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Abstract

We can observe an effort of linguists, musicologists, and also natural scientists (M. Boroda, G.
Altmann, G. Wimmer, Z. Martináková, R. Köhler) to find the basic units of the human speech and,
specially, music.

The dominated power of the present western music can be denoted shortly with the word
”clavier”. Grubby spoken, music scores are still pressed into the frame of 12 different music de-
grees within the octave, the discrete choice of pitch frequencies, and the octave equivalence. The
similar general picture holds also for rhythm. The exception proves the rule.

In fact, tunings are doubtless classical kinds of segmentation of the western music. The idea is not
new: to consider as segments the all relative frequency intervals within a tone system as segments.
Every interval should be derived from a few basic intervals a the minimal set of all basic intervals
must carry the whole information about the tone system. Note that in general that basic intervals
need not be the smallest intervals of a tone system. Tone intervals are the smallest tone groupings
and they chain the tones in the composition into one entity. For other segmentation theories, cf. [1],
[6], [8].

Using only the (12 tone) equal tempered tuning, the segmentation of the music on the pitch level
is trivial and not interesting: there is an only semitone ( 12√2). What will happen when we deal
with the Pythagorean tuning which has also a relatively simple structure (comparing e.g. with other
historical tunings)? Is there also a finite number of basic intervals, or the set of all basic intervals
is infinite? This question was not solved in the literature and the answer to this question seems not
to be trivial. E.g., it is known that the Pythagorean system is a dense subset of the real halfline.
So, there is infinitely many different intervals in this tone system. There are sequences of intervals
tending to 1, to ∞, or of to each number which you wish (say, to the perfect fifth, 3/2).

We solved the problem for 12 qualitative degree within the octave (for n 6= 12, the answer is
open in general). In this case, there are 23 semitone couples which can form the octave and perfect
fifth in real numbers. One couple is rational (the well-known semitones limma and apotome) and 22
irrational. There are 29 different semitones creating these couples. The main result of this paper,
interesting from the philosophical viewpoint, consists of that there exists no semitone couple in
transfinite numbers which yields any Pythagorean system. Technically, the paper is a continuation
of the paper [3].
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1 Reflections to the segmentation of music

Look for some analogies about segmentations described in the natural sciences
with the purpose to apply then these reflections to music.

Firstly, there are segmentations on various levels which are ordered hierarchically.
Some examples. Molecules are segments of matter on the chemical level, they are
the chemically smallest parts. However, the atomic level is a more tiny segmentation
of the matter than molecules. Each atom has also its segments (electron, positron,
neutron, etc.) which are composed into structures. But these subatomic units are
segmented, too! A higher segmentation level than molecule is based on cells. A social
community (not necessarily the human one) has its segmentation given by individuals.
There is also another segmentation sequence over the molecule level: the earth ball,
the solar system, the galaxy, etc. So, we see that the segmentation hierarchies have
not a linear order.

The second reflection is that time, respectively an evolution, is not used for seg-
mentations. A segmentation takes into consideration only the final state.

The third observation is a claim that we need a microscope or a telescope, a spe-
cially developed and powerful tool. When observing a cell, we need a optical micro-
scope; for depicting of atoms, we need an electronic microscope; for describing of the
quantum world, we need appropriate instruments – they interact with the observed
object (it is very close to the psychological interaction: interpreter – listener). What
is a common and important quality of all ”microscopes and telescopes”? All they
transform the images. We see and hear only images of objects which are zoomed,
colored, get larger, get smaller, turned, viewed from inside, upside down, etc. No
atom looks like that we see in an electronic microscope. The question is not to obtain
a true image (what is it?). We tend to obtain such an image which shows explicitly
the segmentation and structure of the entity. Finally, our senses are also only special
transform tools (which differs from senses of insects, for instance).

