
Fuzzy Sets and Systems 114(2000), 261 – 269.

Equal Temperament and Pythagorean Tuning:
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Abstract
We show the following: Pythagorean Tuning (17 valued) and Equal Temperament (12 valued) can be canonically

represented as discrete sets of the plane and there is a natural parallel projection of Pythagorean Tuning to
the points of Equal Temperament. This fact implies particularly that when performing a composition on two
instruments simultaneously in both Pythagorean Tuning and Equal Temperament, then the Garbuzov zones
(supports of tone fuzzy sets) can be considered as segments on parallel lines in the plane.

Keywords: Fuzzy sets of tones, Relation between Pythagorean Tuning and Equal Temperament, Many valued
coding of information, Application to Mathematical theory of music.

1 Garbuzov zones

Some musical acousticians assert that the
twelve-degree musical scales appeared not as
merely artificial convention but, rather, that
the natural development of musical culture led
to aural selection of qualitative degrees, interval
zones, each of them having its own, particular
degree of individuality. In other words, there
is a finite number of zones of music intervals
in an octave. It seems that N. A. Garbuzov
was the first who applied the fuzzy theory (in
a naive form) when considering interval zones
with regard to tuning in music, see [2], Table 4
and Table 5 (= Table 1 in this paper; Garbu-
zov zones of melodic musical intervals). These
tables are statistics of hundreds measurements.

In this paper, we deal with a fuzziness of tun-
ings. To each note (= a fuzzy set) in a score,
there is a membership function of tones defined
on the Garbuzov zone (= the support of the
fuzzy set). The values of this membership func-
tion may be chosen from a discrete set (the the-
oretical case of tunings) or there is a continuous
function (the typical situation; every assemble

unison (-12, 12)
minor second (48, 124)
major second (160, 230)
minor third (272, 330)
major third (372, 430)
fourth (472, 530)
tritone (566, 630)
fifth (672, 730)
minor sixth (766, 830)
major sixth (866, 930)
minor seventh (966, 1024)
major seventh (1066, 1136)

Table 1: Garbuzov zones [in cents]

play).

The tone membership functions may take
values derived from one or more theoretical tun-
ings. On the other hand, theoretical tunings
often uses two or more values for one qualita-
tive degree. If there is only one non-zero value
in each degree zone, we have no fuzziness. But
this situation is only a theoretical possibility
which never occur in real live music.

The choice of tunings should be made on the
basis of acoustical, psychological, and mathe-
matical principles and relations within a given
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composition. Indeed, there are known many
types of theoretical tunings in literature, cf. [9].

Psychologically (i.e. after the sound was pro-
duced), the tuning in music is an example of the
fact that the human perceptive mechanism uses
various systems of fuzzy coding of information,
see Section 2. Particularly, 17-tone tuning sys-
tems for the 12 qualitative different music inter-
val degrees (e.g. Pythagorean Tuning and Just
Intonation, [7], [12]) are well-known. The main
requirement is that the subject’s perceptive sys-
tem would be able to encode the informational
content unambiguously.

We show the following connection be-
tween the two most used (theoretical)
tunings, Pythagorean Tuning (17 val-
ued) and Equal Temperament (12 val-
ued). These two systems can be canon-
ically represented as discrete sets of the
plane and there is a natural parallel pro-
jection of Pythagorean Tuning to the
points of Equal Temperament, (see Fig-
ure 3). This connection was firstly observed
in [4]. This fact implies particularly
that when performing a composition on
two instruments simultaneously in both
Pythagorean Tuning and Equal Tempera-
ment, then the Garbuzov zones (supports
of tone fuzzy sets) can be considered as
segments on parallel lines in the plane.

2 Examples

We demonstrate that fuzziness with re-
gard to tuning is relevant because there
are present ever two or more different
tone systems under consideration (se-
quentially or simultaneously). E. g., in
the case of the piano and the 12-degree 12-tone
Equal Tempered Scale, there is an interference
among the played tones and their overtone sys-
tems. These tone systems are mutually incom-
mensurable (except of octaves) and the interfer-
ence modifies valuable the sound. These mod-
ifications depend on the concrete composition,
player, instrument, set of hall acoustics, etc.

It is known that the sensitivity of human au-

ral perception is 5–6 cents. The psychophysical
boundary [to what listeners or players tend to
expect] is 1–2 cents.

