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Abstract

The Choquet integral is defined for a real function with respect to a fuzzy
measure taking values in a complete Riesz space. As applications there are
presented: constructions of belief and plausibility measures, the formulation of
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1 Introduction

It is very well known that the Choquet integral [5] of a non-negative mea-
surable function can be taken with respect to a very general set function.
Indeed, recall that a fuzzy measure is a mapping µ : A → R defined on a ring
A of subsets of X and such that

(i) µ(∅) = 0,

(ii) A,B ∈ A, A ⊂ B implies µ(A) ≤ µ(B).

We say that f : X → [0,∞] is measurable with respect to A if

f−1([t,∞)) = {x ∈ X; f(x) ≥ t} ∈ A
for any t ∈ [0,∞). If we define

g(t) = µ({x ∈ X; f(x) ≥ t}), t ∈ [0,∞),

then g is clearly decreasing and nonnegative function. Hence there exists the
Riemann improper integral ∫ ∞

0

g(t) dt

and then the Choquet integral (C)
∫
X
f dµ can be defined by the formula

(C)

∫

X

f dµ =

∫ ∞
0

g(t) dt.

If A is a σ-algebra, it is not difficult to see that

(C)

∫

X

f dµ =

∫ ∞
0

h(t) dt,
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where
h(t) = µ({x ∈ X; f(x) > t}), t ∈ [0,∞).

Denote by C the set of all points t ∈ [0,∞) such that g is continuous at t. If
t ∈ C, then g(t) = h(t). Evidently, h(t) ≤ g(t). On the other hand, for every
ε > 0, there exists s > t such that

g(t)− ε < g(s) = µ({x ∈ X; f(x) ≥ s}) ≤ µ({x ∈ X; f(x) > t}) = h(t).

Since g(t)− ε < h(t) for any ε > 0, we obtain g(t) ≤ h(t). Now,

∫∞
0
g(t) dt =

∫
C
g(t) dt+

∫
[0,∞)\C g(t) dt

=
∫
C
h(t) dt+ Σx/∈C

∫
{x} g(t) dt

=
∫
C
h(t) dt

=
∫∞

0
h(t) dt.

The main aim of the paper is the following: to define the Choquet
integral in the case that µ : A → Y has values in a Riesz space.

In the following a Riesz space is a real vector space Y together with a
partial ordering ≤ satisfying the following conditions:

(i) (Y,≤) is a lattice;

(ii) if x, y, z,∈ Y and x ≤ y, then x+ z ≤ y + z;

(iii) if x, y ∈ Y, λ ∈ R+ and x ≤ y, then λx ≤ λy.

A Riesz space Y is called to be σ-complete if every bounded sequence in
Y has supremum. To define (C)

∫
X
f(t) dµ for f : X → [0,∞), µ : A → Y , we

need first reinvited the Riemann–Stieltjes integral
∫ b
a
g dh for vector valued

function g. It will be realized in Section 2. In Section 3, we define the Choquet
integral

∫
f dµ and Sections 4 – 6 contain some applications.

2 Riemann– Stieltjes integral

For a Riesz space Y , assume that a real function h : [a, b]→ R and a vector
function g : [a, b] → Y are given. If D : a = x0 < x1 < . . . < xn−1 < xn = b
is a partition and ti ∈ [xi−1, xi] (i = 1, 2, . . . , n), then we define the integral
sums

Sg(h,D) = Σni=1h(ti)(g(xi)− g(xi−1))

and
Sh(g,D) = Σni=1g(ti)(h(xi)− h(xi−1)).

As usually, ‖D‖ = maxi(xi − xi−1).

Definition. A scalar function h is strongly integrable with respect to a vector
function g if there exist c, u ∈ Y, u > 0 such that for every ε > 0 there exists
δ > 0 such that

|c− Sg(h,D)| < εu,

whenever ‖D‖ < δ.

Lemma 1 If Y is σ-complete, then the element c is defined uniquely.

Proof. If c1, c2 satisfy the assumptions of the preceding Definition, then

|c1 − c2| ≤ |c1 − Sg(h,D)|+ |Sg(h,D)| < 2εu.

Put ε = 1
2n

. Then

|c1 − c2| < 1

n
u,

hence |c1 − c2| = 0. 2
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As usually, we denote the uniquely determined element c ∈ Y as follows:

∫ b

a

h dg =

∫ b

a

h(t) dg(t).

