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Abstract

Investigations of tone systems are motivated by mathematical models in acoustics. In the
present paper, tone systems are represented by systems of fuzzy numbers. The construc-
tion idea of these systems consists of using of approximations of 3/2. A formalization of
well tempered systems is given. Uncertainty-based-information measures are considered.
The Huygens–Fokker, Opelt, Hába, Sumec, Petzval, and more other tone systems (used
in the musical theory and practice and also new ones) are derived as consequences of the
theory.
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1 INTRODUCTION

1.1 A Revival of Interest in Tone Systems

For an overview of the topic, including historical aspects, cf. (Barbour, 1951; Benade,
1976; Feichtinger and Dörfler, 1999; Neuwirth, 1997; Sethares, 1998; Mazzola, 1990).

In the late 20th century we can observe a revival of interest in tone systems among
musicians and in the industry in connection with the development of the so called com-
puter music and production of the electronic musical instruments with computer control.
At present, there are no real technological boundaries for practical use of arbitrary tone
systems within the human aural perceptive abilities and sensitivity. In particular, this
concerns the Just Intonation (pure tunings), equal temperaments (freedom in transposi-
tions), and tunings with the uncertain pitch (including noises).

Recall that historically the main motivation for the development of tone systems was
a physical limitation on the number of keys of the keyboard which can be used to play
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tones. Some means had to be found to permit the tonalities demanded by developments in
polyphonic music to work within this limitation. In fact, this way the keyboard became
the dominant force in Western composition and composers seek it out to explore new
tonal palettes.

At present, choices of various discrete tone systems by composers are based on the
conviction that the process of limitation is necessary to give the musician the material
with which he can work. He has to select the tones he wants to use. The strong emphasis
on the necessity of limitation, which has guided these considerations thus far, reflects not
a subjective prejudice but a fundamental artistic law. There is no art without limitation.
E.g., the sculptor working in marble has set his limit by the choice of this material to the
exclusion of all other materials. The point, amply discussed in aesthetics, need not be
labored here. Goethe sums it up as follows:

Das ist die Eigenschaft der Dinge:
Natürlichem genügt das Weltall kaum;
Was künstlich ist, verlangt geschlossnen Raum.

(This is the property of things:
the all scarcely suffices for the natural;
the artificial needs a bounded space.)

Faust II, 6882-6884

1.2 Uncertainty and Tone Systems

The 12 tone equal temperament E12 = {( 12
√

2)z; z ∈ Z} (Z denotes the set of all
integer numbers) is known since cca 1600 (as authors are quoted: Werckmeister, Stevin,
Mersenne, Chu Hoa) and will be our theoretical starting point. The system E12 has its
advantages and also disadvantages.

The main advantage or merit of E12 is that it has lead the way for the full development
of harmonic music, and the rich variety of musical styles which has grown up in the
last one hundred and fifty years. It took nearly two centuries for E12 to find universal
acceptance by the musical world: the first pianos to be 12 tone equal tuned were produced
by Broadwoods in the middle of the 19th century and by the beginning of the 20th,
virtually all pianos were (re)tuned this way, cf. (Jorgenson, 1991). The advantages of
E12 lead often to its non-critical use. Here is a small list when it is not suitable to play
music in E12: music using wolf intervals; music based mainly on melody; counterpoint
based essentially on the pure major and minor thirds and sixths, timbre reasons, effects
exploiting the building acoustics; non-European music (gamelan, hindu, arabic music,
etc.).

One fact to note is that the figures used to calculate E12 are based on the theoretical
values and E12 is itself a famous psychoacoustic compromise which holds for 3-4 middle
octaves, where the ear hears linearly. What about the rest 3-4 octaves from the total
7 ones? In practice, instruments, such as piano, sound flat in their upper octaves when
they are tuned in strict accordance with the equal tempered scale. Piano-tuners employ a
trick called, “brightening the treble” or “stretched tuning”, cf. (Boomsliter, 1961), which
means that the top one and a half to two octaves are sharpened slightly; the low bass
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octaves are also lowered in a similar fashion. No piano can be principally tuned into E12:
when tuning piano into E12 “via computer”, the upper and lower octaves sound not in E12.
On the other hand, when tuning piano into E12 “via ear”, it is not E12 physically. Since
these tunings are depending on individual psyches of tuners, the usage of a deterministic
modelling of the deviation, in the best case, has a statistical character. So, the second
psychoacoustical compromise should be made when constructing tone systems in the whole
diapason 16 – 20 000 Hz.

We tend to save the advantages of well temperaments and, in the same time, we take
into account individual psyches of composers, interpreters, and listeners. One of ways
how to solve the mentioned problems at one stroke is to “densify” sound. This is the
idea of the period of tone systems since cca 1880 and which lasts till now although it is
not the main stream of investigation. The stream could be called more than 12 and it is
characterized by well-tempered tone systems with more than 12 steps per octave possible,
including N -tone equal temperaments EN , N ≥ 12. Key persons are: Helmholtz, Petzval,
Hába, Sumec, Wilson, and others. Uncertainty (which has its reflection in the notion of
temperament) used in these tone systems is coming from psychoacoustics.

Besides psychoacoustics, there are at least two other types of uncertainty which are
reflected in the tone system constructions. The second one comes from music itself.
Indeed, music cannot be reduced to a study of consonance of intervals. There are sequences
of consonant, dissonant and various “semi-consonant” passages of intervals which only
together co-create a very musical composition. All used intervals (consonant, “semi-
consonant”, dissonant) are appropriate for a given composition. There is a class of musical
temperaments which are suitable for a given composition.

The third type of uncertainty is bounded with the creativity and psyche of the inter-
preter and listener of the composition. Perhaps, the idea is the best visible on Indian
ragas when the same raga is played in different pitch system depending on the mood, year
season, occasion, place, etc.

We see that the choosing and describing of suitable tone systems for concrete musical
compositions is a challenge for the uncertainty based information theory. In this paper, we
describe a theory of well tempered systems based on the generalized fifths (approximations
of 3/2) from this viewpoint.

N. A. Garbuzov (1948), was rather the first who realized the importance of the notion
of uncertainty in the theory of tone systems. Garbuzov supported his theory of zones
with hundreds of statistics.

1.3 Temperature and Mistuning

Let us consider tones represented by Fourier series. Musical interval of two tones is the
ratio of frequencies (say, measured in Hz) of the first partials of these two tones. E.g., the
numbers 1/1, 6/5, 5/4, 3/2, 7/4, and 2/1 correspond to the musical intervals which are
known as the unison, minor third, major third, perfect fifth, natural seventh, and octave,
respectively.

Terms such as musical interval, relative frequency, and positive number are used as
synonyms depending on the context. The situation is similar when using terms point,
vector, and n-tuple in analytical geometry. This become quite evident when we realize
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that there is a bijection between the set of all positive numbers with the group operation
of multiplication and the set of all musical intervals. We can use all techniques and results
from vector spaces in the theory of tone systems, but not vice versa. Musical intervals
are often represented on a special logarithm scale, in units called cents: if f is a musical
interval and c this same frequency but in cents, then c = 1200 · log2 f, f = 2c/1200, where
c ∈ R (the set of all real numbers) and f ∈ R+ (the set of all positive real numbers).

