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Abstract

We present a moment problem in the context of majorated operators on
the space of continuous functions. A generalization of the Hausdorff moment
theorem is formulated and proved.
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Let X be a normed space and (xn) a sequence of linearly independent
elements of X. If we have an operator U on X into some space Y we can form
a sequence of elements of Y

U(xn) = yn, n = 0, 1, . . . (1)

A moment problem in a wide sense may be stated as follows: Given a sequence
(yn) of elements of Y find an operator U satisfying (1). The solution of the
problem stated in such a wide sense can not be done in a satisfactory manner.
Nevertheless even in a general case one can formulate some conditions of
solvability and uniqueness of solution of the moment problem.

If the set (xn) is fundamental, i. e. generating X, an operator U (if it
exists) is uniquely determined by the sequence (yn). It is easy to see that
fundamentality of (xn) is also a necessary condition of a unique solution of
the moment problem. Of course we need some kind of linearity in the space
Y . We shall suppose that Y is a normed vector space. If we denote by U an
operator (not necessarily additive) defined on a set (xn) by

U(xn) = yn, n = 0, 1, . . . (2)

then, as existence of an operator U is equivalent to possibility of a linear
extension of U to a linear hull co((xn)), a necessary and sufficient condition
for solving moment problem there is existence of such a constant M that for
any complex numbers c0, c1, . . . , the inequality

∥∥∥
∑

ckyk

∥∥∥ ≤M ||ckxk||X (3)

is satisfied (||.|| denotes a norm on Y and ||.|| a norm on X) or equivalently

sup
||∑ ckyk||
||ckxk||X < M, (4)

the supremum being taken over all possible

c0, c1, . . . , cn, (n = 0, 1, . . .).
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We shall consider only a power moment problem when X = C[a, b] and

xn(t) = tn, n = 0, 1, . . . (5)

Recall that the function g(t) : [a, b] → Y is said to have bounded variation
|g| if sup

∑
j
||g(sj) − g(sj−1|| < ∞ where all possible partitions od [a, b] are

considered. We can formulate a task in the considered case as follows: Decide
under which conditions there exists such a function of bounded variation g(t) :
[a, b]→ Y that ∫ b

a

tndg(t) = yn, n = 0, 1, . . . (6)

The conditions (3) and (4) of solvability of the moment problem (6) can be
written with tk instead of xk.

We shall derive a concrete result relating to a power moment problem in
the interval [0, 1].

Theorem 1 In order that there exists a function of bounded variation
g(t) : [0, 1]→ Y such that

∫ 1

0

tndg(t) = yn, yn ∈ Y, n = 0, 1, . . . (7)

it is necessary and sufficient that there exists a constant M such that

n∑
k=0

(
n
k

)
||∆n−kyk|| ≤M,n = 0, 1, . . . , (8)

where ∆myk denotes the m-th differences for the sequence (yk) defined induc-
tively by equalities

∆m+1yk = ∆myk −∆myk+1, ∆0yk = yk,

m = 0, 1, . . . ; k = 0, 1, . . . . (9)

Proof. The necessity. Let the moment problem (8) be solved. Denote by
L a bounded linear operator on the space C[0, 1] generated by a function of
bounded variation, g(t) : [0, 1]→ Y ,

L(f) =

∫ 1

0

f(t)dg(t), f ∈ C[0, 1]

Put
x

(m)
k (t) = tk(1− t)m, m, k = 0, 1, . . . . (10)

Since
x

(m+1)
k (t) = tk(1− t)m+1 = tk(1− t)m − tk+1(1− t)m =

x
(m)
k (t)− x(m)

k+1(t),

we have
L(x

(m+1)
k ) = L(x

(m)
k )− L(x

(m)
k+1),m, k = 0, 1, . . . .

Further
L(x

(0)
k ) = yk.

If we take into the consideration (10), we can easily see (by induction) that

L(x
(m)
k ) = ∆myk, m, k = 0, 1, . . . .

