2 = ν5,2, ν

∗
5,3 = ν5,3,

ν∗9,1 = ν9,1, ν
∗
9,2 = ν9,2, ν

∗
9,3 = ν9,3,

ν∗11,1 = ν11,1, ν
∗
11,2 = ν11,2, ν

∗
11,3 = ν11,3.

Theorem 12 Let (X1, X2, X3) = (25/24, 16/15, 27/25). Let C = X0
1X

0
2X

0
3 ,

C] = X1
1X

0
2X

0
3 , D[ = X0

1X
0
2X

1
3 , D = X1

1X
0
2X

1
3 , D] = X2

1X
0
2X

1
3 , E[ =

X1
1X

1
2X

1
3 , E = X2

1X
1
2X

1
3 , F = X2

1X
2
2X

1
3 , F] = X2

1X
2
2X

2
3 , G[ = X3

1X
2
2X

1
3 , G =

X3
1X

2
2X

2
3 , G] = X4

1X
2
2X

2
3 , A[ = X3

1X
3
2X

2
3 , A = X4

1X
3
2X

2
3 , A] = X5

1X
3
2X

2
3 ,

B[ = X4
1X

3
2X

3
3 , B = X5

1X
3
2X

3
3 , C ′ = X5

1X
4
2X

3
3 , D′ = 2d.

Then the all 12-granule scales generated by A3 satisfying the condition C :
E : G = G : B : D′ = F : A : C ′ = 1 : 5/4 : 3/2 are the next:

(C, i,D, j, E, F, k,G, l, A,m,B,C ′),

where i = C], D[; j = D], E[; k = F], G[; l = G], A[;m = A], B[.
Analogously for matrices A1 (cf. Table 2) and A2 (cf. Table pypri), respec-

tively.

Proof. Combine Corollary 6, Theorem 10, and Corollary 11. It is easy to
verify, cf. Table 1, that i = C], D[; j = D], E[; k = F], G[; l = G], A[;m =
A], B[, are the all possibilities how to complete {C,D,E, F,G,A,B,C ′} to the
12-granule scales. 2

Corollary 13 The tone system

S3 = {C,C], D[, D,D], E[, E, F, F], G[, G,G], A[, A,A], B[, B, C
′},

cf. Table 1, is a 17-valued 12-granule 3-quotient (2/1, 3/2, 5/4)-system.

Observe that the structure of S3 is similar to the 17-valued Pythagorean
Tuning (two values for “black keys” on the standard keyboard).

5 Comment to superparticular ratios

In this section we show that the found systems (and S3 in particular) is very
near also to Just Intonation.

The only pairs of naturals (N + 1, N), for which (N + 1) and N,N ∈ N , are
divisible only by 2, 3, or 5, are

(2, 1), (3, 2), (4, 3), (5, 4), (6, 5), (9, 8), (10, 9), (16, 15), (25, 24), (81, 80).

The following superparticular ratios, cf. [15],

2/1, 3/2, 4/3, 5/4, 6/5, 9/8, 10/9, 16/15, 25/24, 81/80
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(X1,X2, X3) (X1, X4,X2) (X5, X4, X2)

2/1 X5
1X

4
2X

3
3 X2

1X
3
4X

7
2 X2

5X
5
4X

5
2

3/2 X3
1X

2
2X

2
3 X1X

2
4X

4
2 X5X

3
4X

3
2

4/3 X2
1X

2
2X3 X1X4X

3
2 X5X42X2

2

5/4 X2
1X2X3 X1X4X

2
2 X5X

2
4X2

6/5 X1X2X3 X4X
2
2 X4X

2
2

9/8 X1X3 X4X2 X4X2

10/9 X1X2 X1X2 X5X4

16/15 X2 X2 X2

25/24 X1 X1 X5X4X
−1
2

81/80 X−1
1 X3 X−1

1 X4 X−1
5 X2

Table 4: Semitones for superparticular ratios: X1 = 25/24, X2 = 16/15, X3 =
27/25, X4 = 135/128, X5 = 256/243

account for common music intervals (they denominate the relative acoustic fre-
quency or, inversely, the length of the pipe or the string) and correspond to
octave, perfect fifth, perfect fourth, major third, minor third, major whole
tone, minor whole tone, diatonic semitone, chromatic semitone, and comma
of Dydimus, respectively.