The fourth observation is that there are only finite number of all basic segments
and also of all segments (atoms, molecules, cells, men, stars, etc.) together on each
segmentation level. Some segments we identify as equivalent ones and therefore there
is a question to find the ”Mendelejev table” of basic segments for a given segmentation
level, a basis. Elements of the basis should generate every segment and the basis
should contain the minimal number of elements. As we will see in the case of 12
qualitative degrees, the role of basic segments in the Pythagorean System play 29
semitones (which can be grouped specially into 23 couples).

Music abstracts both the real world and soul. Therefore the very music segmen-
tations are surely at least as simple as segmentations of the material world.
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2 Pythagorean System

In general, under the Pythagorean System is understand the set

P = {2α3β ;α, β ∈ Z}
where Z = {· · · , -2, -1, 0, 1, 2, · · ·}. Since the set P is a dense subset of the real
halfline, the Pythagorean System has rather no practical sense as a tuning system for
music. It defines, in fact, a free tuning. The Pythagorean system is usually restricted
with some further conditions which are important for music. Such conditions are
e.g.: (1) the number of qualitative musical degrees in the octave (e.g. 12 degrees: the
unison [octave], minor second, major second, minor third, major third, pure fourth,
tritone, pure fifth, minor sixth, major sixth, minor seventh, major seventh); (2) some
harmonic structures; (3) number of keys within the octave on the keyboard; etc.

As a concentrated result of these restrictions are Pythagorean Scales which are
traditionally subsets of P defined as follows:

Q[β1,β2] = {2α3β ;β1 ≤ β ≤ β2, α, β, β1, β2 ∈ Z}.
In [2], [3], [4], [7], there are Pythagorean Scales: P12, P17, P22, P27, P31 (here, the

index denotes the number of values within the interval [1; 2)). If for 12 qualitative
musical degrees there are used 12, 17, 22, or more different values of tone frequencies
within [0; 2), the Pythagorean Scales are many valued coding systems of
information in music. For example, here are P17 and P31 (listed are values within
the octave):

P17 = Q[−6;10] = 〈[1/1], [256/243, 2 187/2 048], [9/8], [32/27, 19 683/16 384], [81/64], [4/3],
[1 024/729, 729/512], [3/2], [128/81, 6 561/4 096], [27/16], [16/9, 59 049/32 768], [243/128]〉,

P31 = Q[−13;17] = 〈[1/1, 531 441/524 288], [256/243, 2 187/2 048], [1 162 261 467/1 073 741 824, 9/8,

4 782 969/4 194 304], [32/27, 19 683/16 384], [321/233, 8 192/6 561, 81/64], [43 046 721/33 554 432, 4/3,
177 147/131 072], [1 024/729, 729/512], [387 420 489/268 435 456, 3/2, 1 594 323/1 048 576], [128/81,
6 561/4 096], [320/231, 27/16, 14 348 907/8 388 608], [16/9, 59 049/32 768], [322/234, 4 096/2 187, 243/128],
[129 140 163/67 108 864]〉.

The values belonging to qualitative musical degrees are clustered with [ ... ]. E.g.,
in the cluster [32/27, 19 683/16 384] are two values for the minor third. In P31, the
values 1/1, 531 441/524 288 and 129 140 163/67 108 864 belong to one cluster. The
using of individual values chosen from a cluster depends on the musical context.

For a better illumination, what the Pythagorean System is, let us consider the
following construction of geometrical nets, [3].

Let L be the multiplicative group ((0,∞), ·, 1,≤), equipped with the usual order
≤. Recall that a net with values in L is a function from I to L, where I is a directed
partially ordered set, cf. [5].

We consider directed partially ordered sets I = {(mi, ni)} ⊂ Z2 ((a, b) ≤ (c, d) if
and only if a ≤ c, b ≤ d, where (a, b), (c, d) ∈ Z2) which are lattices with the property

mi + ni = i, mi ≤ mi+1, ni ≤ ni+1, i ∈ Z.
Let X > 0, Y > 0. By the geometrical net (the abbreviation: GN) we mean

the net
{Γmi,ni = XmiY ni ; (mi, ni) ∈ I ⊂ Z2}.