2.1 Sequential fuzziness

In [2], we can find the numerical data of the
following experiment. The first 12 measures of
Air from J. S. Bach’s Suite in D (“On the G-
String”) were interpreted by three famous Rus-
sian violinists of that time: Oistrach, Elman,
and Cimbalist. The piece of Bach’s Air was
chosen because (1) the tempo is Slow (Lento,
M.M. 1/4 = 52); (2) it consists of great num-
ber of pitches of various duration; (3) the piece
has two parts, the second one is a repetition of
the first one; (4) the piece is well-known, often
recorded and interpreted; (5) it is played violin
(not fix tuned instrument).

The recordings of Oistrach, Elman, and Cim-
balist were numerical analysed with the accu-
racy of 5 cents.

The analysis scheme is in Figure 1 (ET de-
notes intervals which can be identified as Equal
tempered, PT – Pythagorean, JI – pure [Just
Intoned], and UI – unidentified, do not be-
long to the considered tunings Equal Temper-
ament, Pythagorean Tuning, or Just Intona-
tion), where (1) Oistrach produced 65 intervals
(25 ET, 19 PT, 15 JI, 30 UI); (2) Elman pro-
duced 66 intervals (27 ET, 26 PT, 14 JI, 27 UI);
(3) Cimbalist produced 70 intervals (18 ET, 13
PT, 11 JI, 49 UI). 1

It is clear that we may consider also an-
other set of theoretical tunings (e.g. Praeto-
rius, Werckmeister, Neindhardt, Agricola, etc.)
to have no “unidentified” intervals or to have a
less number of the mentioned theoretical tun-
ings covering the set of all produced intervals.
However, we may also say that there are three
(Oistrach’s, Elman’s, and Cimbalist’s) unique
tunings for Bach’s Aria.

1The various number of intervals produced by three
violinists depended only on the various manners how
they played the trill in the second (fourteenth) measure.
This fact is not important for the analysis.
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2.2 Simultaneous fuzziness

It is known, that some string orchestra tend
to play in Pythagorean Tuning, some in Just
Intonation, and the large symphonic orchestras
in Equal Temperament. It is also clear that
there is no problem for two or more professional
players (say Oistrach and Cimbalist) to play the
Bach’s Air together.

The effect of fuzziness of tuning (without any
psychological interaction of players) was used
specially when tuning some historical organs
with two consoles which were tuned each to a
different tuning.

In modern pipe organs, some special two-row
registers (called double voices) are constructed
on the physical principle of beats, the interfer-
ence of sound waves. Such are e.g. the sound
timbres named Vox coelestis, Unda maris, Voce

umana, Gemshornschwebung, Schwebend Harf,
cf. [1].

3 Two tunings

In the following sections we stress on the
interplay between two theoretical tunings –
Pythagorean and Equal Temperament. We will
consider neither any concrete composition nor
any psychological interactions of players.

Since the Pythagorean and Equal Tempered
Tunings are well-known, a detailed algorith-
mic/theoretical explanation is not necessary.
We recall briefly only the basic facts.

For the sake of tuning, it is reasonable to
identify the tone pitch with its relative fre-
quency to the frequency of a fundamental, fixed
tone (conventionally, such a tone is usually
taken a1 = 440 Hz in the experience; we take
c = 1 for simplicity). So, in fact, we deal only
with relative frequencies of music intervals.

Pythagorean Tuning, cf. [12], Table 0.1, was
created as a sequence of numbers of the form
2p3q, where p, q are integers. This tuning was
established about five hundred years B. C. and
used in the Western music up to the 14th cen-
tury. It is often assumed that Pythagorean
Tuning (especially with regard to the differenti-
ation of ” enharmonics”) is/was used in perfor-

mance. At present this tuning is mostly used
when interpreting Gregorian chants.

Equal Tempered Scale (simply, Equal Tem-
perament; known already to Andreas Werck-
meister − this is obvious from his book ”Er-
weiterte und verbesserte Orgel-Probe”, 1698),
has been widely used since the appearance of
the collection of compositions ”Das wohltem-
perierte Klavier” (1721, by Johann Sebastian
Bach), and is commonly used in the present
days. The sequence of real numbers (the ratios
of pitch frequencies relative to the frequency of
the first tone in the scale) W = { 12

√
2i; i =

0, 1, . . . , 12} defines fully this tuning.