Similarly, the integral ∫ b

a

g dh

can be defined (for other definitions of Riemann–Stieltjes integral, see [3], [8],
[15]).

Theorem 1 ([6], [8], [15]) Let h : [a, b] → R, g : [a, b] → Y , where Y is

a σ-complete Riesz space. Then
∫ b
a
h dg exists if and only if

∫ b
a
g dh exists.

Moreover, ∫ b

a

h dg = h(b)g(b)− h(a)g(a)−
∫ b

a

g dh.

Proof. If we put t0 = a, tn+1 = b, then

Σni=1h(ti)(g(xi)−g(xi−1)) = h(b)g(b)−h(a)g(a)−Σnj=1g(xj)(h(tj)−h(tj−1)).

By this equality, the formula of integration by parts follows. 2

Theorem 2 Let Y be a complete Riesz space, g : [a, b] → Y be an in-

creasing mapping. Then the integral
∫ b
a
h dg exists if and only if the following

Cauchy – Bolzano condition holds: There exists u ∈ Y, u > 0 such that for
every ε > 0 there exists δ > 0 such that

|Sg(h,D1)− Sg(h,D2)| < εu,

whenever ‖D1‖ < δ and ‖D2‖ < δ.

Proof. The necessity is clear, we prove the sufficiency.
Let the Cauchy – Bolzano condition holds. For the δ > 0, put

aδ =
∧
‖D‖<δ

Sg(h,D), bδ =
∨
‖D‖<δ

Sg(h,D).

Evidently, 0 ≤ aδ ≤ bδ. Moreover, if δ(ε) corresponds to the given ε, then

bδ(ε) ≤ aδ(ε) + εu. (1)

If δ1 < δ2, then aδ2 ≤ aδ1 ≤ bδ1 ≤ bδ2 . It follows that
∨
δ>0

aδ ≤ bδ2 .

Since the least inequality holds for every δ2 > 0, we obtain
∨
δ>0

aδ ≤
∧
δ>0

bδ.

Let c be any element of Y satisfying the relation
∨
δ>0

aδ ≤ c ≤
∧
δ>0

bδ. (2)

Let δ = δ(ε) > 0 correspond to the given ε > 0. Let ‖D‖ < δ. Then by (1)
and (2),

Sg(h,D)− c ≤ bδ − c ≤ bδ − aδ ≤ εu,

c− Sg(h,D) ≤ c− aδ ≤ bδ − aδ ≤ εu,
hence |c− Sg(h,D)| ≤ εu. 2
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Theorem 3 Let Y be a complete Riesz space, h : [a, b] → R be a contin-
uous function, g : [a, b] → Y be an increasing (or decreasing) function. Then∫ b
a
h dg exists.

Proof. We use Theorem 1. Assume that g is increasing. Then we can put
u = g(b) − g(a) > 0 (the case g(a) = g(b) is trivial). Let ε be an arbitrary
positive number. Since h is uniformly continuous, there exists δ > 0 such that
|h(t) − h(s)| < ε whenever |t − s| < δ. Let D,D′ be partitions of [a, b] with
‖D‖ < δ, ‖D′‖ < δ. Assume first that D′ is a refinement of D and denote
xi−1 = x0

i < x1
i < xkii = xi new dividing points, hence

g(xi)− g(xi−1) = Σkij=1(g(xji )− g(xj−1
i )). (3)

Choose ti ∈ [xi−1, xi], t
j
i ∈ [xj−1

i−1 , x
j
i ] such that

Sg(h,D) = Σni=1h(ti)(g(xi)− g(xi−1)), (4)

Sg(h,D′) = Σni=1Σkij=1h(tji )(g(xji )− g(xji−1)). (5)

Then by (3), (4), and (5), we obtain

|Sg(h,D)− Sg(h,D′)| ≤ Σni=1Σkij=1|h(ti)− h(tji |(g(xji )− g(xji )).

Since tji ∈ [xj−1
i−1 , x

j
i ] ⊂ [xi−1, xi], we have |ti−tji | < δ, hence |h(ti)−h(tji )| < ε.

