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Mathematical Institute, Slovak Academy of Sciences
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Abstract

It is known that the perfect fifth and octave can be expressed as X4Y 3 and X7Y 5

respectively, where X = 256/243 = 28/35 is the minor and Y = 9/8 : X = 37/211 the
major Pythagorean semitone. In this paper, Pythagorean system is studied when couples of
semitones need not be considered in rational numbers; we deal with semitone couples (X,Y )
in algebraic numbers expressed with dth roots, d = 1, 2, 3, . . ..
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1 Anatomy of the whole Pythagorean tone

The Pythagorean system was developed in antiquity and satisfactorily formalized
by B o e t h i u s (480 – 524). Musically, this system is based on the perfect fifths
(or, equivalently, on the perfect fourths) and octaves.

Examples. Usually, under Pythagorean Tuning (Scale) (cf. e.g. [1], [5], [2]),
we mean one of the following number sequences (physically: the relative frequencies
of tones within the octave [1/1; 2/1) ): P2, P3, P5, P7, P12, P17, P22, P27, P31 ⊂ P =
{2α3β ;α, β ∈ Z}, Z = {· · · , -2, -1, 0, 1, 2, · · ·}.

P2 = 〈1/1, 3/2〉,
P3 = 〈1/1, 4/3, 3/2〉,
P5 = 〈1/1, 9/8, 81/64, 3/2, 27/16〉,
P7 = 〈1/1, 9/8, 81/64, 4/3, 3/2, 27/16, 16/9〉,
P12 = 〈1/1, 2 187/2 048, 9/8, 32/27, 81/64, 4/3, 729/512, 3/2, 6 561/4 096, 27/16, 16/9,

243/128〉,
P17 = 〈1/1, 256/243, 2 187/2 048, 9/8, 32/27, 19 683/16 384, 81/64, 4/3, 1 024/729, 729/512,

3/2, 128/81, 6 561/4 096, 27/16, 16/9, 59 049/32 768, 243/128〉,
P22 = 〈1/1, 256/243, 2 187/2 048, 65 536/59 049, 9/8, 32/27, 19 683/16 384, 8 192/6 561, 81/64,

4/3, 177 147/131 072, 1 024/729, 729/512, 3/2, 128/81, 6 561/4 096, 32 768/19 683, 27/16, 16/9,
59 049/32 768, 4 096/2 187, 243/128〉,

P27 = 〈1/1, 531 441/524 288, 256/243, 2 187/2 048, 65 536/59 049, 9/8, 4 782 969/4 194 304,
32/27, 19 683/16 384, 8 192/6 561, 81/64, 4/3, 177 147/131 072, 1 024/729, 729/512, 262 144/177 147,
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Figure 1: Boethius scheme of the Pythagorean whole tone

3/2, 1 594 323/1 048 576, 128/81, 6 561/4 096, 32 768/19 683, 27/16, 14 348 907/8 388 608, 16/9,
59 049/32 768, 4 096/2 187, 243/128〉,

P31 = 〈1/1, 531 441/524 288, 256/243, 2 187/2 048, 1 162 261 467/1 073 741 824, 9/8,
4 782 969/4 194 304, 32/27, 19 683/16 384, 321/233, 8 192/6 561, 81/64, 43 046 721/33 554 432, 4/3,
177 147/131 072, 1 024/729, 729/512, 387 420 489/268 435 456, 3/2, 1 594 323/1 048 576, 128/81,
6 561/4 096, 320/231, 27/16, 14 348 907/8 388 608, 16/9, 59 049/32 768, 322/234, 4 096/2 187,
243/128, 129 140 163/67 108 864〉.

