Moment problem for majorated operators

Miloslav Duchoň, Ján Haluška
Mathematical Institute, Slovak Academy of Sciences
Stefánikova 49, 81473 Bratislava, S lovakia,
duchon@mau.savba.sk, jhaluska@mail.saske.sk

Abstract

We present a moment problem in the context of majorated operators on the space of continuous functions. A generalization of the Hausdorff moment theorem is formulated and proved. Keywords. Moment, normed vector space, majorated operator AMS Subject Classification (1991): 28E10, 81P10 This paper has been supported by grant VEGA 1228/95.

Let X be a normed space and $\left(x_{n}\right)$ a sequence of linearly independent elements of X. If we have an operator U on X into some space Y we can form a sequence of elements of Y

$$
\begin{equation*}
U\left(x_{n}\right)=y_{n}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

A moment problem in a wide sense may be stated as follows: Given a sequence $\left(y_{n}\right)$ of elements of Y find an operator U satisfying (1). The solution of the problem stated in such a wide sense can not be done in a satisfactory manner. Nevertheless even in a general case one can formulate some conditions of solvability and uniqueness of solution of the moment problem.

If the set $\left(x_{n}\right)$ is fundamental, i. e. generating X, an operator U (if it exists) is uniquely determined by the sequence $\left(y_{n}\right)$. It is easy to see that fundamentality of $\left(x_{n}\right)$ is also a necessary condition of a unique solution of the moment problem. Of course we need some kind of linearity in the space Y. We shall suppose that Y is a normed vector space. If we denote by U an operator (not necessarily additive) defined on a set $\left(x_{n}\right)$ by

$$
\begin{equation*}
U\left(x_{n}\right)=y_{n}, \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

then, as existence of an operator U is equivalent to possibility of a linear extension of U to a linear hull $c o\left(\left(x_{n}\right)\right)$, a necessary and sufficient condition for solving moment problem there is existence of such a constant M that for any complex numbers c_{0}, c_{1}, \ldots, the inequality

$$
\begin{equation*}
\left\|\sum c_{k} y_{k}\right\| \leq M\left\|c_{k} x_{k}\right\|_{X} \tag{3}
\end{equation*}
$$

is satisfied $(||\cdot||$ denotes a norm on Y and $||\cdot||$ a norm on $X)$ or equivalently

$$
\begin{equation*}
\sup \frac{\left\|\sum c_{k} y_{k}\right\|}{\left\|c_{k} x_{k}\right\|_{X}}<M \tag{4}
\end{equation*}
$$

the supremum being taken over all possible

$$
c_{0}, c_{1}, \ldots, c_{n}, \quad(n=0,1, \ldots)
$$

We shall consider only a power moment problem when $X=C[a, b]$ and

$$
\begin{equation*}
x_{n}(t)=t^{n}, \quad n=0,1, \ldots \tag{5}
\end{equation*}
$$

Recall that the function $g(t):[a, b] \rightarrow Y$ is said to have bounded variation $|g|$ if $\sup \sum_{j} \| g\left(s_{j}\right)-g\left(s_{j-1} \|<\infty\right.$ where all possible partitions od $[a, b]$ are considered. We can formulate a task in the considered case as follows: Decide under which conditions there exists such a function of bounded variation $g(t)$: $[a, b] \rightarrow Y$ that

$$
\begin{equation*}
\int_{a}^{b} t^{n} d g(t)=y_{n}, \quad n=0,1, \ldots \tag{6}
\end{equation*}
$$

The conditions (3) and (4) of solvability of the moment problem (6) can be written with t^{k} instead of x_{k}.

We shall derive a concrete result relating to a power moment problem in the interval $[0,1]$.