The proof of the following theorem is easy.

Theorem 14 See Table 4.

6 Classification of diatonic scales

We split the set of all 12-granule 3-quotient tone systems which contain C major
scale into three classes. Denote them P,G,R, respectively. We show that they can be
characterized as follows: the class G contains Gypsy scales, the class P – Pythagorean
heptatonic, and the class R – Redfield scale.

By a diatonic scale we mean usually a 7-tone scale within the octave in which
the neighbouring intervals are not smaller than a semitone and not greater than three
semitones (= the hiat).

There are many different semitones in music. Each of them has its own good reason
for existence (depending on the temperature of the scale). Some examples of semitones:
Pythagorean minor semitone (256/243), Pythagorean major semitone (2187/2048),
Diatonic semitone (16/15), Chromatic semitone (25/24), Praetorius minor semitone
( 4
√

78125/16), Praetorius major semitone (8/ 4
√

3125), Co-chromatic semitone (27/25),
Co-diatonic semitone (135/128), Equal-tempered semitone ( 12

√
2), etc.

The appearance of other intervals between neighbouring tones (the whole tones
and/or hiats) in diatonic scales depends on the used semitones.

Various scales (diatonic or nondiatonic) use various numbers of different semi-
tones. Equal temperament uses one semitone. Pythagorean Tuning is constructed by
two semitones, analogously Praetorius Tuning (1/4-comma meantone). What about
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diatonic scales in general? It is known that the typical diatonic scale, the major
scale, is constructed e.g. by the semitones: 16/15, 25/24, and 27/25. Thus, not
greater that three semitones are needed for constructing of diatonic scales. But there
are more than one possibilities as we have seen in the previous sections (the triples
(16/15, 25/24, 135/128) and (256/243, 16/15, 135/128) of semitones can also serve for
constructing of the major diatonic scale).

From the dimensional point of view in the Euler musical space, Equal Temperament
can be imaged in the line [the reper: the octave], Pythagorean Tuning (Praetorius
Tuning) in the plane [the repers: the octave and perfect fifth (the octave and major
third)], and the diatonic major scale [the repers: the octave, perfect fifth, major thirds]
is a set of points in the 3-dimensional space. Note also that Just Intonation with the
natural seventh, moreover, needs the fourth dimension, but it is not a diatonic tone
system.

Although every musician understands what is a diatonic scale, we have find no
mathematical definition in the literature. Certainly, the reason is the “big ambiguity”
of this notion in music. We bring a definition of the notion of diatonic scale from the
mathematical point of view.

We fix the structure of the 7-valued major scale (intervals between tones: 9/8, 10/9,
16/15, 9/8, 10/9, 9/8, 16/15) and enlarge it to 12-granule 3-quotient geometrical nets,
i.e. the elements of the resulting tone system will be of the form:

Γi = X
νi,1
1 X

νi,2
2 X

νi,3
3 ,

where X1, X2, X3 ∈ (21/24; 23/24),

Γ0 = 1,Γ12 = 2,

and i, νi,1, νi,2, νi,3 are nonegative integers such that

νi,1 + νi,2 + νi,3 = i

and
0 ≤ ν1,j ≤ ν2,j · · · ≤ νn,j · · · ,

j = 1, 2, 3, and i ∈ N .
Further, we suppose the octave equivalency, i.e.

(Γ12i+0,Γ12i+1, . . . ,Γ12i+11) = 2i(Γ0,Γ1, . . . ,Γ11)

where i is a natural number.
The idea how to define the diatonic scales consists of (i) choosing a 7 valued

variation from these nets according to octave equivalency, and (ii) possible apply a
homomorphism of geometrical nets.

(i) According to octave equivalency, consider a variation

D = (Γi1 ,Γi2 ,Γi3 ,Γi4 ,Γi5 ,Γi6 ,Γi7 ,Γi8)

from the set
{Γi; i = 0, 1, . . . , 11}

such that
1 ≤ in+1 − in ≤ 3, n = 1, 2, 3, 4, 5, 6, 7.