We will deal with the usual multiplicative group L, ((0,∞), ·, 1,≤), equipped with
the usual order. In Figure 1, we see the Boethius scheme, skeleton of the Pytha-
gorean whole tone, cf. [5]. If we denote by Q = 4/3 the perfect fourth and by
O = 2 the octave, then R = O/Q = 3/2 is the perfect fifth, T = R/Q = 9/8
the Pythagorean whole tone, tonos; U = Q/T 2 = 256/243 the minor Pythagor-
ean semitone, limma; V = T/U = 2 187/2 048 the major Pythagorean semitone,
apotome; Z =

√
U = 3

√
2/4 diaschizma, K = V/U = 531 441/524 288 comat; W =√

K =
√

531 441/524 288 schizma. We see that the Boethius music theory does
not avoid irrational numbers and it can be considered as a microtonal
theory in the present modern sense. Recall that one octave is of the length
1 200 cents (x 7→ 1 200 log2 x, 1 ≤ x ≤ 2). So, Z ≈ 1.026400479 ≈ 45.11 cents,
K ≈ 1.013643265 ≈ 23.46 cents; W ≈ 1.006798522 ≈ 11.73 cents. For comparison:
81/80 = 1.0125 ≈ 21.51 cents.

By a generalized sequence (net) with values in L we mean a function from I to L,
where I is a directed partially ordered set. For the generalized sequences in general,
cf. [3].

The semitones U and V are unique rational numbers which enables to express
Pythagorean Tuning P31 (and also. P12, P17, P22, P28; for P17, cf. [1], [2], [4]) via
the geometrical generalized sequence (the abbreviation: GGS) in rational
numbers with some natural conditions. More precisely, in the form

{Γi = α ·XmiY ni ; i ∈ Z} (1)

where X,Y are positive rational, α positive real, and (possible not unique for every
i ∈ Z) (mi, ni) ∈ I ⊂ Z2 such that

mi + ni = i, mi ≤ mi+1, ni ≤ ni+1, i ∈ Z. (2)

The additional conditions are
α = 1, (3)

Xm12Y n12 = 2, (4)
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Xm7Y n7 = 3/2, (5)

Γj+12k = 2k · Γj , j = 0, 1, 2, . . . , 11, k ∈ Z. (6)

The condition (3) says that we consider no shift of the fundamental tone. The
condition (4) shows that the 12th degree is the octave. The condition (5) asserts
that the seventh degree is the perfect fifth (3/2). The condition (6) describes the
so called octave equivalency.

Twelve qualitative music degrees are the characteristic attribute of the European
tone systems and culture. They are: the unison (octave), minor second, major sec-
ond, minor third, major third, fourth, tritone, fifth, minor sixth, major sixth, minor
seventh, major seventh. Each degree may contain one or more tuning values The
GGSs P17, P22, P28, P31 have 17, 22, 28, 31 values for 12 degrees within the octave
[0, 2), respectively. There are different I for P12, P17, P22, P28, P31. In this paper,
we will consider GGSs only for pairs (X,Y ) (two different semitones, not three or
more). Examples of index sets I for GGGs we can see also in Figure 2 (Table 3; a
sequence) and in Figure 2 (Table 4). We deal with index sets directed both forward
and backward (the two side GGS).

Pythagorean Tunings P12, P17, P22, P28, P31 are GGSs, the solutions of the equa-
tion system (1), (2), (3), (4), (5) with rational (X,Y ). Therefore, there arises a
question: does there exist any GGS, the solution of the equation system
(1), (2), (3), (4), (5) with irrational (X,Y )? In this paper, we solve this problem
in the positive for semitone couples (X,Y ) expressed with algebraic numbers.

The Pythagorean tunings P17, P22, P28, P31 are many valued (fuzzy) cod-
ing systems of information in music. For more explanations about the philosophy
of fuzziness of tunings in music see [2]. The important and obvious fact is that the
theoretical tunings (and operations among them) never occur in the real live music
because there are ever at least two different tone systems in the sound interaction
during the performance: the tone subset A of the tuned system itself, and physically,
the systems of overtones B of tones in A. Clearly, always A 6= B.

2 The second level: algebraic numbers

Observe, [1], that Pi, i = 2, 3, 5, 7, 12, 17, 22, 28, 31, can be obtained as the solution
of the following Problem 1 and using the enlargement algorithm based on the fifth
Xm7Y n7 = 3/2 and the octave Xm12Y n12 = 2, i.e.:

Q[k1,k2] = {(3/2)k (mod 2); k ∈ [k1, k2], k1 < k2, k1, k2 ∈ Z}.