Therefore

|Sg(h,D)− Sg(h,D′)| ≤ εΣni=1Σkij=1(g(xji )− g(xj−1
i ))

= εΣni=1(g(xi)− g(xi−1))
= ε(g(b)− g(a)) = εu.

If D1,D2 are arbitrary partitions with ‖D1‖ < δ, ‖D2‖ < δ, then we can
construct the common refinement D′ od D1 and D2 by preceding

|Sg(h,D1)− Sg(h,D2)|
≤ |Sg(h,D1)− Sg(h,D′)|+ |Sg(h,D′)− Sg(h,D2)|
≤ εu+ εu = 2εu.

The theorem is proved. 2

Corollary 1 If Y is a complete Riesz space, h : [a, b] → R a continuous

function and g : [a, b]→ Y a monotone function, then
∫ b
a
g dh exists.

Proof. It follows by Theorem 1 and Theorem 3. 2

3 Choquet integral

Assume again that Y is a complete Riesz space, µ : A → Y an Y -valued
fuzzy measure defined on an algebra A of subsets of X and f : X → R a
non-negative real function measurable with respect to A in the sense that
{x ∈ X; f(x) > t} ∈ A for every t ∈ R.

Let A ∈ A. Define gA : [0,∞)→ Y by the formula

gA(t) = µ({x ∈ A; f(x) > t}).

The mapping gA is non-increasing. If we define h : [0,∞)→ R by the formula
h(t) = t, then h is continuous on any interval [0, c], hence by Corollary 1 there
exists ∫ c

0

gA dh =

∫ c

0

gA(t) dt =

∫ c

0

µ(A ∩ {x; f(x) > t}) dt.
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Put ϕ(c) =
∫ c

0
gA(t) dt ∈ Y . Clearly ϕ ≥ 0 and ϕ is increasing. Now there

are two possibilities. If the function ϕ is bounded, then there exists

∫ ∞
0

gA(t) dt =
∨
c>0

ϕ(c) =
∨
c>0

∫ c

0

gA(t) dt.

In the opposite case we define

∫ ∞
0

gA(t) dt =∞.

Definition. If Y is a complete Riesz space, f is a non-negative measurable
function f : (X,A) → R, A is an algebra, µ : A → Y is a fuzzy measure and
A ∈ A, then we define the Choquet integral

(C)

∫

A

f dµ

by the formula

(C)

∫

A

f dµ =

∫ ∞
0

gA(t) dt =
∨

c > 0

∫ c

0

µ(A ∩ {x; f(x) > t}) dt.

Theorem 4 If µ : A → Y is a σ-additive measure defined on a σ-algebra,
then

(C)

∫

X

f dµ =

∫

X

f dµ,

where
∫
X
f dµ is the Lebesgue integral ([1], [10], [15], [18], [19]).

Proof. First, let f be simple, f = Σni=1αiχAi , 0 < α1 < α2 < . . . < αn, and
the sets Ai be disjoint. Then

g(t) =

{
µ(A1 ∪ . . . ∪An), t < α,
µ(Ai+1 ∪ . . . ∪An), αi ≤ t < αi+1, i = 1, . . . , n− 1
0, t ≥ αn

Therefore,

∫∞
0
g(t) dt = α1µ(A1 ∪ . . . ∪An) + Σn−1

i=1 (αi+1 − αi)µ(Ai+1 ∪ . . . ∪An)

= Σnj=1αjµ(Aj) =
∫
X
f dµ.

If f is an arbitrary non-negative measurable function, then there exists a
sequence (fn)n of simple measurable functions such that fn ↗ f . Then ([15])

∫
X
f dµ =

∨∞
n=1

∫
X
fn dµ

=
∨∞
n=1

(C)
∫
X
fn dµ

=
∨∞
n=1

∫∞
0
µ({x ∈ X; fn(x) > t}) dt

=
∫∞

0

∨∞
n=1

µ({x ∈ X; fn(x) > t}) dt.

But
∨∞
n=1

µ({x ∈ X; fn(x) > t}) = µ(
⋃∞
n=1
{x ∈ X; fn(x) > t})

= µ({x ∈ X; f(x) > t}).
Therefore,

∫

X

f dµ =

∫ ∞
0

µ({x ∈ X; f(x) > t}) dt = (C)

∫

X

f dµ.