Theorem 1 In order that there exists a function of bounded variation $g(t):[0,1] \rightarrow Y$ such that

$$
\begin{equation*}
\int_{0}^{1} t^{n} d g(t)=y_{n}, y_{n} \in Y, n=0,1, \ldots \tag{7}
\end{equation*}
$$

it is necessary and sufficient that there exists a constant M such that

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\left\|\Delta^{n-k} y_{k}\right\| \leq M, n=0,1, \ldots \tag{8}
\end{equation*}
$$

where $\Delta^{m} y_{k}$ denotes the m-th differences for the sequence $\left(y_{k}\right)$ defined inductively by equalities

$$
\begin{gather*}
\Delta^{m+1} y_{k}=\Delta^{m} y_{k}-\Delta^{m} y_{k+1}, \quad \Delta^{0} y_{k}=y_{k} \\
m=0,1, \ldots ; k=0,1, \ldots \tag{9}
\end{gather*}
$$

Proof. The necessity. Let the moment problem (8) be solved. Denote by L a bounded linear operator on the space $C[0,1]$ generated by a function of bounded variation, $g(t):[0,1] \rightarrow Y$,

$$
L(f)=\int_{0}^{1} f(t) d g(t), \quad f \in C[0,1]
$$

Put

$$
\begin{equation*}
x_{k}^{(m)}(t)=t^{k}(1-t)^{m}, \quad m, k=0,1, \ldots \tag{10}
\end{equation*}
$$

Since

$$
\begin{gathered}
x_{k}^{(m+1)}(t)=t^{k}(1-t)^{m+1}=t^{k}(1-t)^{m}-t^{k+1}(1-t)^{m}= \\
x_{k}^{(m)}(t)-x_{k+1}^{(m)}(t)
\end{gathered}
$$

we have

$$
L\left(x_{k}^{(m+1)}\right)=L\left(x_{k}^{(m)}\right)-L\left(x_{k+1}^{(m)}\right), m, k=0,1, \ldots
$$

Further

$$
L\left(x_{k}^{(0)}\right)=y_{k} .
$$

If we take into the consideration (10), we can easily see (by induction) that

$$
L\left(x_{k}^{(m)}\right)=\Delta^{m} y_{k}, \quad m, k=0,1, \ldots
$$

From this we deduce that (8) is satisfied. Indeed,

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k}\left\|\Delta^{n-k} y_{k}\right\| & =\sum_{k=0}^{n}\binom{n}{k}\left\|\int_{0}^{1} x_{k}^{(n-k)}(t) d g(t)\right\| \\
& \leq \sum_{k=0}^{n}\binom{n}{k} \int_{0}^{1}\left|x_{k}^{n-k)}(t)\right| d|g|(t) \\
& =\int_{0}^{1}\left(\sum_{k=0}^{n}\binom{n}{k} t^{k}(1-t)^{n-k}\right) d|g|(t) \\
& =\int_{0}^{1}[t+(1-t)]^{n} d|g|(t) \leq|g|[0,1],
\end{aligned}
$$

where $n=1,2, \ldots$. The necessity of the condition is proved, if we put $M=$ $|g|[0,1]$.

The sufficiency. Let L_{0} denote the operator defined on the set of functions $\left(x_{n}\right), x_{n}(t)=t^{n}, \quad n=0,1, \ldots$ into Y by formula $L_{0}\left(x_{n}\right)=y_{n}, \quad n=$ $0,1, \ldots$ Extend L to the linear hull of the set $\left(x_{n}\right)$, i. e. to the set of all polynomials. Namely if $x(t)=c_{0}+c_{1} t+\ldots+c_{n} t^{n}$, we put

$$
L(x)=c_{0} y_{0}+c_{1} a_{1}=\ldots+c_{n} y_{n} .
$$

Since the functions x_{n} are linearly independent the definition of L will be unique.

The operator L defined above will be clearly additive and homogeneous. We shall see that condition (9) implies that L is bounded.

Let us note that (even without this condition) the operator L is bounded on the set P_{m} of polynomials the degree of which is $\leq m$, because P_{m} is finitedimensional space (as coordinates we take coefficients of polynomial), hence the convergence in P_{m} is coordinatewise.