12



(ii) Let Si = X
νi,1
1 X

νi,2
2 X

νi,3
3 , Qi = Y

µi,1
1 Y

µi,2
2 Y

µi,3
3 be two geometrical nets such

that S0 = 1, S12 = 2, Q0 = 1, Q12 = 2, and X1, X2, X3, Y1, Y2, Y3 ∈ (21/24; 23/24). A
map

θ : (Si)→ (Qi)

is a homomorphism of geometrical nets (Si) and (Qi) if for every i nonnegative integer
number, Si = Xνi,1X

νi,2
2 X

νi,3
3 ⇒ Qi = Y

νi,1
1 Y

νi,2
2 Y

νi,3
3 .

By a diatonic scale we understand the variation D according to homomorphisms
of geometrical nets.

The Table 1, Table 2, and Table 3 show the result of enlargement of the diatonic
major scale (C,D,E, F,G,A,B,C ′) to 12-granule 3-quotient scales. There are 96 12-
granule 3-quotient scales such they are geometrical nets. From these 12-granule scales
we choose diatonic scales (not considering homomorphism).

Denote the classes od diatonic scales given by Table 2, Table 1, and Table 3 as
R,G, P corresponding triplets (X1, X2, X3), (X1, X2, X4), (X5,X2, X4), respectively.

Theorem 15 The class R contains the Redfield diatonic scale.

Proof. The Redfield diatonic scale is defined by the sequence of intervals between
the neighbour tones: (10/9, 9/8, 16/15, 9/8, 10/9, 9/8, 16/15). We see, Table 2, that
the sequence

(E[, F,G,A[, B[, C
′, D′, E′[)

satisfies the requirement, where D′ = 2D,E[ = 2E′[. 2

Theorem 16 The class G contains the Gypsy major and minor scales.

Proof.
(a) The Gypsy major scale is defined by the sequence of intervals between the

neighbour tones: (16/15, 9/8 · 25/24, 16/15, 9/8, 16/15, 9/8 · 25/24, 16/15 ). We see,
Table 1, that the sequence

(C,D[, E, F,G,A[, B,C
′)

satisfies the requirement.
(b) The Gypsy minor scale is defined by the sequence of intervals between the

neighbour tones: (9/8, 16/15, 9/8 · 25/24, 16/15, 16/15, 9/8 · 25/24, 16/15). We see,
Table 1, that the sequence

(A,B,C′, D′], E
′, F ′, G′], A

′)

satisfies the requirement, where D′] = D], E
′ = 2E,F ′ = 2F . 2

Theorem 17 The class P contains the Pythagorean heptatonic.

Proof. The Pythagorean heptatonic is defined by the sequence of intervals between
the neighbour tones: (9/8, 9/8, 256/243, 9/8, 9/8, 9/8, 256/243). We see, Table 3,
that the sequence

(D], F,G,G], B[, C
′, D′, D′])

satisfies the requirement, where D′ = 2D,D′] = 2D]. 2

The following three theorems can be verified directly.

13



Theorem 18 The class G contains no Redfield scale and no Pythagorean hepta-
tonic.

Theorem 19 The class R contains no Gypsy scale and no Pythagorean hepta-
tonic.

Theorem 20 The class P contains no Redfield scale and no Gypsy scale.

The other diatonic scales we obtain from classes G,P,R via homomorphism (and
specially, isomorphism). We do not describe them in this paper and note now only
some important special cases.

If X1 = X2 = X3 = X4 = X5 = 12
√

2, then Table 1, Table 2, and Table 3
define Equal Temperament. Another interesting simplification of the general case via
homomorphism we obtain in the following theorem which can be verified directly.

Theorem 21 If
(a) X2 = X3 = a,X1 = b (see Table 1), or
(b) X1 = X2 = a,X4 = b (see Table 2), or
(c) X5 = X2 = a,X4 = b (see Table 3),
and a = 256/243, b = 2187/2048 (or a = 8/ 4

√
3125, b = 4

√
78125/16), then Table 1,

Table 2, and Table 3 contain Pythagorean (or Praetorius) Tuning.

Corollary 22 Pythagorean Tuning (reduced to a 12-valued one) and Praetorius
Tuning (1/4-comma meantone) are isomorphic, for an other approach, cf. [7].
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