The theorem is proved. 2
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4 Belief and plausibility measures

A fuzzy measure µ : A → Y is called lover continuous if

An ↗ A, (An) ⊂ A,A ∈ A ⇒ µ(An)↗ µ(A).

A fuzzy measure µ : A → Y is called a belief measure if for any n ∈ N and
any A1, . . . , An ∈ A there holds

µ(

n⋃
i=1

Ai) ≤ ΣI(−1)|I|+1µ(
⋂
i∈I

Ai),

where the summation is taken over all non-empty subsets I of {1, 2, . . . , n}
and |I| denotes the cardinal number of I.

A fuzzy measure µ : A → Y is called a plausibility measure if for every
n ∈ N and every A1, . . . , An ∈ A there holds

µ(

n⋂
i=1

Ai) ≤ ΣI(−1)|I|+1µ(
⋃
i∈I

Ai).

Theorem 5 ([11]) Let Y be a complete Riesz space, f be a non-negative
real function measurable with respect to a measurable space (X,A), X ∈ A, µ :
A → Y be a fuzzy measure. Define ν : A → Y by the formula

ν(A) = (C)

∫

A

f dµ.

Then ν is a fuzzy measure, ν is lower continuous, whenever µ is lower con-
tinuous. If µ is lower continuous and belief (plausibility) measure, then ν is
belief (plausibility) measure, too.

Proof. Evidently, ν(∅) =
∫∞

0
µ(∅) dt = 0. If A ⊂ B, then

ν(A) =
∫∞

0
µ(A ∩ {x ∈ X; f(x) > t}) dt

≤
∫∞

0
µ(B ∩ {x ∈ X; f(x) > t}) dt = ν(B).

Let now µ be lower continuous and let An ↗ A. Then

ν(A) =
∫∞

0
µ(A ∩ {x ∈ X; f(x) > t}) dt

=
∫∞

0

∨∞
n=1

µ(An ∩ {x ∈ X; f(x) > t}) dt
=
∨∞
n=1

∫∞
0
µ(An ∩ {x ∈ X; f(x) > t}) dt

=
∨∞
n=1

ν(An).

Now, let µ be lower continuous and plausibility measure. Take simple func-
tions fn such that fn ↗ f . Fix n and put fn =

∑m

i=1
αiχAi , 0 = α0 < α1 <

. . . < αm, Ai disjoint. Denote

νn(A) = (C)
∫
A
fn dµ

=
∫∞

0
µ(An ∩ {x ∈ X; f(x) > t}) dt

=
∑m

i=1
(αi − αi−1)µ(A ∩ (Ai ∪Ai+1 . . . ∪Am))

=
∑m

i=1
(αi − αi−1)µ(A ∩Bi),

where Bi = Ai ∪Ai+1 . . . ∪Am. Then

νn(
⋂k

j=1
Cj) =

∑m

i=1
(αi − αi−1)µ(

⋂k

j=1
Cj ∩Bi)

≤∑m

i=1
(αi − αi−1)

∑
I
(−1)|I|+1µ(

⋂k

j=1
((
⋃
j∈I Cj) ∩Bi)

=
∑

I
(−1)|I|+1

∑m

i=1
(αi − αi−1)µ(

⋂k

j=1
((
⋃
j∈I Cj) ∩Bi)

=
∑

I
(−1)|I|+1νn(

⋃
j∈I Cj),

hence

νn(

k⋂
j=1

Cj) ≤
∑
I

(−1)|I|+1νn(
⋃
j∈I

Cj) (6)
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Now
ν(A) =

∫∞
0
µ(A ∩ {x ∈ X; f(x) > t}) dt

=
∫∞

0
µ(A ∩⋃∞

n=1
{x ∈ X; fn(x) > t}) dt

=
∫∞

0

∨∞
n=1

µ(A ∩ {x ∈ X; fn(x) > t}) dt
=
∨∞
n=1

∫∞
0
µ(A ∩ {x ∈ X; fn(x) > t}) dt

=
∨∞
n=1

(C)
∫
A
fn dµ

=
∨∞
n=1

νn(A).

We have proved that νn(A)↗ ν(A) for every A ∈ A, hence νn(A) o-converges
to ν(A). By this fact and by (6) we obtain

ν(

k⋂
j=1

Cj) ≤
∑
I

(−1)|I|+1ν(
⋃
j∈I

Cj).