We have

$$
L\left(x_{k}^{(s)}\right)=\Delta y_{k}^{s}, \quad s, k=0,1, \ldots
$$

Take any polynomial $p(t)$. Let the degree of $p(t)$ be m. Form the sequence of corresponding Bernstein polynomials (of $p(t)$)

$$
p_{n}(t)=B_{n}(p ; t)=\sum_{k=0}^{n}\binom{n}{k} p\left(\frac{k}{n}\right) t^{k}(1-t)^{n-k} .
$$

It is well-known that the degree of the polynomial $p_{n}(t)$ for any $n=1,2, \ldots$ is not greater than m, and since $p_{n}(t)$ uniformly converges to $p(t)$ for $n \rightarrow \infty$, we have (according to remarks above) $L\left(p_{n}\right) \rightarrow L(p)$.

To obtain our required function, we use Lemma (see [1], §19, p. 380, 383). For each subset A of $[a, b]$, let $C([a, b], A)$ denote the space of continuous functions on $[a, b]$ vanishing outside A. If $F: C([a, b]) \rightarrow X$ is a linear mapping, define for each A,

$$
\left\|\mid F_{A}\right\|\left\|=\sup \sum\right\| F\left(\psi_{i}\right) \|
$$

where supremum is over all finite families ψ_{i} in $C([a, b], A)$ with $\sum\left|\psi_{i}\right| \leq$ $\chi_{A}(t)$ for all t in $[a, b]$.

Lemma 1 If $F: C([a, b]) \rightarrow X$ is a linear mapping, then there exists a (regular) Borel measure $\mu: \mathcal{B}([a, b]) \rightarrow X$ with finite variation such that

$$
F(\psi)=\int_{a}^{b} \psi(t) d \mu(t), \psi \in C([a, b])
$$

if and only if

$$
\left\|\left\|F_{A}\right\|\right\|<\infty
$$

for all A in $\mathcal{B}([a, b])$. A mapping F with such a property is called majorated (also dominated, ([1]).

An equivalent definition is as follows.
If $F: C([a, b]) \rightarrow X$ is a linear mapping, it is majorated (dominated) if and only if there exists a nonnegative Borel measure μ on $B[0,1]$ such that

$$
\|F(\psi)\| \leq \int_{a}^{b}|\psi(t)| d \mu(t), \psi \in C([a, b])
$$

To prove that

$$
\left\|L_{A}\right\|\left\|=\sup \sum\right\| L\left(\psi_{i}\right) \|
$$

is finite, we take for every ψ_{i} corresponding Bernstein polynomial

$$
p_{n}^{i}(t)=B_{n}\left(\psi_{i} ; t\right)=\sum_{k=0}^{n}\binom{n}{k} \psi_{i}\left(\frac{k}{n}\right) t^{k}(1-t)^{n-k} .
$$

Then we have

$$
\sum\left\|L\left(p_{n}^{i}\right)\right\| \leq\left(\sum\left|\psi_{i}\left(\frac{k}{n}\right)\right|\right) \cdot \sum_{k=0}^{n}\binom{n}{k}\left\|\Delta^{n-k} y_{k}\right\| \leq M, n=0,1, \ldots
$$

We have the equivalent form of the moment theorem:
Theorem 2 In order that there exists a vector measure of bounded variation $\mu: B[0,1] \rightarrow Y$ such that

$$
\begin{equation*}
\int_{0}^{1} t^{n} d \mu(t)=y_{n}, y_{n} \in Y, n=0,1, \ldots \tag{11}
\end{equation*}
$$

it is necessary and sufficient that there exists a constant M such that

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\left\|\Delta^{n-k} y_{k}\right\| \leq M \quad(n=0,1, \ldots) \tag{12}
\end{equation*}
$$

Remark 1 For suitable auxiliary readings, we refer to [2] and [3].

References

[1] DINCULEANU, N.: Vector measures. VEB, Berlin, 1966.
[2] HAUSDORFF, F.: Momentprobleme für ein endliches Interval. Math. Z. 16(1923), 220-248.
[3] WIDDER, D. V.: The Laplace transform. Princeton University Press, Princeton, 1946.