4 Scales

Let us denote by Z,Q,R, C the sets of all in-
teger, rational, real, and complex numbers, re-
spectively. If L = ((0,∞), ·, 1,≤) is the usual
multiplicative group with the usual order on the
real line and a ≤ b, a, b ∈ (0,∞), then b/a is an
L-length of the interval (a, b). Since this ter-
minology is not obvious, we borrow the usual
musical terminology, i.e. we simply say that b/a
is an interval. This inaccuracy does not lead to
any misunderstanding because the term ”inter-
val” is used only in this sense in this paper.

The following definition is important for a
visual interpretation of an interesting coherence
between the Pythagorean and Equal Tempered
Tunings.

Equal Tempered Scale can be generalized as
follows, [5], [6].
Definition 1 Let {x, y, . . . , z ∈ R; 1 < x <
y < . . . < z < 9/8} be a set of n num-
bers. Let p0, p1, . . . , pm , q0, q1, . . . , qm, . . . ,
r0, r1, . . . , rm be m × n nonnegative integers
such that

0 = p0 ≤ p1 ≤ . . . ≤ pm

0 = q0 ≤ q1 ≤ . . . ≤ qm

...
0 = r0 ≤ r1 ≤ . . . ≤ rm,

and

pj + qj + . . . + rj = j, j = 0, 1, . . . , m.
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Figure 2: Image of Pythagorean Tuning in θ
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Figure 3: Images of Equal Temperament in the plane
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Let
a1, a2, . . . , ak ∈ R

be fixed numbers and k ≤ n. Then the set

S = {u0 = xp0yq0 . . . zr0 ,

u1 = xp1yq1 . . . zr1, . . . ,

um = xpmyqm . . . zrm}
is said to be an

m-degree n-interval (a1, a2, . . . , ak)-scale

if there exist

i1, i2, . . . , ik ∈ {0, 1, . . . , m},

such that

aj = uij
, j = 1, 2, . . . , k,

By this definition Equal Temperament is a
12-degree 1-interval (2/1)-scale which is not a
12-degree n-interval (2/1, 3/2)-scale, n ≥ 2.

5 Semitones

In this section we describe the structure of
Pythagorean Tuning

P = {1, 256/243, 2187/2048, 9/8,
32/27, 19683/16384, 81/64, 4/3, 1024/729,
729/512, 3/2, 128/81, 6561/4096, 27/16, 16/9,
59049/32768, 243/128, 2}
in the sense of Definition 1. Let

n = 12, a12 = 2/1, a7 = 3/2.

Then we look for rational numbers x, y, . . . , z
such that

p0 + q0 + . . . + r0 = 0
p1 + q1 + . . . + r1 = 1

...
p7 + q7 + . . . + r7 = 7

...
p12 + q12 + . . . + r12 = 12,

0 = p0 ≤ p1 ≤ . . . ≤ p12,

0 = q0 ≤ q1 ≤ . . . ≤ q12, . . . ,

0 = r0 ≤ r1 ≤ . . . ≤ r12.

It is easy to see, that x, y, . . . , z are of the
form

2α3β , α, β ∈ Z.

The following theorem can be proved, see [4].

Theorem 1 The unique (up to the order of
x, y) pair of rational intervals for 12-degree 2-
interval (2/1, 3/2)-scales is

(x, y) = (256/243, 2187/2048).

The concrete values of x, y can be obtained
from Definition 1, cf. [4] (and they are well-
known as the minor and major Pythagorean

semitones, respectively).
Possible numbers pi, qi, i = 0, 1, . . . , 12, are:

0 + 0 = 0,
1 + 0 = 1,
1 + 1 = 2,
2 + 1 = 3,
2 + 2 = 4,
3 + 2 = 5,
4 + 2 = 6,
4 + 3 = 7,
5 + 3 = 8,
5 + 4 = 9,
6 + 4 = 10,
6 + 5 = 11,
7 + 5 = 12.

Now we express the numbers of P (in the
sense of S) and denote them by c = 1, d[ =
x, c] = y, d = xy, e[ = x2y, d] = xy2, e =
x2y2, f = x3y2, g[ = x4y2, f] = x3y3, g =
x4y3, a[ = x5y3, g] = x4y4, a = x5y4, b[ =
x6y4, a] = x5y5, b = x6y5c′ = x7y5.