For instance, k = 1, 2, 3, 4, 5 for P5.
Problem 1.
To find X,Y rational numbers such that (3), (4), (5) for some mi, ni nonnegative
integer numbers such that

mi + ni = i, i = 0, 7, 12, 0 ≤ m7 ≤ m12, 0 ≤ n7 ≤ n12.

Problem 2. To find all triplets (m12,m7, d) in nonnegative integers such that

7m12 − 12m7 = d, 0 ≤ 7−m7 ≤ 12−m12, 0 ≤ m7 ≤ m12.
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m7 d

0 7, 14,21,28,35, 42,49,56,63,70,77
1 2,9,16,23,30, 37,44,51,58,65
2 4, 11,18,25, 32,39,46,53
3 6,13,20, 27,34,41
4 1,8,15 22, 29
5 3,10, 17
6 5

Table 1: Solutions of 7m12 − 12m7 = d

The solution of Problem 1 is given by the solution of Problem 2. Indeed, for d = 0,
we have m12 = 12,m7 = 7, i.e. Equal Temperament (X = Y = 12

√
2) which does not

contain any perfect fifth 3/2, (analogously for d = 12). If d 6= 0 and (m12,m7, d) is a
solution of Problem 2, then the solution of (3), (4), (5) we obtain as follows:

X = 2E2,X3E3,X , Y = 2E2,Y 3E3,Y , (7)

where E2,X = (19 − m7 − m12)/d, E3,X = (m12 − 12)/d, E2,Y = (−m12 − m7)/d,
E3,Y = m12/d. The numbers X,Y are rational solutions of Problem 1 if and only if
d = 1 (or d = −1, the symmetrical case). For d = 1, the values are X = U, Y = V .

Now it is possible to extend Pythagorean Tuning (in any form: P2 or . . . or P31)
to algebraic numbers: to solve Problem 1a, where
Problem 1a
To find X,Y algebraic numbers such that (4), (5) for some mi, ni nonnegative integer
numbers such that

mi + ni = i, i = 0, 7, 12, 0 ≤ m7 ≤ m12, 0 ≤ n7 ≤ n12.

Theorem 1 For every d ∈ Z, there exists unique or none solution (Xd, Yd) of
Problem 1a such that Xd, Yd are expressed via dth roots, multiplication, and/or divid-
ing of numbers 2 and 3.

Proof The solutions of the Diophantine equation

7m12 − 12m7 = d, 0 ≤ m7 ≤ m12,

where d,m7,m12 = 0, 1, 2, 3, 4 . . . are collected in Table 1. By (2), we obtained values
n12, n7. Take only the solutions such that n12 ≥ n7. Then the solutions of Problem 2
are collected in Table 2. By (7) we obtain the solutions of Problem 1a (d < 0 are the
symmetrical cases). 2

Theorem 2 Denote by Gd the union of all GGSs as sets such that they are gen-
erated by the solution (Xd, Yd) of Problem 1a, d in Table 2. Then

G1 = P = {2α3β ;α, β ∈ Z},
G2 = P ∪ (

√
2) · P

G3 = P ∪ ( 3
√

4) · P ∪ (3 3
√

2) · P
. . .

Gd =
⋃d
i=1 βi,d · P

. . .

G35 =
⋃35
i=1 βi,35 · P,
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d 1 2 3 4 5 6 7 8 9 10 11
m12 7 2 9 4 11 6 1 8 3 10 5
n12 5 10 3 8 1 6 11 4 9 2 7
m7 4 1 5 2 6 3 0 4 1 5 2
n7 3 6 2 5 1 4 7 3 6 2 5

d 13 14 15 16 18 20 21 23 25 28 30 35
m12 7 2 9 4 6 8 3 5 7 4 6 5
n12 5 10 3 8 6 4 9 7 5 8 6 7
m7 3 0 4 1 2 3 0 1 2 0 1 0
n7 4 7 3 6 5 4 7 6 5 7 6 7