In this paper, we will understand under tone system S a discrete subset of the set of
all fuzzy numbers F , where

F = {F : R+ → [0, 1]; ∃f ∈ R+, F (f) = 1},

i.e. tone system S ⊂ F is a discrete set of fuzzy numbers F which “approximate in the
psychological sense” musical intervals f . Denote the class of all tone systems by S.

Of course, the kernel of a fuzzy number F , i.e. ker(F ) = {f ∈ R+; F (f) = 1} need not
be a unique value (e.g., when C] 6= D[ in music). Denote by ker(S) = {f ∈ R+; F (f) =
1, F ∈ S} =

⋃

F∈S ker(F ) and call the kernel of the tone system S.
The order on F we define as follows: for Fa, Fb ∈ F ,

Fa ≤F Fb ⇔ ∀fa ∈ ker(Fa), ∀fb ∈ ker(Fb); fa ≤ fb.

In general, the order ≤F is not linear since elements F ∈ F with non-disjoint kernels
need not be comparable.

Let K > 1 be a real number called comma. Mathematically, the concrete comma
value does not play any principal role in our theory. Usually, it is bounded with the size
of the fuzzy number support. Analogously to ε > 0 in calculus, which has to be close
to 0, it is reasonable to deal with commas K > 1 which are close to 1 in some sense.
The examples of commas with historical names: Comma of Dydimus (81/80), schizma
(32805/32768), Pythagorean comma (531441/524288). For more abour historical commas
and they structure, cf. (Hellegouarch, 1982).

Let K > 1 be a comma. A tone system Σ ∈ S is called the K-temperament of the
tone system S ∈ S, if there exists a constant k ∈ R+ (called the shift) and for every
f ∈ ker(S) there exists τf ∈ R+, 1/K ≤ τf ≤ K, such that φ = k · τf · f ∈ ker(Σ), where
ker(Σ) = {φ ∈ R+; Φ(φ) = 1, Φ ∈ Σ}. Without loss of generality, we will suppose k = 1.
Denote by Θf,τf

= τf · f .
Let K > 1. The kernel ker(Σ) is said the set of K-tempered values of S. The set

Γ = {τf ; f ∈ ker(S), Θf,τf
∈ ker(Σ), 1/K ≤ τf ≤ K} is called the K-temperature of S

and the set Ξ = {µf ; µf = τf − 1, τf ∈ Γ} is called the K-mistuning of S.
For f ∈ ker(S) (one single element), we will simply say that τf , 1/K ≤ τf ≤ K, is a

K-temperature of f and µf is a K-mistuning of f .
Clearly, if Σ is a K-temperament of S, then S is a K-temperament of Σ. The rela-

tion “to be K-temperament” is reflexive, symmetric, but not transitive (because of the
condition 1/K ≤ τf ≤ K).

Everywhere in the ongoing text we will suppose the given fixed comma K > 1 and
will say simply about temperament instead of K-temperament, similarly: mistuning,
tempered value, etc. For concrete tone systems, we will put everywhere K = 81/80
(comma of Dydimus).
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It is technologically reasonable to give S as a theoretical crisp set (e.g. the 12-tone
equal temperament E12 mentioned before is given as a set of positive real numbers), cf.
(Romanowska, 1979). However this never really occurs. For this reason and also for the
sake of symmetry, we consider both tone systems S and its temperament Σ as systems of
fuzzy numbers.

1.4 Three Types of Temperaments – Examples

To a given tone system S ∈ S, there are distinguished three types of temperaments:
the psychoacoustic, musical, and variable ones. We may consider also the psychoacoustic,
musical, and variable sides of one temperament S. According to the classification of
uncertainty types in (Klir and Wierman, 1997) (i.e. quantifying the real world object), the
uncertainty of the psychoacoustic temperament is fuzziness, of the musical temperament
is strife and of the variable temperament is nonspecificity.

In practice, temperatures depends on the aural sensitivity of a considered individual
human and is of psychoacoustic nature. Especially, a temperature τ∗

f (similarly, mistun-
ing) is virtual if a temperature (resp. mistuning) of the musical interval τ∗

f = Θ∗
f,τf

/f is

not “hearable”. Dealing with psychoacoustic temperaments (or, the psychoacoustic side
of a temperament), we are interested e.g. in the supports of fuzzy numbers Φ ∈ Σ.

Example 1

(a) The Petzval’s conventional suggestion about virtual temperature, cf. (Erményi, 1904):
239/240 < τ∗ < 240/239.

(b) Average sensitivity of human ear is about 10 cents, tuners do 5-6 cents, the boundary
is 2-3 cents. The aural sensitivity depends on many factors, e.g. on the age or health of
an individual, cf. (Benade, 1976).

Music is not an acoustic consideration of musical intervals. In each musical composi-
tion there are consonant passages, passages with dissonances (tensions) and this together
makes music interesting. So, every musical composition uses and requires its own struc-
ture of used intervals, the relations among possible consonances and dissonances from
the harmonic and melodic musical context. This side of temperament, the structure of
played tones, considered in a concrete situation and time depends on the individual hu-
man musical education, given musical style, construction of musical instruments, building
acoustics, concrete musical composition, etc. Dealing with the musical temperaments
(or, the musical sides of a temperament), we take notice of the function shape of fuzzy
numbers Φ ∈ Σ.

Example 2 In Example 12, the musical mistuning

µ3/2
(m′) = µ6/5

(m′) = µ5/4
(m′) = µ7/4

(m′).

In Example 13, the musical mistuning

µ
(m′′)
3/2 = µ

(m′′)
5/4 /5 = µ

(m′′)
6/5 /5 = µ

(m′′)
7/4 /5.

5



In Example 4, the weights of τ3/2, τ5/4, τ7/4 are 1/9, 1/25, 1/49, respectively. In Exam-

ple 5, the weights of τ3/2, τ5/4, τ7/4 are the same as in Example 4, but the temperament

depends proportionally on the number of keys per octave.

Temperature can be mentioned also as a union of equivalent (equally probable) vari-
ants, alternatives, or possibilities of a tone system. Dealing with the variable temperament
(or, the variable side of a temperament) we are interested e.g. in cardinality of ker(Σ).

Example 3 Tone systems consisting of values of 12 major and 12 minor scales (not

specifying here this notions) are defined ambiguously and also the cardinality of these

systems may vary. Observe that the sets involving the values of 12 major and minor scales

in Lemma 6 and Theorem 2, and in Theorem 5 may have different numerical expressions

and also cardinalities.

2 UNCERTAINTY TEMPERAMENT MEASURES

2.1 Harmonic Mean Based Uncertainty Measures

Given a set F of all fuzzy numbers, let S be an algebra of tone systems S ⊂ F , such
that ∅ ∈ S and the operations ∩,∪ we define on S as follows: let Sa, Sb ∈ S, then

Sa ∪ Sb = {F ∈ F ; F = Fa ∨ Fb, Fa ∈ Sa, Fb ∈ Sb} ∈ S,

Sa ∩ Sb = {F ∈ F ; F = Fa ∧ Fb, Fa ∈ Sa, Fb ∈ Sb} ∈ S,

where for every t ∈ R+,

(Fa ∨ Fb)(t) = max(Fa(t), Fb(t)),

and

(Fa ∧ Fb)(t) =

{
min(Fa(t), Fb(t)), ker(Fa) ∩ ker(Fb) 6= ∅,
∅, ker(Fa) ∩ ker(Fb) = ∅.

