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MOMENT PROBLEM

FOR MAJORATED OPERATORS II

Miloslav Duchoň - Michel Duhoux - Ján Haluška

Abstract. We present a moment problem in the context of majorated operators on
the space of continuous functions. A generalization of the Hausdorff moment problem
theorem is formulated and proved and then applied to a representation of majorated
linear mappings.

1. Introduction

It is well known that the following theorem is true.

Riesz representation theorem. Every continuous linear functional L on the set
of continuous functions f defined on [0, 1] has the form

(R) Lf =
∫ 1

0

f(s)dg(s)

with a function g of bounded variation on [0, 1].

This theorem has many extensions and generalizations with various proofs. One
of the possible proofs is based on the moment problem theorem. It can be shown
that [Wid 7] the problem of determining the general continuous linear functionals
on the set of continuous functions is equivalent to that of determining the set of
all moment sequences. It is our purpose to extend this result for majorated linear
operators from continuous functions to Banach spaces ([DDD 2],[DH 4]).

2. A Helly theorem in Banach spaces

Recall that the function g(t) : [a, b]→ Y , Y being a normed space, is said to have
bounded variation |g| if sup∑j ||g(sj)−g(sj−1)|| <∞ where all possible partitions
of [a, b] are considered.

We will say that g has bounded semi-variation if the set

Vg = {
k∑

j=1

(g(tj)− g(tj−1))αj | k ∈ N, a = t0 < t1 < . . . < tk = b, |αj | ≤ 1}

is a bounded set in X.
We will say that g has weakly compact semi-variation if g has bounded semi-

variation and if the set Vg is included in a weakly compact set W of X.
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It is clear that, when g has weakly compact semi-variation, for any continuous
function f : [a, b]→ R, we have

∫
f dg ∈ ‖f‖W if Vg ⊂W .

If Vg ⊂W , then g([a, b]) ⊂W + g(a).
A sequence (gn)n∈N is uniformly of bounded (resp. weakly compact) semi-

variation if there exists a bounded (resp. weakly compact) set containing Vgn for
any n.

In the following we shall need this form of a Helly theorem [DDD 2]

Helly theorem. Let X be a Banach space, D a dense subset of [a, b] and (gn)n∈N
a sequence of functions from [a, b] into X such that

a) gn(a) = 0,
b) (gn)n∈N is uniformly of weakly compact semi-variation.
Then there exists a subsequence of the sequence (gn)n∈N weakly converging on

D to a function g : [a, b]→ X of weakly compact semi-variation.

Now we shall prove a version of Helly theorem for functions of bounded variation.

Helly theorem bis. Let X be a Banach space, D a dense subset of [a, b] and
(gn)n∈N a sequence of functions from [a, b] into X such that

a) gn(a) = 0,
b) (gn)n∈N is uniformly of bounded variation.
Then there exists a subsequence of the sequence (gn)n∈N weakly converging on

D to a function g : [a, b]→ X of bounded variation.

To prove this theorem we shall require some lemmas.

Lemma 1. Every function of bounded variation is a function of weakly compact
semi-variation.

Proof. It is known that if vector function g with bounded variation is also contin-
uous from the left in the interior of interval I then the variation of vector measure
corresponding to g coincides with the positive measure corresponding to the varia-
tion of g (cf. e.g. DI [3]). Now it is known that every vector measure on Borelian
sets has relatively weakly compact range [BDS 1].

To prove the next lemma we make of use the following proposition.

Proposition. Let {mi} be a sequence of vector-valued measures of uniformly bounded
variation on Borelian sets B[a, b] into a Banach space X. Then the set {mi(E), E ∈
B[a, b], i = 1, 2, . . . } is contained in some weakly compact subset of X, i. e. there
exists a weakly compact subset W of X such that

{mi(E), E ∈ B[a, b], i = 1, 2, . . . } ⊂W

i.e., the range of vector-valued measures mi, i = 1, 2, . . . is a relatively weakly
compact subset of X.

Proof. The set {x′mi, x
′ ∈ X ′, ‖x′‖ 5 1, i = 1, 2, . . . } of scalar measures in the

Banach space of all scalar measures on B with variation as norm, ca(B), is
(1) bounded and
(2) if {En} is a sequence in B[a, b] which decreases to the empty set, then

lim
n→∞

x′mi(En) = 0
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uniformly for ‖x′‖ 5 1, and i = 1, 2, . . . . Hence ([DS 5], 1.3Th.) the set {x′mi, x
′ ∈

X ′, ‖x′‖ 5 1, i = 1, 2, . . . } is relatively weakly compact as a subset in ca(B[a, b]).
We shall prove (cf. [DS 5], 2.9. Th.) that if

R = {mi(E), E ∈ B[a, b], i = 1, 2, . . . }

is regarded as a subset of X ′′ in the natural embedding, then R is relatively
compact in the weak topology of X ′′. Since the embedding of X into X ′′ is
closed in this topology, the statement will follow. From the preceding we ob-
tain that the mappings Ui : X ′ → ca(B) defined by Uix

′ = x′mi are equi-
weakly compact operators, hence the adjoint operators U ′i : ca′(B) → X ′′ are
also equi-weakly compact. But the unit sphere of the dual space ca′(B) con-
tains the linear functionals {cE : E ∈ B}, cE(λ) = λ(E), λ ∈ ca(B). But
U ′i{cE : E ∈ B} = {mi(E) : E ∈ B, i = 1, 2, . . . } ⊂ X ′′, and R is therefore
relatively weakly compact in X.