Table 2: Solutions of Problem 2

C X0
2Y

0
2 1 0.00 U0K0 ©

C] X0
2Y

1
2 3/

√
8 101.96 U1K1/2 •

D X0
2Y

2
2 9/8 203.91 U2K1 ©

E[ X0
2Y

3
2 27/

√
512 305.86 U3K3/2 •

E X0
2Y

4
2 81/64 407.82 U4K2 ©

F X1
2Y

4
2 4/3 498.04 U5K2 ©

F] X1
2Y

5
2

√
2 600.00 U6K5/2 •

G X1
2Y

6
2 3/2 701.96 U7K3 ©

G] X1
2Y

7
2 9/

√
32 803.91 U8K7/2 •

A X1
2Y

8
2 27/16 905.86 U9K4 ©

B[ X1
2Y

9
2 81/

√
2048 1 007.82 U10K9/2 •

B X1
2Y

10
2 243/128 1 109.78 U11K5 ©

C′ X2
2Y

10
2 2 1 200.00 U12K5

Table 3: d = 2, P7 (©), (
√

2) · P5 (•)

where β1,d, . . . , βd,d are pairwise incommensurable algebraic numbers for every d.

Proof
Consider the set

QZ = {(3/2)k (mod 2); k ∈ Z} = {(Xm7Y n7)k (mod Xm12Y n12); k ∈ Z}.
Clearly, QZ = P and QZ ⊃ Q[k1,k2] for every k1, k2 ∈ Z, k1 < k2.

The assertion G1 = P is obvious for d = 1, X1 = X = 256/243, Y1 = Y = (9/8) :
X1.

For d = 2, X2 = 256/243, Y2 = 3/
√

8. We have (for illustration, cf. Figure 2):

QZ = P =
⋃

p∈Z

⋃

q∈Z
Xp

2Y
2q
2 .

Then
G2 = P ∪ (Y2) · P = P ∪ (

√
2) · P.

For d = 3, X3 = 3
√

32/3, Y3 = 27/ 3
√

16384. We have (for illustration, cf. Figure 3):

QZ = P =
⋃

p∈Z

⋃

q∈Z
Xp

3Y
p
3 ·X3q

3 .

Then
G3 = P ∪ (X3) · P ∪ (X2

3 ) · P = P ∪ ( 3
√

4)P ∪ (3 3
√

2) · P.
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C X0
3Y

0
3 1 0.00 U0K0 ©

D[ X1
3Y

0
3

3√32/3 98.04 U1K1/3 •
C] X0

3Y
1
3 27/ 3√16384 105.86 U1K2/3

D X1
3Y

1
3 9/8 203.91 U2K1 ©

E[ X2
3Y

1
3 3/ 3√16 301.96 U3K4/3 •

D] X1
3Y

2
3 243/ 3√8388608 309.78 U3K5/3

E X2
3Y

2
3 81/64 407.82 U4K2 ©

F X3
3Y

2
3 27/ 3√8192 505.86 U5K7/3 •

F] X4
3Y

2
3 9/ 3√256 603.91 U6K8/3

G X5
3Y

2
3 3/2 701.96 U7K3 ©

A[ X6
3Y

2
3

3√4 800.00 U8K10/3 •
G] X5

3Y
3
3 81/ 3√931072 807.82 U8K11/3

A X6
3Y

3
3 27/16 905.86 U9K4 ©

B[ X7
3Y

3
3 9/ 3√128 1 003.91 U10K13/3 •

B X8
3Y

3
3 3/ 3√4 1 101.96 U11K14/3

C′ X9
3Y

3
3 2 1 200.00 U12K5

Table 4: d = 3, P5 (©), ( 3
√

32/3) · P5 (•), (3/ 3
√

4) · P5 ( )

v v v v v v v v v
v v v v v v v v v
v v v v v v v v v

vv v v v v v v v
v v v v v v v v v
v v v v v v v v v
v v v v v v v v v

f f f f f f f f f
f f f f f f f f f

fffffffff
f f f f f f f f f

ff f f f f f f f
f f f f f f f f f
f f f f f f f f f

C

G

C′

-

6

mi

ni

Figure 2: G2 = P ∪ (
√

2) · P
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Figure 3: G3 = P ∪ ( 3
√

4) · P ∪ (3 3
√

2) · P

Analogously for every d = 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 23, 25,
28, 30, and 35. 2

3 Semitone metric space

Now we show that Pythagorean tone systems expressed via GGSs are the closer
in some sense to Equal Temperament the greater the positive integer d is.