Let S1, S2 ∈ S. We say that S1 ⊂ S2 if S1 ∩ S2 = S1.
An uncertainty measure σ : S → [0,∞] (the adjective “uncertainty” we will omit) is

a non negative extended real valued set function with the properties:

1. σ(∅) = 0;

2. if S1, S2 ∈ S, S1 ⊂ S2, then σ(S1) ≤ σ(S2).

In the book (Klir and Wierman, 1997) we can find also the review of the known
uncertainty-based measures. Our construction of uncertainty measures is based on dis-
tance measuring between two sets. In Example 4 and Example 5, there are measured
distances between two crisp sets: L = {5/4, 3/2, 7/4} and EN , the N -tone equal temper-
ament, N ∈ N . In Subsection 2.3, Equation (3), there is used an asymmetric set distance
between E12 (crisp) and S (fuzzy). A bimeasure construction based on a distance between
two uncertain sets we can find in Subsection 2.4, Equation (12).
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Traditional quantities comparing musical temperatures are based on harmonic means
of temperatures. We construct uncertainty measures using (generalized) harmonic mean
in their construction as following.

Definition 1 Let A be a finite set of positive numbers. Let p ∈ N . Let S be the class
of all tone systems. A set function σp : S → [0,∞] is called the temperament measure, if
σp(∅) = 0 and if S 6= ∅, then

σp(S) =
1

∑

φ∈A wφµp
φ(S)

,

where S ∈ S and wφ ≥ 0,
∑

φ∈A wa = 1, are weights of mistunings, i.e.

µφ(S) = min
f∈ker(S)

∣
∣
∣
∣
1 − f

φ

∣
∣
∣
∣
, φ ∈ A.

Since we will deal only with temperament measures in this paper, we will often omit
the adjective “temperament” for the sake of simplicity.

The proof of the following lemma is easy and omitted.

Lemma 1 Let S ∈ S. Let p ∈ N . Let σ′
p and σ′′

p are two temperament measures on
S ∈ S. Put

σ∗
p(S) = (σ′

p ⊕ σ′′
p )(S) =

1

w1/σ′
p(S) + w2/σ′′

p (S)
, S ∈ S, (1)

where w1 + w2 = 1, w1 > 0, w2 > 0. Then σ∗
p is a temperament measure as well.

2.2 Increasing Number of Keys per Octave

In Table 1, there are twelve powers of 12
√

2z, z = 0, 1, 2, . . . , 11, in the first column. In
the second one, there are just intonation values, and in the third column, we can find the
temperature of these tone systems expressed in cents. Notice how remarkably close most
of them are to the ratios of small whole numbers. If the distribution were random we
would expect an average temperature of 25 cents. Instead the average temperature is only
cca 10 cents (for the chosen set of rationals). There arise a question: is there something
really special about E12?

The tone system E12, the 12-tone equal temperament, is a commonly well-known
theoretical tone system. It will serve us as a starting point when considering other tone
systems. It is also a common element of the most of modern tone systems or tone systems
families. An easy generalization of E12 is the following

Definition 2 The N -equal tempered tone system

EN = {fz ∈ R; fz =
N
√

2z, z ∈ Z}, N ∈ N .

The following theorem is known, cf. e.g. (Barbour, 1948).
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E12 ratio φ Just ratio f τf = φ/f

1.000 1/1 = 1.000 0
1.059 16/15 ≈ 1.066 -12
1.122 9/8 = 1.125 -4
1.189 6/5 = 1.200 -16
1.256 5/4 = 1.250 +14
1.335 4/3 ≈ 1.333 +2
1.414 7/5 = 1.400 +17
1.498 3/2 = 1.500 -2
1.587 8/5 = 1.600 -14
1.682 5/3 ≈ 1.667 +16
1.782 16/9 ≈ 1.778 +4

(1.782 7/4 = 1.750 +31)
1.888 15/8 = 1.875 +12

Table 1: Temperature 12-ET/JI (in cents)

Theorem 1 Denote by {ENk
}∞Nk=1 the sequence of equal tempered tone systems such

that
|µ3/2(ENk

)|∞Nk=1 strictly decreases to 0 as Nk → ∞,
where {µ3/2(ENk

)}∞Nk=1 is a subsequence of the sequence of all fifth mistunings
{µ3/2(N)}∞N=1 of the equal tempered tone systems {EN}∞N=1. Then

{ENk
}∞Nk=1 = {E1, E2, E5, E12, E41, E53, E306, E665, . . .}.

Proof. Consider the approximations

3

2
≈ 2x/Nk ,

where Nk denotes the number of equal steps per octave and x the order number of the
tempered fifth, respectively. We have:

x

Nk
≈ log2

3

2
=

1

1 +
1

1 +
1

2 +
1

2 +
1

3 +
1

1 +
1

5 +
1

2 +
1

10
. . .
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This continuous fraction yields the following sequence:

{a(Nk)}∞Nk=1 = {1,
1

2
,
3

5
,

7

12
,
24

41
,
31

53
,
179

306
,
389

665
, . . .},

lim
Nk→∞

a(Nk) = log2

3

2
.

The corresponding fifth temperature sequence {τ3/2(ENk
)}∞Nk=1 is as follows:

{τ3/2(ENk
)}∞Nk=1 = { 1 + 0.01048,

1 − 0.001135,
1 + 0.0002789,
1 − 0.0000394,
1 + 0.00000318,
1 − 0.00000007, . . .}.

We see that |τ3/2(ENk
)| ↓ 0 as Nk → ∞.

We can verify that the third temperatures τ5/4(EN ) are greater than K = 81/80 in
the case τ3/2(EN ) > 1. For τ3/2(ENk

) < 1, the Nk-tone equal tempered tone systems are
then E12, E53, E665, . . . . The E12 is well known, the E665 is not very interesting since the
number 665 is too large from the practical viewpoint. The E53 can be considered as a
temperament of a very interesting Petzval’s cyclic Tone system of the second type, see
Example 11.

We compared EN for various N ∈ N taking into the account only one interval, 3/2,
the perfect fifth. A following trivial measure can be used

σ(S) =
1

µ3/2(S)
, (2)

where µ3/2(S) = minf∈ker(S)

∣
∣
∣1 − f

3/2

∣
∣
∣, S ∈ S.

Analogously to the proof of Theorem 1, we can compute continuous fractions for
other musical intervals, e.g. log2 6/5, log2 5/4, log2 7/4, and obtain separately decreasing
sequences of mistunings and corresponding ENk

. However, we would like to have measures
that let us compare EN , n ∈ N , in a more complex view.

The general musicological and mathematical background and statistical methods for
the definition of melodic and rhythmic weights (factors) in relevant quantities for tone
systems with 12 tones per octave, were considered in (Beran and Mazzola, 1999). The
following three examples give us a grubby imagination about the behavior of weighted
measures like σp in Definition 1.

Example 4 Try

σ(S) =
1
9 + 1

25 + 1
25 + 1

49
µ2

3/2
(S)

9 +
µ2

5/4
(S)

25 +
µ2

6/5
(S)

25 +
µ2

7/4
(S)

49

.