From the preceding lemma and Proposition the following lemma can be obtained.

Lemma 2. Every sequence of vector functions of uniformly bounded variation is a
sequence of vector functions of uniformly weakly compact semi-variation.

Proof of Helly theorem bis. To prove Helly theorem bis it suffices to show that limit
function of Helly theorem is of bounded variation. Let g be a weak limit of sequence
gn.Then for a fixed i, there exists x′i in X ′ with ‖x′i‖ = 1 such that [DS 5, II.3. 14
Cor.]

‖g(ti)− g(ti−1)‖ = |x′i(g(ti)− g(ti−1))|

= lim
n
|x′i(gn(ti)− gn(ti−1))|

Further ∑

i

‖g(ti)− g(ti−1)‖ =
∑

i

|x′i(g(ti)− g(ti−1))| =

lim
n

∑

i

|x′i(gn(ti)− gn(ti−1))| 5

lim sup
n

∑

i

‖gn(ti)− gn(ti−1)‖ 5 K <∞

for some positive K.

3. Moment problem theorem

Of all possible moment problems we shall consider only a power moment problem.
We can formulate a task in the considered case as follows: Decide under which
conditions there exists such a function of bounded variation g(t) : [a, b]→ Y that

(1)
∫ b

a

tndg(t) = yn, n = 0, 1, . . .

We shall derive a concrete result relating to a power moment problem in the
interval [0, 1].
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Theorem. In order that there exists a function of bounded variation g(t) : [0, 1]→
Y such that

(2)
∫ 1

0

tndg(t) = yn, yn ∈ Y, n = 0, 1, . . .

it is necessary and sufficient that there exists a constant M such that

(3)
n∑

k=0

(
n

k

)
||∆n−kyk|| ≤M,n = 0, 1, . . . ,

where ∆myk denotes the m-th differences for the sequence (yk) defined inductively
by equalities

∆m+1yk = ∆myk −∆myk+1, ∆0yk = yk,

(4) m = 0, 1, . . . ; k = 0, 1, . . . .

Proof. Let the moment problem (2) be solved. Denote by L a bounded linear
operator on the space C[0, 1] generated by a function of bounded variation, g(t) :
[0, 1]→ Y ,

L(f) =
∫ 1

0

f(t)dg(t), f ∈ C[0, 1]

Put

(5) x
(m)
k (t) = tk(1− t)m, m, k = 0, 1, . . . .

Since
x

(m+1)
k (t) = tk(1− t)m+1 = tk(1− t)m − tk+1(1− t)m =

x
(m)
k (t)− x(m)

k+1(t),

we have
L(x(m+1)

k ) = L(x(m)
k )− L(x(m)

k+1),m, k = 0, 1, . . . .

Further
L(x(0)

k ) = yk.

If we take into the consideration (4), we can easily see (by induction) that

L(x(m)
k ) = ∆myk, m, k = 0, 1, . . . .

From this we deduce that (3) is satisfied. For we have

n∑

k=0

(
n

k

)
||∆n−kyk|| =

n∑

k=0

(
n

k

)
||
∫ 1

0

x
(n−k)
k (t)dg(t)|| ≤
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n∑

k=0

(
n

k

)∫ 1

0

|xn−k)
k (t)|d|g|(t) =

∫ 1

0

(
n∑

k=0

(
n

k

)
tk(1− t)n−k)d|g|(t) =

=
∫ 1

0

[t+ (1− t)]nd|g|(t) ≤ |g|([0, 1]), n = 1, 2, . . .

which proves the necessity of the condition, if we put M = |g|([0, 1]).
The sufficiency. Let L0 denote the operator defined on the set of functions (xn),

xn(t) = tn, n = 0, 1, . . . into Y by formula L0(xn) = yn, n = 0, 1, . . . . Extend
L to the linear hull of the set (xn), i. e. to the set of all polynomials. Namely if
x(t) = c0 + c1t+ · · ·+ cnt

n, we put

L(x) = c0y0 + c1y1 = · · ·+ cnyn.

Since the functions xn are linearly independent the definition of L will be unique.
The operator L defined above will be clearly additive and homogeneous. We

shall see that condition (3) implies that L is bounded.
Let us note that (even without this condition) the operator L is bounded on the

set Pm of polynomials the degree of which is ≤ m, because Pm is finite-dimensional
space (as coordinates we take coefficients of polynomial), hence the convergence in
Pm is coordinatewise.