For example, in Figure 1, there are the lattices I for nets P17 (circles) and P31

(both circles and squares). If we take X = 253/243 (limma) and Y = 2187/2048
(apotome), we obtain exactly values of P17 and P31, e.g. f = X3Y 2 = 4/3, etc.

It is easy to see that the notion of GN generalizes the elementary notion of the
geometrical progression and the notion of GN can be easy generalized to finite number
of X, . . . , Y . Non elementary examples of GNs are tone systems in music. Specially,
Pythagorean Scales P12, P17, P22, P28, P31 are GNs satisfying (1) and (2), cf. [3].

Every tone system can be expressed as a GN.
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Figure 1: Directed sets I for P17 and P31, P17 ⊂ P31
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3 Searching in transcendental numbers

Problem A. To find all couples (X,Y ) in algebraic numbers such that

Xm12Y n12 = 2, (1)

Xm7Y n7 = 3/2, (2)

mi + ni = i, i = 0, 7, 12, 0 ≤ m7 ≤ m12, 0 ≤ n7 ≤ n12. (3)

for some mi, ni nonnegative integer numbers. 1

The solution of Problem A., see [3], in the explicit form is following:
(X1, Y1) = (28/35, 37/211) = (256/243, 2187/2048),
(X2, Y2) = ( 2

√
216/310, 2

√
32/23) = (256/243, 3/ 2

√
8),

(X3, Y3) = ( 3
√

25/33, 3
√

39/214) = ( 3
√

32/3, 27/ 3
√

16384),
(X4, Y4) = ( 4

√
213/38, 4

√
34/26) = ( 4

√
8192/9, 3/ 2

√
8),

(X5, Y5) = ( 5
√

22/31, 5
√

311/217) = ( 5
√

4/3, 5
√

177147/131072),
(X6, Y6) = ( 6

√
210/36, 6

√
36/29) = ( 3

√
32/3, 3/ 2

√
8),

(X7, Y7) = ( 7
√

218/311, 7
√

31/21) = ( 7
√

262144/177147, 7
√

3/2),
(X8, Y8) = ( 8

√
27/34, 8

√
38/212) = ( 8

√
128/81, 3/ 2

√
8),

(X9, Y9) = ( 9
√

215/39, 9
√

33/24) = ( 3
√

32/3, 9
√

27/16),
(X10, Y10) = ( 10

√
24/32, 10

√
310/215) = ( 5

√
4/3, 3/ 2

√
8),

(X11, Y11) = ( 11
√

212/37, 11
√

35/27) = ( 11
√

4096/2187, 11
√

243/128),
(X13, Y13) = ( 13

√
29/35, 13

√
37/210) = ( 13

√
512/243, 13

√
2187/1024),

(X14, Y14) = ( 14
√

217/310, 14
√

32/22) = ( 14
√

131072/59049, 7
√

3/2),
(X15, Y15) = ( 15

√
27/33, 15

√
39/213) = ( 15

√
128/27, 15

√
19687/8192),

(X16, Y16) = ( 16
√

214/38, 16
√

34/25) = ( 8
√

128/3, 16
√

81/32),
(X18, Y18) = ( 18

√
211/36, 18

√
36/28) = ( 18

√
2048/729, 9

√
27/16),

(X20, Y20) = ( 20
√

28/34, 20
√

38/211) = ( 5
√

4/3, 20
√

6561/2048),
(X21, Y21) = ( 21

√
216/39, 21

√
33/23) = ( 21

√
65536/19683, 7

√
3/2),

(X23, Y23) = ( 23
√

213/37, 23
√

35/26) = ( 23
√

8192/2187, 23
√

243/64),
(X25, Y25) = ( 25

√
210/35, 25

√
37/29) = ( 5

√
4/3, 25

√
2187/512),

(X28, Y28) = ( 28
√

215/38, 28
√

34/24) = ( 28
√

32768/6561, 7
√

3/2),
(X30, Y30) = ( 30

√
212/36, 30

√
36/27) = ( 5

√
4/3, 30

√
729/128),

(X35, Y35) = ( 35
√

214/37, 35
√

35/25) = ( 5
√

4/3, 7
√

3/2).