The assertion concerning belief measures can be proved similarly. 2

5 An extension principle

In [17] M. J. Wierman considered a fuzzy measure µ defined on a family
of all subsets of a set and by the help of the Choquet integral he extended µ
to the family of all fuzzy subsets of X. In this section we shall show that the
Wierman principle can be applied also for Riesz space valued fuzzy measures.

Let A be an algebra of subsets of X. Let f : X → R be a non-negative
function. As before, we will say that f is measurable with respect to A if
{x ∈ X; f(x) > t} ∈ A for every t ∈ R.

Let µ : A → Y be a fuzzy measure, Y being a complete Riesz space. Let
M(A) be the set of all A-measurable fuzzy subsets of X. Then we define
µ : M(A)→ Y by the formula

µ(f) = (C)

∫

X

f dµ.

Theorem 6 The mapping µ is an extension of µ. If µis lower continuous,
then µ is lower continuous, too.

Proof. Evidently,

(C)
∫
X
f dµ =

∫∞
0
µ({x ∈ X; f(x) > t}) dt

=
∫ 1

0
f dµ =

∫ 1

0
µ({x ∈ X; f(x) > t}) dt.

If f = χA, then

{x ∈ X; f(x) > t} =

{
A, t < 1
∅, t ≥ 1.

Therefore

µ(χA) = (C)

∫

X

χA dµ =

∫ 1

0

µ(A) dt = µ(A).

Let µ be lower continuous and fn ∈M(A), fn ↗ f . Then

µ(µ)(f) =
∫ 1

0
µ({x ∈ X; f(x) > t}) dt

=
∫ 1

0
µ(
⋃∞
n=1
{x ∈ X; fn(x) > t}) dt

=
∫ 1

0

∨∞
n=1

µ({x ∈ X; fn(x) > t}) dt
=
∨∞
n=1

∫ 1

0
µ({x ∈ X; fn(x) > t}) dt

=
∨∞
n=1

µ(fn).

The theorem is proved. 2

The Wierman extension principle can be extended to the case of relations
ρ in the Cartesian product 2U × 2V , i.e. for ρ ⊂ 2U × 2V . Namely, if ρ is a
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relation between sets, then ρ will be a relation between fuzzy subsets of U or
V , respectively. If f : U → [0; 1] is a fuzzy subset of U , then denote as usually

f t = {x ∈ U ; f(x) > t}.

Let χρ be the characteristic function of ρ, i.e.

χρ(A,B) =

{
1, AρB
0, otherwise.

Then the membership function χρ of the fuzzy relation ρ is defined by the
formula

χρ(f, g) =

∫ 1

0

χρ(f
t, gt) dt.

6 Möbius transform

Assume now that X is a finite set µ : 2X → Y be a fuzzy measure. Then
the Möbius transform Mµ : 2X → Y is defined by the formula

Mµ(A) =
∑
B⊂A

(−1)|A\B|µ(B).

By the same method as in the real-valued case ([4], [9]) it can be proved that

µ(A) =
∑
B⊂A

Mµ(B) (7)

for every A ⊂ X.
Now we generalize a theorem by Mesiar ([12]).

Theorem 7 Let X be a finite set, Y be a complete Riesz space, f : X → R
be a non-negative function, fA =

∧
x∈A f(x) for every A ⊂ X. Then

(C)

∫

X

f dµ =
∑
A⊂X

fAMµ(A).

Proof. Let {a1, a2, . . . , an} be the range of f , a1 ≤ a2 ≤ . . . ≤ an. Therefore
ai = f(xni) for some ni ∈ N . Then

(C)

∫

X

f dµ = a1µ(X) +

n∑
i=2

(ai − ai−1)µ(X \ {xn1 , . . . xni−1}).

Therefore, by (7),

(C)
∫
X
f dµ = a1

∑{Mµ(A);A ⊂ X}+
+
∑n

i=2
(ai − ai−1)

∑{Mµ(A);A ⊂ X \ {xn1 , . . . xni−1}}
= a1

∑{Mµ(A);xni ∈ A ⊂ X}+
+
∑n

i=2
ai
∑{Mµ(A);xni ∈ A ⊂ X \ {xn1 , . . . xni−1}}

=
∑

A⊂X fAMµ(A).

The theorem is proved. 2
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