We have
L(x(s)

k ) = ∆ysk, s, k = 0, 1, . . . .

Take any polynomial p(t). Let the degree of p(t) be m. Form the sequence of
corresponding Bernstein polynomials (of p(t))

pn(t) = Bn(p; t) =
n∑

k=0

(
n

k

)
p(
k

n
)tk(1− t)n−k.

It is well-known that the degree of the polynomial pn(t) for any n = 1, 2, . . . is
not greater than m, and since pn(t) uniformly converges to p(t) for n → ∞, we
have (according to remarks above) L(pn)→ L(p).

Let (yk, k ∈ N) satisfy the condition (3). For each positive integer n define a
step function gn with jumps at m

n for m = 0, 1, . . . , n− 1 by the following process.
Let

y(j, n) :=
(
n

j

)
∆n−jyj

for j = 0, 1, . . . , n− 1. Set gn(0) = 0, gn(1) = y0, and

gn(x) :=
m−1∑

j=0

y(j, n) (
m− 1
n

< x <
m

n
).

Extend gn to [0,1] by averaging gn at all jumps.
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For each polynomial P (x) =
∑n
j=0 cjx

j put

Λ(P ) =
n∑

j=0

cjyj .

Consider the Bernstein polynomials

B(k, n)(x) :=
n∑

j=0

(
n

j

)
(
j

n
)kxk(1− x)n−j ,

and observe that

(6) Λ(B(k, n)) =
∫ 1

0

tkdgn(t)

for n, k ∈ N .
Since (yk, k ∈ N) satisfies the condition (3), it is clear that

n∑

j=0

||y(j, n)|| ≤ L.

Hence the functions g0, g1, . . . are uniformly of bounded variation on [0, 1] with
variation ≤ L. Therefore by Helly theorem bis there is a function g of bounded
variation such that gni(x)→ g(x), i→∞ for x belonging to a dense subset of [0, 1].
Then by Helly-Bray theorem [DDD 2]

lim
j→∞

∫ 1

0

tkdgnj (t) =
∫ 1

0

tkdg(t)

Therefore by the formula (6) it suffices to show that

lim
n→∞

Λ(B(k, n)) = yk

for k ∈ N . The proof is the same as in [DDD 2].

4. Integral representation theorem

It is well known that every continuous linear form on the space of C(I) is pre-
sentable in the form

f →
∫ 1

0

f(t)dq(t)

where q is a function of bounded variation.
From the preceding moment problem theorem we obtain the result giving repre-

sentaion of majorated mapping [DI 3].
For each subset A of [a, b], let C([a, b], A) denote the space of continuous functions

on [a, b] vanishing outside A. If F : C([a, b]) → X is a linear mapping, define for
each A,

|||FA||| = sup
∑
||F (ψi)||
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where supremum is over all finite families ψi in C([a, b], A) with
∑ |ψi| ≤ χA(t) for

all t in [a, b].
If F : C([a, b])→ X is a linear mapping, then if

|||FA||| <∞
for all A in B([a, b]) the mapping F is called majorated (also dominated, ([DI 3])).

An equivalent definition is as follows.
If F : C([a, b])→ X is a linear mapping, it is majorated (dominated) if and only

if there exists a nonnegative Borel measure µ on B[0, 1] such that

||F (ψ)|| ≤
∫ b

a

|ψ(t)|dµ(t), ψ ∈ C([a, b]).

We can obtain a representation theorem for majorated operators from the ([Di,
3]).

Theorem M. Every majorated linear operator L on C(I) into Y is presentable in
the form

(1) L(f) =
∫ 1

0

f(t)dq(t)

where q is a function of bounded variation on I into Y. Conversely, every mapping
of the form (1) is majorated.

Thus (1) represents majorated linear operators on C(I) with values in Y.

Proof. Put
L(tn) = yn, n = 0, 1, . . .

Take
n∑

k=0

(
n

k

)
||∆n−kyk|| =

n∑

k=0

(
n

k

)
||L(tk(1− t)n−k)|| =

n∑

k=0

||L(
(
n

k

)
tk(1− t)n−k)|| ≤M <∞

since L is majorated. Hence by preceding theorem

L(tn) =
∫ 1

0

tndq(t)

for some function q of bounded variation on I with values in Y . By Weierstrass’s
theorem we can extend the last equality for every continuous function on I. �

We have an equivalent form of the moment theorem (cf [DH 4], [H 6], [Wid 7]).

Theorem. In order that there exists a vector measure of bounded variation m :
B[0, 1]→ Y such that

∫ 1

0

tndm(t) = yn, yn ∈ Y, n = 0, 1, . . .

it is necessary and sufficient that there exists a constant M <∞ such that
n∑

k=0

(
n

k

)
||∆n−kyk|| ≤M,n = 0, 1, . . . ,
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