From this we deduce that (8) is satisfied. Indeed,

∑n

k=0

(
n
k

)
||∆n−kyk|| =

∑n

k=0

(
n
k

)
||
∫ 1

0
x

(n−k)
k (t)dg(t)||

≤∑n

k=0

(
n
k

)∫ 1

0
|xn−k)
k (t)|d|g|(t)

=
∫ 1

0

(∑n

k=0

(
n
k

)
tk(1− t)n−k

)
d|g|(t)

=
∫ 1

0
[t+ (1− t)]nd|g|(t) ≤ |g|[0, 1],
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where n = 1, 2, . . . . The necessity of the condition is proved, if we put M =
|g|[0, 1].

The sufficiency. Let L0 denote the operator defined on the set of func-
tions (xn), xn(t) = tn, n = 0, 1, . . . into Y by formula L0(xn) = yn, n =
0, 1, . . . . Extend L to the linear hull of the set (xn), i. e. to the set of all
polynomials. Namely if x(t) = c0 + c1t+ . . .+ cnt

n, we put

L(x) = c0y0 + c1a1 = . . .+ cnyn.

Since the functions xn are linearly independent the definition of L will be
unique.

The operator L defined above will be clearly additive and homogeneous.
We shall see that condition (9) implies that L is bounded.

Let us note that (even without this condition) the operator L is bounded
on the set Pm of polynomials the degree of which is ≤ m, because Pm is finite-
dimensional space (as coordinates we take coefficients of polynomial), hence
the convergence in Pm is coordinatewise.

We have
L(x

(s)
k ) = ∆ysk, s, k = 0, 1, . . . .

Take any polynomial p(t). Let the degree of p(t) be m. Form the sequence of
corresponding Bernstein polynomials (of p(t))

pn(t) = Bn(p; t) =

n∑
k=0

(
n
k

)
p
(
k

n

)
tk(1− t)n−k.

It is well-known that the degree of the polynomial pn(t) for any n = 1, 2, . . .
is not greater than m, and since pn(t) uniformly converges to p(t) for n→∞,
we have (according to remarks above) L(pn)→ L(p).

To obtain our required function, we use Lemma (see [1], §19, p. 380, 383).
For each subset A of [a, b], let C([a, b], A) denote the space of continuous
functions on [a, b] vanishing outside A. If F : C([a, b]) → X is a linear
mapping, define for each A,

|||FA||| = sup
∑
||F (ψi)||

where supremum is over all finite families ψi in C([a, b], A) with
∑ |ψi| ≤

χA(t) for all t in [a, b].
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Lemma 1 If F : C([a, b]) → X is a linear mapping, then there exists a
(regular) Borel measure µ : B([a, b])→ X with finite variation such that

F (ψ) =

∫ b

a

ψ(t)dµ(t), ψ ∈ C([a, b]),

if and only if
|||FA||| <∞

for all A in B([a, b]). A mapping F with such a property is called majorated
(also dominated, ([1]).

An equivalent definition is as follows.
If F : C([a, b]) → X is a linear mapping, it is majorated (dominated) if

and only if there exists a nonnegative Borel measure µ on B[0, 1] such that

||F (ψ)|| ≤
∫ b

a

|ψ(t)|dµ(t), ψ ∈ C([a, b]),

To prove that

|||LA||| = sup
∑
||L(ψi)||
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is finite, we take for every ψi corresponding Bernstein polynomial

pin(t) = Bn(ψi; t) =

n∑
k=0

(
n
k

)
ψi

(
k

n

)
tk(1− t)n−k.

Then we have

∑
||L(pin)|| ≤

(∑∣∣∣ψi
(
k

n

)∣∣∣
)
·
n∑
k=0

(
n
k

)
||∆n−kyk|| ≤M,n = 0, 1, . . . .

We have the equivalent form of the moment theorem:

Theorem 2 In order that there exists a vector measure of bounded vari-
ation µ : B[0, 1]→ Y such that

∫ 1

0

tndµ(t) = yn, yn ∈ Y, n = 0, 1, . . . , (11)

it is necessary and sufficient that there exists a constant M such that

n∑
k=0

(
n
k

)
||∆n−kyk|| ≤M (n = 0, 1, . . .). (12)

Remark 1 For suitable auxiliary readings, we refer to [2] and [3].
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