For illumination, execute the practical search for S = EN , N = 5,6, . . . , 60 (we stop the

evaluations on the number 60 since each frequency would fall in a ±10 cent range from
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some frequency f ∈ E60). If there was no disadvantage in having more notes per octave,

then E12 is only slightly special with regard to harmonies measured by σ. Several tunings

with less than 60 notes do better, cf. Figure 2.

Example 5 Of course we expect the temperatures to get smaller as the number of
divisions increases and hence their size decreases. We modify the harmonic mean in
Example 4 as follows:

σ
(q)
N (S) =

1

N q
· σ(S), q ∈ N .

For q = 1, the only ones equal to or better than E12 on this criterion are E31, E41 and

E53, cf. Figure 3.

Example 6 For q = 2, then the situation is graphed in Figure 4.

2.3 Possibility of Free Transpositions

The system E12 is considered by some musicians as the definitive ideal with respect to
free transpositions in music. The possibility of free transpositions within a tone system S
can be expressed then as a small distance between sets E12 and S ∈ S (the denominator
in the formula (3)).

Definition 3 Let κ > 0. Let p ∈ N . We say that the tone system S with the octave
equivalence enables (κ, E12, σ

′
p)-free transpositions if

σ′
p(S) =

1
∑

φ∈E12∩[1;2) wφµp
φ(S)

> κ, (3)

where wφ > 0,
∑12

φ=1 wφ = 1, µφ(S) = minf∈ker(S)∩[1,2)

∣
∣
∣1 − f

φ

∣
∣
∣, φ ∈ E12.

2.4 Basic Musical Intervals Sound as Pure

Similarly to the construction of the measure σ′
p, we may understand what means if we

say that basic acoustic intervals “sound as pure” in a tone system S.

Definition 4 Let κ > 0. Let p ∈ N . Let L = {6/5, 5/4, 3/2, 7/4}. We say that
intervals 6/5, 5/4, 3/2, 7/4 sound (κ, L, σ′′

p )-pure in the tone system S ∈ S if

σ′′
p (S) =

1
∑

φ∈L wφµp
φ(S)

> κ, (4)

where wφ > 0,
∑4

φ=1 wφ = 1, µφ(S) = minf∈ker(S)

∣
∣
∣1 − f

φ

∣
∣
∣, φ ∈ L.

Remark 1 Since superparticular ratios are mentioned by some theorists as important
subject for “pure” harmony, for a curiosity, there is a list of the superparticular ratios
used in this paper:
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2/1, 3/2, 5/4, 6/5, 64/63, 81/80,
235/234, 240/239, 288/287, 336/335, 364/363, 455/454, 886/885,
1 230/1 229, 1 293/1 292, 2 013/2 012, 11 561/11 560, 25 382/25 381.

2.5 We Cannot Avoid Uncertainty

Grubby spoken (the precised definition will be given in Section 3.4), well tempered tone
systems are those tone systems which enables, in the same time, both free transpositions
and basic musical intervals sound as pure.

Let us open the question about the suitability of the chosen constructions of uncer-
tainty measures σ′

p and σ′′
p in Definitions 3 and 4. For instance, instead mistuning we

may consider temperature with values expressed in cents or consider special weights, see
Section 2.2.

The sets E12, L, and ker(S) are crisp and uncertainty is present in the formulas (3),
(1), and (12), because of ambiguity given by ker(S) (possible more kernel values for one
fuzzy number). Of course, we may construct also measures σ′

p, σ
′′
p which are “more soft”,

including in addition fuzziness-type uncertainty in their constructions. But, we can also
avoid uncertainty in all in these formulas by dealing with unambiguous and crisp sets.

However, there is a moment which should be underlined in connection with the un-
certainty of tone systems: since L ∩ EN = ∅ for every N ∈ N (the uncomensurability of
rationals and irrationals), the value

1

σ′
p(S)

+
1

σ′′
p (S)

> 0

strictly for every crisp tone system S ∈ S. Therefore, in crisp tone systems it is impossible
to freely transpose and in the same time to sound the basic intervals as pure. We must
make any appropriate compromise. Therefore, it is “more honest” to deal with tone
systems as objects including uncertainty from the beginning (as we do in the paper).
Thus, considering well tempered tone systems, we observe the principal using and sense
of uncertainty based information.

For our purposes, there is reasonable to consider the following quantity:

(σ′
p ⊕ σ′′

p )(S) =
1

w1/σ′
p(S) + w2/σ′′

p (S)
, S ∈ S, (5)

where p ∈ N and w1 + w2 = 1, w1 > 0, w2 > 0. Tone system S is then the “better” well
tempered the bigger is the value of (σ′

p ⊕ σ′′
p )(S). However, this value is ever finite (we

can normalize it with respect to 1).
We can see the corollary of Lemma 1, that the function

σ∗
p = σ′

p ⊕ σ′′
p (6)

is a temperament measure on S ∈ S, where σ′
p and σ′′

p are defined as in Definitions 3 and
4, respectively.

11



3 WELL TEMPERED TONE SYSTEMS

3.1 Symmetry and Octave Equivalence

The notion of the tone system symmetry corresponds to the notion of even function
in real analysis. For our purposes, it is enough

Definition 5 A tone system S ∈ S is said to be symmetric if

f ∈ ker(S) ⇒ 1/f ∈ ker(S).

The octave (ratio 2/1) plays a role of “unit” in the theory of tone systems (as number
1 in the group of all real numbers with the operation of addition).

Definition 6 We say that the relation of octave equivalence ≡ is given on a tone
system S ∈ S, if for every f1, f2 ∈ ker(S),

f1 ≡ f2 ⇔ (∃z ∈ Z; f1 = f2 · 2z).

For f ∈ ker(S), denote by [f ] the octave equivalence class such that f ∈ [f ].

Lemma 2 Let S, Σ be two symmetrical tone systems with octave equivalence. Then
(a) if f ∈ ker(S), then 2/f ∈ ker(S);
(b) if τf is a temperature, then τf = τ2f = 1/τ2/f .

Proof.

(a) If k ∈ ker(S), then 1/f ∈ ker(S) according to the symmetry. By the octave
equivalence, 2z/f ∈ ker(S), z ∈ Z.

(b) If f ∈ ker(S), f ·τf = φ ∈ ker(Σ), then 2zf ·τ2zf = 2zφ ∈ ker(Σ). Thus, τf = τ2zf ,
z ∈ Z.

We have: (1/f)/(τ1/f ) = (1/φ). Thus, τf = 1/τ1/f = 1/τ2z/f , z ∈ Z.

3.2 The Tempered Fifth Approximations

The classical tuning algorithms based on the so called spiral of fifths uses the fifth
as “yard stick”. The idea is as follows. If we consider the tone system S ∈ S with
ker(S) = {Θz

3/2,τ3/2
· 2c; c, z ∈ Z}, then for some Θ3/2,τ3/2

the set ker(S) ∩ [1, 2] is finite

(e.g., for Θ3/2,τ3/2
=

12
√

27, we have E12) or for other ones it will be infinite and dense in
[1, 2] (Kronecker’s lemma, cf. (Kuipers and Niederreiter, 1974); e.g., for Θ3/2,τ3/2

= 3/2,
the Pythagorean Tuning, cf. (Haluška, 2000). The tone systems of the first kind we will
call to be cyclic and the second ones – open, respectively. More precisely,

Definition 7 A tone system S ∈ S with ker(S) = {Θz
3/2,τ3/2

· 2c; c, z ∈ Z} is cyclic

if there exist natural numbers n, N such that

2n = ΘN
3/2,τ3/2

. (7)

12



Every equal tempered tone system is cyclic (for some z0 ∈ Z, put Θ3/2,τ3/2
= 2z0/N .