It is evident that the sum of exponents 1+0 =
1 for d[ is the same as 0 + 1 = 1 for c], likewise
2+1 = 3 for e[ as 1+2 = 3 for d], 4+2 = 6 for
g[ as 3+3 = 6 for f], 5+3 = 8 for as a[ 4+4 = 8
for g], and 6+4 = 10 for b[ as 5+5 = 10 for a].
Thus we have obtained the following theorem:

Theorem 2 Let

Pr,s,t,u,v = {c, r, d, s, e, f, t, g, u, a, v, b, c′},

where r = c], d[; s = d], e[; t = f], g[; u =
g], a[; v = a], b[. Then
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1. Pr,s,t,u,v are 12-degree 2-interval (2/1,
3/2)-scales,

2.
P =

⋃

r,s,t,u,v

Pr,s,t,u,v.

Theorem 3

P = {u : ∃k ∈ {0, 1, 2, . . . , 16},

u = (x4y3)k(x4y2)(mod x7y5)}.

Proof. Evidently, x7y5 = 2/1 = 2, x4y3 =
3/2. Further, it is

x4y2 = g[, (x
4y2) · (x4y3) · (x7y5)−1 = x =

d[, x · (x4y3) = x5y3 = a[, (x
5y3) · (x4y3) ·

(x7y5)−1 = x2y = e[, (x
2y) · (x4y3) = x6y4 =

b[, (x
6y4) ·(x4y3) ·(x7y5)−1 = x3y2 = f, (x3y2) ·

(x4y3) · (x7y5)−1 = 1 = c, 1 · (x4y3) =
g, (x4y3) · (x4y3) · (x7y5)−1 = xy = d, (xy) ·
(x4y3) = x5y4 = a, (x5y4) · (x4y3) · (x7y5)−1 =
x2y2 = e, (x2y2) · (x4y3) = x6y5 = b, (x6y5) ·
(x4y3) · (x7y5)−1 = x3y3 = f], (x

3y3) · (x4y3) ·
(x7y5)−1 = y = c], y · (x4y3) = x4y4 =
g], (x

4y4) · (x4y3) · (x7y5)−1 = xy2 = d], (xy2) ·
(x4y3) = x5y5 = a].

Corollary 1 Pythagorean Tuning is a geomet-
rical progression of 17 rationals with the quo-
tient 3/2 considered modulo 2 (in the multi-
plicative group L). Combine the results of tis
section and consequently collect Table 2 (in the
fifth column, there are values in cents, i.e. in
the isomorphism Γi 7→ 1200·log

2
Γi; in the sixth

column, there is a musical denotation).

6 Images in the plane

Denote by Qx,y = {xαyβ ; α, β ∈ Z}. Consider
the map θ : Qx,y → Z2, θ(xαyβ) = (α, β).
Then

θ((xαyβ)(xγyδ)) = (α + γ, β + δ),

θ((xαyβ)γ) = (γα, γβ), α, β, γ, δ ∈ Z.

Lemma 1 The map θ : Qx,y → Z2 is an iso-
morphism.

Proof. It is sufficient to show that θ(a) = θ(b)
implies a = b. Indeed, then

θ(a) = θ(xα1yβ1) = θ(xα2yβ2) = θ(b),

(α1, β1) = (α2, β2)

which implies

α1 = α2, β1 = β2, x
α1yβ1 = xα2yβ2 .

Embed Z2 identically into the complex plane
C. Denote this injection by η. Denote by θ−1

∗

the extended map θ−1

∗
: C → Rx,y, where

Rx,y = {xαyβ; α, β ∈ R}. So we have the
following commutative diagram, cf. Figure 4,
which defines the embedding ϕ : Qx,y → Rx,y.

In Figure 2, we see the image of Pythagorean
Tuning in the isomorphism θ.

Theorem 4 Let π : C → p be the projection of
the complex plane C = {(α, β) ∈ R2} into the
line

p : 5α − 7β = 0

along the line

q : α + β = 1.

Then

W = θ−1

∗
(π(η(θ(P )))).

Proof. See Figure 3. Denote the individual
points of q by

w0 = 0

12
· (7, 5),

w1 =
(

7

12
, 5

12

)

= 1

12
· (7, 5),

w2 = 2 ·
(

7

12
, 5

12

)

= 2

12
· (7, 5),

...
w12 = 12 ·

(

7

12
, 5

12

)

= 12

12
· (7, 5).