Problem T. To find all couples (X,Y ) in real numbers such that (1), (2), (3) for
some mi, ni nonnegative integer numbers.

Theorem 1 Let m12, n12,m7, n7 ∈ Z be numbers such that (1), (2), (3) for some

real numbers X > 0, Y > 0. Denote by d =
∣∣∣∣
m12 n12

m7 n7

∣∣∣∣.
Then X,Y are algebraic numbers and

X = d

√
2n7+n12

3n12
, Y = d

√
3m12

2m12+m7
.

1

The condition (1) shows that we consider 12 qualitative degrees (clusters) within [1; 2).
The condition (2) asserts that the seventh degree is the perfect fifth (3/2).
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Proof.
The trivial cases d = 0 and m7m12 = 0 contradict (1) or (2). Without loss of

generality suppose d 6= 0 and m7m12 6= 0.
Consider the following bijection Λ : Z 7→ λ, where

Z = 28−19λ3−5+12λ, λ ∈ (−∞,+∞), Z ∈ (0,+∞). (4)

Denote by λX , λY the corresponding values of λ toX,Y in bijection Λ, respectively.
So,

X = 28−19λX3−5+12λX , Y = 28−19λY 3−5+12λY .

By (1) and (2),

Xm7 · (28−19λY 3−5+12λY )7−m7 = 3/2,
Xm12 · (28−19λY 3−5+12λY )12−m12 = 2. (5)

By (5),

X =
21/m12

(28−19λY 3−5+12λY )n12/m12
=

(3/2)1/m7

(28−19λY 3−5+12λY )n7/m7
.

This implies
1
m12

logK 2− n12

m12
R =

1
m7

logK(3/2)− n7

m7
R,

where R = logK Y for some K 6= 1,K > 0. We have:

1
m12

logK 2− 1
m7

logK(3/2) = R

(
n12

m12
− n7

m7

)
= −R d

m12m7
.

Consequently,

−m7 logK 2 +m12 logK(3/2)
d

= R = (8− 19λY ) logK 2 + (−5 + 12λY ) logK 3.

Now,

λY (−19 logK 2 + 12 logK 3) =
−m7 logK 2 +m12 logK(3/2)

d
− 8 logK 2 + 5 logK 3.

Put K = 312/219 = 531441/524288 (i.e., the Pythagorean comma) and U = 28/35 =
256/243 (i.e., the minor Pythagorean semitone). Then −19 logK 2 + 12 logK 3 =
logK K = 1 and 8 logK 2 + 5 logK 3 = logK U and

λY =

∣∣∣∣
m12 logK 2
m7 logK 3/2

∣∣∣∣
d

− logK U.

Symmetrically,

λX =

∣∣∣∣
n12 logK 2
n7 logK 3/2

∣∣∣∣
∣∣∣∣

logK n12 m12

logK n7 m7

∣∣∣∣
− logK U =

∣∣∣∣
logK 2 n12

logK 3/2 n7

∣∣∣∣
d

− logK U.

(4) implies (is equivalent to) λX = logK
X
U . Then logK X = λX + logK U . Analo-

gously for Y . We have:

X = K

∣∣∣∣
logK 2 n12

logK 3/2 n7

∣∣∣∣
d , Y = K

∣∣∣∣
m12 logK 2
m7 logK 3/2

∣∣∣∣
d .

6



Finally,

X = K

∣∣∣∣
logK 2 n12

logK 3/2 n7

∣∣∣∣
d = K

logK
2n7/d

(3/2)n12/d = d

√
2n7+n12

3n12
.

Analogously,

Y = d

√
3m12

2m12+m7
.

So, both X = X(d), Y = Y (d) are algebraic numbers. 2

Corollary 1 The solution of Problem T coincides with the solution of Problem A.
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