Then 2z0 = ΘN
3/2,τ3/2

). There are cyclic tone systems which are not equally tempered, cf.

Subsection 4.1 and Subsection 4.2.

Lemma 3 A cyclic tone system S ∈ S with ker(S) = {Θz
3/2,τ3/2

·2c; c, z ∈ Z} is equal

tempered if and only if the numbers n and N in Definition 7 are relatively prime.

Proof. Our assertion is equivalent to the following:
Let N, n be two relatively prime natural numbers.
Let ki = i · n(mod N) for every i = 0, 1, . . . , N − 1. If {p0, p1, . . . , pN−1} is a

permutation of the set {k0, k1, . . . , kN−1} such that ki ≤ ki+1} for every i = 0, 1, . . . , N−2,
then pi+1 − pi = 1.

Indeed, suppose that i, j ∈ {0, 1, . . . , N − 1} and ki = kj . Then i · n = j · n(mod N).
Therefore n · (i − j) = 0( mod N). Since N, n are relatively prime, we obtain i − j =
0( mod N). We conclude i = j. That means that the set {p0, p1, . . . , pN−1} is equal to
the set {0, 1, . . . , N − 1}.

3.3 Basic Law of Tempering

The equation
τ6/5 · τ5/4 = τ3/2, (8)

is called the basic law of tempering. This equation holds in the most of the historical well
tempered tone systems.

Considering the tone systems constructed as the pure fifth approximations, we obtain
the following helpful lemma.

Lemma 4 Let ker(S) = {(3/2)z ·2c; c, z ∈ Z}. Let n, m ∈ Z be such that (3/2)n2α =
τ6/5 · 6/5, (3/2)m2β = τ5/4 · 5/4 (powers of the fifth temperatures of the major and minor
thirds) for some α ∈ Z and β ∈ Z. Let τ6/5 · τ5/4 = τ3/2. Then n + m = 1.

The proof is trivial and we omit it.
Since there is a possibility of many good approximations of 6/5, 5/4, 3/2 in the same

tone system S ∈ S, we will understand that the basic law of tempering is satisfied if there
exist trinities of elements of S with temperatures τ6/5, τ5/4, τ3/2 such that (8).

3.4 A Formalization of Well Tempered Tone Systems

We integrate the essential ideas of various constructions of well tempered tone systems
based on the tempered fifths in

Definition 8 Let K > 1. Let τ3/2 ∈ R, 1/K < τ3/2 < K. Let Z1 ⊂ Z. Let κ > 0. Let
p ∈ N . Let σ∗

p be defined by ( 6). We say that a tone system S ∈ S, is a well tempered
(more precisely, (K, κ, σ∗

p, τ3/2,Z1)-well tempered tone system) if

13



1.
ker(S) =

⋃

z∈Z1

[Θz
3/2,τ3/2

],

2.
f ∈ ker(S) ⇒ 1/f ∈ ker(S);

3.
∃Θ6/5,τ6/5

∈ ker(S), ∃Θ5/4,τ5/4
∈ ker(S); τ6/5 · τ5/4 = τ3/2;

4.
σ∗

p(S) > κ.

In what follows, we will suppose p = 2 for temperament measures.

4 THE PETZVAL’S TONE SYSTEMS

Consider tone systems S ∈ S with ker(S) =
⋃

z∈Z1⊂Z
[Θz

3/2,τ3/2
], see Definition 8, 1.

(which are, of course, not equally tempered in general). Besides the fifth virtual mistuning
τ3/2 we ask also for appropriate mistuning of {3/2, 5/4, 6/5, 7/4}.

Taking Θ3/2,τ3/2
= 3/2 (exactly, τ3/2 = 1), we have the following approximating

sequence {K∗
n}∞n=1 of the tempered major thirds such that limn→∞ K∗

n = 5/4 and with
the increasing absolute value of the power of Θ3/2,τ3/2

(we do not describe the obvious
algorithm how to obtain this sequence):

K∗
n = Θ4

3/2,τ3/2
, Θ−8

3/2,τ3/2
, Θ45

3/2,τ3/2
, Θ−314

3/2,τ3/2
, Θ351

3/2,τ3/2
, . . .

≈ 1.265625, 1.2486, 1.251205, 1.249832, 1.24996, . . . .

The analogous approximating sequence {F ∗
n}∞n=1 of the tempered minor thirds is as

follows:
F ∗

n = Θ−3
3/2,τ3/2

, Θ9
3/2,τ3/2

, Θ−44
3/2,τ3/2

, Θ315
3/2,τ3/2

, Θ−350
3/2,τ3/2

, . . .

≈ 1.185185, 1.201355, 1.198849, 1.200128, 1.200075, . . . .

The analogous approximating sequence {G∗
n}∞n=1 of the tempered natural sevenths is

as follows:

G∗
n = Θ10

3/2,τ3/2
, Θ−14

3/2,τ3/2
, Θ39

3/2,τ3/2
, Θ−67

3/2,τ3/2
, Θ239

3/2,τ3/2
. . .

≈ 1.77778, 1.80203, 1.75384, 1.75752, 1.75018, 1.74040, . . . .

Now, let Θ3/2,τ3/2
be a tempered fifth and consider sequences

{Kn}∞n=1, {Fn}∞n=1, {Gn}∞n=1,

where
Kn = Θ4

3/2,τ3/2
, Θ−8

3/2,τ3/2
, Θ45

3/2,τ3/2
, Θ−314

3/2,τ3/2
, Θ351

3/2,τ3/2
, . . . ,

Fn = Θ−3
3/2,τ3/2

, Θ9
3/2,τ3/2

, Θ−44
3/2,τ3/2

, Θ315
3/2,τ3/2

, Θ−350
3/2,τ3/2

, . . . ,

Gn = Θ10
3/2,τ3/2

, Θ−14
3/2,τ3/2

, Θ39
3/2,τ3/2

, Θ−67
3/2,τ3/2

, Θ239
3/2,τ3/2

, . . . .
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Definition 9 The well tempered tone system Sn, n = 1, 2, 3, . . ., is said to be the
Petzval’s tone system of the n-th type if

{Kn, Fn, Gn} ⊂ ker(Sn).

Especially,
{Θ−3

3/2,τ3/2
, Θ4

3/2,τ3/2
, Θ10

3/2,τ3/2
} ⊂ ker(S1)

and
{Θ9

3/2,τ3/2
, Θ−8

3/2,τ3/2
, Θ−14

3/2,τ3/2
} ⊂ ker(S2)

characterize the Petzval’s tone systems of the first type and Petzval’s tone systems of the
second type, respectively. Systems Sn, n ≥ 3, are not used in practice.

Remark 2 Note that Θ10
3/2,τ3/2

is a better approximation of 7/4 than Θ−2
3/2,τ3/2

when

τ3/2 < 1, cf. Remark 4. Therefore, we start from Θ10
3/2,τ3/2

when constructing the Petzval’s

tone systems sequence and omit Θ−2
3/2,τ3/2

at all.