We have:

w0 = π(η(θ(c))),
w1 = π(η(θ(D]))) = π(η(θ(d[))),
w2 = π(η(θ(d))),

...
w12 = π(η(θ(c′))),
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x0y0 2030 1 1.0 0.00 c
x1y0 283−5 256/243 1.053497942 90.22 d[

x0y1 2−1137 2187/2048 1.067871094 113.68 c]

x1y1 2−332 9/8 1.125 203.91 d
x2y1 253−3 32/27 1.185185185 294.14 e[

x1y2 2−1439 19683/16384 1.201354981 317.60 d]

x2y2 2−634 81/64 1.265625 407.82 e
x3y2 223−1 4/3 1.333333333 498.04 f
x4y2 2103−6 1024/729 1.404663923 588.27 g[

x3y3 2−936 729/512 1.423828125 611.73 f]

x4y3 2−131 3/2 1.5 701.96 g
x5y3 273−4 128/81 1.580246914 792.18 a[

x4y4 2−1238 6561/4096 1.601806641 815.90 g]

x5y4 2−433 27/16 1.6875 905.86 a
x6y4 243−2 16/9 1.777777777 996.09 b[

x5y5 2−15310 59049/32768 1.802032473 1019.55 a]

x6y5 2−735 243/128 1.898437528 1109.78 b
x7y5 21 2 2.0 1200.00 c′

Table 2: Pythagorean Tuning
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Corollary 2 The image of Equal Tempera-
ment in Theorem 4 can be obtained also with
the projection of the images of the whole-tone
(9/8) scales:

(c, d, e, f], g], a]) and (d[, e[, f, g, a, b)
into the line

p : 7α − 5β = 0
along the line

q : α + β = 1.

The proof of the following theorem is easy.
Here values of the boundaries of the Garbuzov
zones are understand in relative frequencies.

Theorem 5 (Fuzzy) boundaries of the Garbu-
zov zones in the map θ∗ (in the complex plane
with coordinates (α, β)) are the following lines:

1 =
α

logx R
+

β

logy R
, 1 =

α

logx Q
+

β

logy Q
,

where (R, Q) are the Garbuzov zones, see Ta-
ble 1.

In Figure 5, we see the Garbuzov zone for the
minor third (see Table 1) in the map θ∗.

7 Fuzziness and beats

Suppose that a musical piece (e.g. Bach’s Air)
is played simultaneously by two violinists both
in Pythagorean and Equal Tempered Tunings
and we are interesting in the result of such an
operation. Moreover, we simplify the situations
as follows: we consider only the theoretical tun-
ing values of basic tones and do not mention
overtones which arise automatically.

In Figure 6, we see such the interference of
the PT and ET fifths both with the equal inten-
sity of the sound (in Figure 7, the intensity rate
of the sounds is 1:2). The resulting sound has
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an altering intensity and also pitch. For some
frequency rates the kind of altering will get sta-
bile after a short time (rational rates, harmonic
tone intervals, e.g. 5:4), for some not (irrational
rates, inharmonic tone intervals, e.g. 3/2:

√
2).

For the proof of the following theorem, see
[10], [11].

Theorem 6 Denote by K the set of all solu-
tions of the equation

sin (α · 3/2) + sin
(

α ·
√

2
)

= 0.

Denote by ∆ the set of all distances between the
neighbour points in K ⊂ L.

Then ∆ is a uniform distributed dense subset
of the segment I = [min ∆, max∆].

Combining Theorem 4, Theorem 5, Theo-
rem 6, and taking into account that the in-
terference sound is a continuous nonperiodical
function of time, we obtain the following

Theorem 7 The interference intensity of the
sound of the PT and ET fifths is a continu-
ous nonperiodical (multi) function defined on
an segment on the line α+β = 7 in the map θ∗.

The qualitative similar results we obtain
when considering the other 11 musical zones.
We have, see Figure 5:

Theorem 8 Garbuzov zones of the interfer-
ence of PT and ET considered in the map θ∗
are segments on the lines α + β = n, n ∈ N .

8 Remarks, problems

In [7], there is studied the relation between the
Pythagorean Tuning and Just Intonation (Pure
Tuning). In [6], there is studied the relation
between Pythagorean and Praetorius (= middle
tone) Tunings. In [8], there shown that the set
of all tetrachords is naturally structured as a
lattice of fuzzy sets. In [5], there is explained a
structure of the set of diatonic scales.

The following question connected with the
fuzzy sets is suggested to consider as an open
problem. Define and describe operations on

the set of all (theoretical) m-degree n-interval
scales. Fuzziness can be considered sequen-
tially or simultaneously (melodically or har-
monically).
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