Theorem 3 For K = V/U (comat), denote by ρ(X,Y ) = | logK(X)−logK(Y )|, X, Y ∈
L. Let (Xd1 , Yd1), (Xd2 , Yd2) are solutions of Problem 1a corresponding d1, d2 and
d1 < d2, d1, d2 = 1, 2, . . .. Then ρ(X1, Y1) > ρ(X2, Y2).

Proof. It can be verified directly that (L, ρ) is a metric space.
If (Xd, Yd) is a couple of numbers which is solution of Problem 1a corresponding

d, d = 0, 1, 2, 3, . . ., then by (7),

| logK(Yd)− logK(Xd)| = logK 2
−m12−m7

d 3
m12
d − logK 2

19−m12−m7
d 3

m12−12
d

=
12
d

logK 3− 19
d

logK 2 =
1
d

logK
312

219
=

1
d

logK K =
1
d
.

If d1 < d2, then

ρ(Xd1 , Yd1) =
1
d1

>
1
d2

= ρ(Xd2 , Yd2).

Corollary 1 If Yd > Xd, then Yd/Xd = d
√
K.

7



Definition Denote by S the set of all numbers X ∈ L such that (X,Y ) is a solution
of Problem 1a for some integer m7,m12, d and Y ∈ L. We will call the metric space
(S, ρ) the metric space of semitones generating the perfect fifths.

4 Applications

The sensitivity of human perception apparat is 5 – 6 cents. The psycho-acoustical
boundary (to what the listener or player tent to) is 2 – 3 cents. This is the reason
why there is no practical sense to use GGSs for d > 12, we hear no difference between
Equal Temperament and the constructed GGS (we do not suppose too many values
within 12 qualitative degrees). From the acoustical point of view, the interesting
are cases of small values of d = 1, 2, 3, . . . , 11 for which Yd/Xd ≈ 23.46, 11.73, 7.82,
5.86, 4.69, 3.91, 3.35, . . . , 2.13 cents, respectively. From the viewpoint of modulations,
the ordering is reverse: d = 11, 10, . . . 3, 2, 1. So, we have to choose an appropriate
compromise of d depending on the kind of modulations within a given musical com-
position (set of compositions). Some of GGSs in this paper, new from the musicology
viewpoint, may be considered for tuning of musical instruments.

For d = 2, cf. Table 3 (Figure 2). The set P7 is the Pythagorean heptatonic
F → C → G → D → A → E → B, the “white keys”). The set (

√
2) · P5, is a

Pythagorean pentatonic F] → C] → G] → D] → A], (the “black keys”).
For d = 3, cf. Table 4 (Figure 3, many valued tuning). The sets P5 (i.e. C →

G→ D → A→ E), (3/ 3
√

4) · P5, (i.e. B → F] → C] → G] → D]), and ( 3
√

32/3) · P5

(i.e. D[ → A[ → E[ → B[ → F ) are three Pythagorean pentatonics.
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[1] Ján Haluška: Uncertainty and tuning in music, Tatra Mt. Math. Publ. 12(1997), 113–129.
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[4] Beloslav Riečan: On a fuzzy isomorphism between Pythagorean and Praethorius tunings, Proc.
7th IFSA World Congress, Prague 1997, Vol. IV., pp. 334–336.

[5] Klaus-Jürgen Saks: Boethius and the Judgement of the Ears: A Hidden Challenge in Medieval
and Renaissance Music. In: The second Sense. Studies in Hearing and Musical Judgement from
Antiquity to the Seventeenth Century (Ed. Charles Burnett). London, 1991.

8