Remark 3 J. M. Petzval introduced and considered these tone systems in the crisp
case. He used a naive approach (from pre present viewpoint, not using any measure theory)
when measuring tone systems and verified his evaluations with musical and physical expe-
rience; being himself a fine mechanician, he constructed and played a reed organ equipped
with the keyboard with 53 steps per octave. The corresponding cyclic 53-tone system is
now known also as Petzval tuning, cf. Example 11. We do not add any adjective like
“fuzzy” or “generalized” to the term “Petzval’s tone system” in this paper.

4.1 Tone Systems I

Properties For the Petzval’s tone systems of the first Type we have the following
expressions:

Θ−3
3/2,τ3/2

= τ3/2
−3 · 25

33
, Θ4

3/2,τ3/2
= τ3/2

4 · 34

26
, Θ10

3/2,τ3/2
= τ3/2

10 · 310

215
.

These equations imply:

τ6/5 ·
6

5
= τ3/2

−3 · 25

33
, τ5/4 ·

5

4
= τ3/2

4 · 34

26
, τ7/4 ·

7

4
= τ3/2

10 · 310

215
.

Thus,
τ6/5 = τ3/2

−3 · 80
81 ,

τ5/4 = τ3/2
4 · 81

80 ,
τ7/4 = τ3/2

10 · 59049
57344 .

(9)

The consequences from the formulas (9) we collect into the following

Theorem 2 For every Petzval tone system S1 ∈ S of the first type,

• τ6/5 · τ5/4 = τ3/2;
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• the major scale (based on the value Θi
3/2,τ3/2

):

D
(major)
i = {Θi

3/2,τ3/2
, Θi+2

3/2,τ3/2
, Θi+4

3/2,τ3/2
, Θi−1

3/2,τ3/2
,

Θi+1
3/2,τ3/2

, Θi+3
3/2,τ3/2

, Θi+5
3/2,τ3/2

, Θi
3/2,τ3/2

};

• the minor scale(based on the value Θi
3/2,τ3/2

):

D
(minor)
i = Θi

3/2,τ3/2
, Θi+2

3/2,τ3/2
, Θi−3

3/2,τ3/2
, Θi−1

3/2,τ3/2
,

Θi+1
3/2,τ3/2

, Θi−4
3/2,τ3/2

, Θi−2
3/2,τ3/2

, Θi
3/2,τ3/2

};

• there is only one whole tone interval, W1 = τ3/2
2 · 9/8;

• there are two semitones: ∆1 = τ3/2
−5 · 28/35 (the minor semitone) and ∆2 =

τ3/2
7 · 37/211 (the major semitone), and W1 = ∆1 · ∆2;

• ∆1 = ∆2 is equivalent to τ3/2 = 12
√

219/312 (the temperature of the E12 fifth);

• the major and minor scales based on tones Θi
3/2,τ3/2

and Θi+3
3/2,τ3/2

are related: if we

take the basic value Θi
3/2,τ3/2

for the major scale and Θi+3
3/2,τ3/2

for minor scale, then

both these scales consist of the same numbers;

• the major scale is a union of two equal tetrachords:

{Θi+0
3/2,τ3/2

, Θi+2
3/2,τ3/2

, Θi+4
3/2,τ3/2

, Θi−1
3/2,τ3/2

}
and

{Θ(i+0)+1
3/2,τ3/2

, Θ
(i+2)+1
3/2,τ3/2

, Θ
(i+4)+1
3/2,τ3/2

, Θ
(i−1)+1
3/2,τ3/2

}.

Remark 4 We see also that the reasonable are only the tone systems of the first
type with τ3/2 < 1 (since if τ3/2 ≥ 1, then τ5/4 > 81/80, analogously τ6/5. Also,
τ7/4 > 59049/57344 is a big mistuning of the sevenths). Also, here is the reason why

we choose Θ10
3/2,τ3/2

and not Θ−2
3/2,τ3/2

: the corresponding τ7/4 = 64/(63τ3/2
2) which is not

appropriate for τ3/2 < 1.

Example 7 τ3/2 = 1, τ5/4 = 81/80, τ6/5 = 80/81, τ7/4 = 64/63. The Pythagorean

tone system.

Example 8 τ3/2 = 1 − 1/886, τ5/4 = 1 + 1/126, τ6/5 = 1 − 1/111, τ7/4 = 1 + 1/5. A

rational approximation of E12.

Example 9 τ3/2 = τ5/4 = 3
√

80/81, τ6/5 = 1. The open tone system with the exact

minor third.

Example 10 The Opelt’s system, cf. (Helmholtz, 1877), the approximation of the
previous tone system, a cyclic system, N = 19, x = 11:

τ3/2 ≈ 239/240, τ5/4 ≈ 234/235, τ6/5 ≈ 11561/11560, τ7/4 ≈ 80/81.
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Figure 1: The embedding ζ

Images in the complex plane For ∆1, ∆2, the minor and major semitones,
denote by

P∆1,∆1 = {∆α
1 ∆β

2 ; α, β ∈ Z}.

Consider the map ϑ : P∆1,∆2 → Z2, ϑ(∆α
1 ∆β

2 ) = (α, β). Then

ϑ((∆α
1 ∆β

2 )(∆γ
1∆δ

2)) = (α + γ, β + δ),

ϑ((∆α
1 ∆β

2 )γ) = (γα, γβ), α, β, γ, δ ∈ Z.

Embed Z2 identically into the complex plane C. Denote this injection by η. Denote
by ϑ−1

∗ the extended map ϑ−1
∗ : C → R∆1,∆2 , where R∆1,∆2 = {∆α

1 ∆β
2 ; α, β ∈ R}. So

we have the following commutative diagram, cf. Figure 1, which defines the embedding
ζ : P∆1,∆2 → R∆1,∆2 .

In Figure 5, we see the images of major and minor scales of tone systems of the first
type in the map ϑ.

Remark 5 From this image it is clear, cf. (Haluška, 2000), that the Petzval’s tone
system of the first type is a direct generalization of the Pythagorean Tuning structure.

Cyclic tone systems of the first type

Lemma 5 Let Dp be the union of p + 1 major and p + 1 minor scales over the set:

{Θ0
3/2,τ3/2

, Θ1
3/2,τ3/2

, · · · , Θp
3/2,τ3/2

}. (10)

Let S be the tone system of the first type. Then the set Dp consists of (p + 10) values.

Proof. For the construction of (p + 1), major and (p + 1) minor scales over the set (10)
(“the spiral of p + 1 generalized fifths”), there is used the following sequence of (p + 10)
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values:
Dp =

⋃p
i=0(D

(major)
i ∪ D

(minor)
i )

= {Θ−4
3/2,τ3/2

, Θ−3
3/2,τ3/2

, Θ−2
3/2,τ3/2

, Θ−1
3/2,τ3/2

,
p+1

︷ ︸︸ ︷

Θ0
3/2,τ3/2

, Θ1
3/2,τ3/2

, · · · , Θp
3/2,τ3/2

,

Θp+1
3/2,τ3/2

, Θp+2
3/2,τ3/2

, Θp+3
3/2,τ3/2

, Θp+4
3/2,τ3/2

, Θp+5
3/2,τ3/2

}.

The main advantage of cyclic tone systems of the first type consists of the following:

Lemma 6 Let S1 be a Petzval’s cyclic tone system of the first type. Let Dp ⊂ S1 be
the union of p major and p minor scales over the set

Θ0
3/2,τ3/2

, Θ1
3/2,τ3/2

, · · · , Θp
3/2,τ3/2

.

Then the set Dp consists only of (p + 1) values.

Proof.

Since the tone system is cyclic, there exist n, m such that (7). Put p = m − 1. Then

2nΘ−4
3/2,τ3/2

= Θp−3
3/2,τ3/2

,

2nΘ−3
3/2,τ3/2

= Θp−2
3/2,τ3/2

,

2nΘ−2
3/2,τ3/2

= Θp−1
3/2,τ3/2

,

2nΘ−1
3/2,τ3/2

= Θp
3/2,τ3/2

,

2nΘ0
3/2,τ3/2

= Θp+1
3/2,τ3/2

,

2nΘ1
3/2,τ3/2

= Θp+2
3/2,τ3/2

,

2nΘ2
3/2,τ3/2

= Θp+3
3/2,τ3/2

,

2nΘ3
3/2,τ3/2

= Θp+4
3/2,τ3/2

,

2nΘ4
3/2,τ3/2

= Θp+5
3/2,τ3/2

.

We have:

Dp = {Θ−4
3/2,τ3/2

, Θ−3
3/2,τ3/2

, . . . Θp+3
3/2,τ3/2

, Θp+4
3/2,τ3/2

, Θp+5
3/2,τ3/2

}
≡ {Θ0

3/2,τ3/2
, Θ1

3/2,τ3/2
, · · · , Θp

3/2,τ3/2
} ,

where ≡ denotes the octave equivalence.
Let the octave be decomposed into p + 1 smaller intervals, segments (semitones in

the case of 12 degree tone systems). These segments are of two types – minor and
major. Let the minor segment has m equal elementary intervals and the major segment
has m + n, m > n equal elementary intervals. Then the major or minor scales have
5(m + 2n) + 2(m + n) = p + 1, i.e.

7m + 12n = p + 1

elementary intervals.
In the following theorem there are equal tempered tone systems of the first type. The

proof is trivial and omitted.
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Theorem 3 If m = 0, then

p + 1 = 12, 24, 36, 48, 60, 72, . . . , 612, . . . .

So, we obtained specially the 12-tone equal temperature, 24-tone (1/4-tone) equal tem-
perature, 36-tone (1/6-tone) equal temperature, 72-tone (1/12-tone) equal temperature
(considered in 1920-ties by Alois Hába, cf. (Hába, 1922), 612-tone system was considered
by Josef Sumec in 1917.

Theorem 4 If m = 1, then

p + 1 = 19, 31, 43, 55, 67, . . . .

The corresponding temperatures are:

0.99584, 0.997012, 0.997530, 0.997822, 0.998009, . . .

Proof. 1.0824τ3/2
19 = 1, 1.0972τ3/2

31 = 1, 1.1122τ3/2
43 = 1, . . . .

These systems are also well known in the literature in the present days. An article
which characterizes the very special properties of 12-, 19- and 31-tone scales is (Balzano,
1980).

If m = 2, then p + 1 = 38, 50, 62, . . .. Etc. for m = 3, 4, . . .. However, for m ≥ 2 the
fifth temperatures τ3/2m

are greater than those in the cases m = 0 or 1.
Note that some tone systems for higher m are supersets of those for lower m. E.g.,

the 38-tone system contains the 19-tone system, 62-tone contains the 31-tone system as
their proper subset.

4.2 Tone Systems II

Properties For the Petzval’s tone systems of the second Type we have the following
expressions:

Θ9
3/2,τ3/2

= τ3/2
9 · 39

214
, Θ−8

3/2,τ3/2
= τ3/2

−8 · 213

38
, Θ−14

3/2,τ3/2
= τ3/2

−11 · 223

311
.

These equations imply:

τ6/5 ·
6

5
= τ3/2

9 · 39

214
, τ5/4 ·

5

4
= τ3/2

−8 · 213

38
, τ7/4 ·

7

4
= τ3/2

−11 · 223

311
.

Thus,

τ6/5 = τ3/2
9 · 5·38

215 ,

τ5/4 = τ3/2
−8 · 215

5·38 ,

τ7/4 = τ3/2
−14 · 225

7·314 .

(11)

The consequences from the formulas (11) we collect into the following

Theorem 5 For every Petzval tone system S2 of the second type,
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• τ5/4 · τ6/5 = τ3/2;

• the major scale (based on the value Θi
τ3/2

):

D
(major)
i = {Θi

3/2,τ3/2
, Θi+2

3/2,τ3/2
, Θi−8

3/2,τ3/2
, Θi−1

3/2,τ3/2
,

Θi+1
3/2,τ3/2

, Θi−9
3/2,τ3/2

, Θi−7
3/2,τ3/2

, Θi
3/2,τ3/2

};

• the minor scale (based on the value Θi
τ3/2

):

D
(minor)
i = {Θi

3/2,τ3/2
, Θi+2

3/2,τ3/2
, Θi+9

3/2,τ3/2
, Θi−1

3/2,τ3/2
,

Θi+1
3/2,τ3/2

, Θi+8
3/2,τ3/2

, Θi+10
3/2,τ3/2

, Θi
3/2,τ3/2

};

• the major and minor scales based on tones Θi
3/2,τ3/2

and Θi−9
3/2,τ3/2

are related: if we

take the basic value Θi
3/2,τ3/2

for the major scale and Θi−9
3/2,τ3/2

for minor scale, then

both these scales consist of the same numbers;

• there are two whole tone intervals: W1 = τ3/2
2 · 9/8 (the major whole tone) and

W2 = τ3/2
−10 · 216/310 (the minor whole tone);

• there are two semitones: ∆2 = τ3/2
7 ·37/211 (the major semitone) and ∆3 = τ3/2

17 ·
227/317 (the “cross” semitone);

• the following equations holds:

∆2

∆3
=

(

τ3/2
12 · 312

219

)

=

(
W1

W2

)2

, ∆3 =
∆2

1

∆2
.

Remark 6 The condition τ3/2 < 1 is superfluous in this case, we can choose τ3/2 <
1, τ3/2 > 1, or τ3/2 = 1. For τ3/2 = 1, we have: τ5/4 = 885/886, τ6/5 = 886/885, Θ7/4 =
455/454. For τ3/2 < 1, we obtain tone systems with purer thirds. For τ3/2 > 1, we obtain
tone systems with purer sevenths.

There in no tetrachordal structure of the major scale.

Images in the complex plane In Figure 6, we see the images of major and
minor scales of Tone systems of the second type in the map ϑ.

Remark 7 From this image it is clear, cf. (Haluška, 1998), that the Petzval’s tone
system of the second type is a direct generalization of Just Intonation.

Cyclic tone systems of the second type, Petzval tunig Let the octave
be decomposed into p + 1 smaller intervals, segments (semitones in the case of 12 degree
tone systems). The smallest segment is the interval between the major and minor whole
tones, let it contains m disjoint equal elementary intervals. The minor semitone let has
n, n > m, elementary intervals. Then the major semitone has n+2m elementary intervals.
Then the major and minor scales contain totally 3(2n + 3m) + 2(2n + 2m) + 2(n + 2m)
elementary intervals, i.e.

12n + 17m = p + 1.
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In the following theorem there are equal tempered tone systems of the second type.
The proof is trivial and omitted.

Theorem 6 If m = 0, then

p + 1 = 12, 24, 36, 48, 60, 72, . . . , 612, . . . .

We see that the equal tempered Petzval’s tone systems of the first and second types
coincide.

Theorem 7 If m = 1, then

p + 1 = 41, 53, 65, 77, . . . .

The corresponding temperatures are:

0.983512, 0.999961, 0.999758, 0.999621, . . .

Example 11 The 53-tone cyclic system, “Petzval tuning”. Here m = 1, the minor
semitone (

53
√

28 ≈ 26/25) contains 3 elementary intervals, the major semitone (
53
√

29 ≈
1.067577) has 5 ones, the minor whole tone (≈1.110295) has 8, and the major whole tone
(≈1.124911) has 9 elementary intervals,

τ3/2 = −25381/25382, τ5/4 = 1229/1230,
τ6/5 = 1293/1292, τ7/4 = 364/363.

Theorem 8 If m = 2, then

p + 1 = 70, 82, 94, 106, . . . .

We can consider m = 3, 4, . . .. However, these systems seem to bring no new or
interesting quality from the acoustic viewpoint.

5 BIMESURES AND THE LAST SQUARE METHOD

What about the interplay between two temperaments of a system S? We need to
construct a measure for the distance between two uncertain sets.

Let Σ(a) and Σ(m), be the psychoacoustic and musical temperaments of an (unknown)
tone system S ∈ S which we would like to be well tempered.

There are questions: given musical temperament or its structure, find concrete S with
optimal psychoacoustic temperament in some sense. Specially, to find S with the optimal
psychoacoustic temperament when the musical mistuning is arbitrary.

The following uncertainty bimeasure is motivated with the method of last squares:

λ(Σ(a), Σ(m)) =
1

∑

φ∈L wφ[µ
(m)
φ − µ

(a)
φ ]2

, (12)

where

µ
(m)
φ = min

f∈ker(Σ(m))∩[1;2)

∣
∣
∣
∣
1 − f

φ

∣
∣
∣
∣
· sgn

(

1 − f

φ

)

,
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µ
(a)
φ = min

f∈ker(Σ(a))∩[1;2)

∣
∣
∣
∣
1 − f

φ

∣
∣
∣
∣
· sgn

(

1 − f

φ

)

,

and φ ∈ {6/5, 5/4, 3/2, 7/4} = L,
∑

φ∈L, wφ = 1, wφ > 0.
Note that Definition 8 works for the case of crisp situation up to this place and the

uncertainty context is a direct generalization of the crisp case. In this section we will
demonstrate results essentially using the uncertainty based information theory and such
that the reduction to crisp case is trivial and pure.

The following Subsection 5.1 concerns the Petzval’s tone systems of the first type.

5.1 Optimal Temperatures I, Huygens – Fokker Tuning

Let us search a tone system S = Σ(a) among the Petzval tone systems of the first
type. Substitute (9) into the function λ(Σ(a), Σ(m)), see (12). For the sake of simplicity,
let w6/5 = w5/4 = w3/2 = w7/4 in Equation (12).

The function λ(Σ(a), Σ(m)) is then a function of the variable τ3/2. We evaluate the

maximum of the function λ(Σ(a), Σ(m)) applying the well-known method from the mathe-
matical analysis (the first derivative put to zero, the second derivative should be negative
in the solution points, etc.). We obtain the following algebraic equation of the 26th degree
with respect to psychoacoustic temperature τ3/2 = τ3/2

(a):

−2(τ
(m)
3/2 − τ3/2) − 8 · 81·τ3

3/2

80

(

τ
(m)
5/4 − 81·τ4

3/2

80

)

+6 · 80
81·τ4

3/2

(

τ
(m)
6/5 − 80

81·τ3
3/2

)

+ 20 · τ9
3/2

(

τ
(m)
7/4 − 59049·τ10

3/2

57344

)

= 0.
(13)

Since µ
(m)
3/2 , µ

(m)
5/4 , µ

(m)
6/5 , µ

(m)
7/4 we can choose arbitrary within reasonable boundaries, let

µ
(m)
3/2 = 0, µ

(m)
5/4 = 0, µ

(m)
6/5 = 0, µ

(m)
7/4 = 0 (pure intervals). As the result, we obtained the

following “ideal” temperature of the searched tone system S ∈ S:

τ3/2 ≈ 0.997224, τ5/4 ≈ 1.001305, τ6/5 ≈ 0.995925, τ7/4 ≈ 1.001505.

In the following two examples we will suppose that we have some appriori knowledge

about the structure of the set {µ(m)
3/2 , µ

(m)
5/4 , µ

(m)
6/5 , µ

(m)
7/4 }.

Example 12 (Huygens – Fokker tuning)

Let τ
(m)
3/2 = τ

(m)
5/4 = τ

(m)
6/5 = τ

(m)
7/4 . The equation (13) implies µ3/2 ≈ 1/336 and

τ3/2 ≈ 335/336, τ5/4 ≈ 2013/2012, τ6/5 ≈ 287/288, τ7/4 ≈ 335/336.

The closest cyclic tone system is given with x/N = 18/31, i.e. a 31-tone tone system
with the tempered fifth on the 18-th step. This tone system is known as the Huygens –
Fokker tuning, cf. (Fokker, 1955).

Example 13 (A 43-tone system)
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Let τ
(m)
3/2 = τ

(m)
5/4 /5 = τ

(m)
6/5 /5 = τ

(m)
7/4 /5. The equation (13) implies

µ3/2 ≈ 1/397, τ3/2 ≈ 396/397.

The closest cyclic system is for x/N = 25/43, i.e. a 43-tone system with the tempered
fifth on the 25-th step.

5.2 Optimal Temperatures II

Not bringing the boring computations of the expression (13), for the case of the Pet-
zval’s tone system of the second type with the minimal mistuning we have the following
results:

τ3/2 ≈ 1.000034, τ5/4 = 0.9986, τ6/5 ≈ 1.001436, τ7/4 ≈ 1.001722.

We see that all basic intervals are mistuned a tiny amount, so we hear them as pure. The
Petzvals tone systems of the second type are excellent. However, there is a cost to be paid
with the relatively large number of steps per octave.

Acknowledgement. The author thanks to G. J. Klir for his kind gift of the book Klir
and Wierman (1997). He is also grateful to J. Beran for the discussion about statistical
investigations of weight values in uncertainty measures for concrete compositions.
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Figure 2: σ(EN ), N = 5, 6, . . . , 60.
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Figure 3: σ
(1)
N (EN ), N = 5, 6, . . . , 60.
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Figure 4: σ
(2)
N (EN ), N = 5, 6, . . . , 60.
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Figure 5: Major and minor scales of Tone systems of the first type in ϑ

26



e

e e

e

e

e e

Z

Z
(7, 5)

(0, 0)

e
c

d

d] f

g

g]

a] c′

e e

e

e e

e

e

Z

Z
(7, 5)

(0, 0)

e
c

d f[

f

g b[[

c[

c′

Figure 6: Major and minor scales of Tone systems of the second type in ϑ
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