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Abstract

The Choquet integral is defined for a real function with respect to a fuzzy
measure taking values in a complete Riesz space. As applications there are
presented: constructions of belief and plausibility measures, the formulation of
an extension principle, and the Mobius transform for vector values measures.
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1 Introduction

It is very well known that the Choquet integral [5] of a non-negative mea-
surable function can be taken with respect to a very general set function.
Indeed, recall that a fuzzy measure is a mapping u : A — R defined on a ring
A of subsets of X and such that

(i) () =0,
(i) A,B € A, A C B implies u(A) < u(B).
We say that f: X — [0, 00] is measurable with respect to A if
FHItoo)) ={r e X;f(x) 2t} € A
for any t € [0,00). If we define
9(t) = p({z € X; f(z) 2 t}),t € [0, 00),

then g is clearly decreasing and nonnegative function. Hence there exists the
Riemann improper integral
oo
/ g(t) dt
0

and then the Choquet integral (C) [ « / dp can be defined by the formula

(C)/deu=/ooog(t) dt.

If A is a o-algebra, it is not difficult to see that

(C)/Xf dn = /Ow h(t) d,



where
h(t) = u({z € X; f(z) > 1)), ¢ € [0, 50).

Denote by C' the set of all points ¢ € [0, co
t € C, then g(t) = h(t). Evidently, h(t) <
€ > 0, there exists s > ¢ such that

g(t) —e < g(s) = p({z € X; f(z) = s}) < u({z € X; f(z) > t}) = h(t).
Since g(t) — e < h(t) for any € > 0, we obtain g(t) < h(t). Now,

J gy dt = [ g(t) dt+f0 w)\cg(t) dt
= [ h(t) dt+zz¢0f{ , 9(t) dt
) d
t

) such that g is continuous at ¢. If
g(t). On the other hand, for every

= f h(t
%o
h(t) dt
The main aim of the paper is the following: to define the Choquet
integral in the case that y: A — Y has values in a Riesz space.

In the following a Riesz space is a real vector space Y together with a
partial ordering < satisfying the following conditions:

(i) (v, <) is a lattice;
(ii) if z,y,2,€ Y and < y, then z + z < y + z;
(iii) if z,y € Y, A € R" and = < y, then Az < \y.

A Riesz space Y is called to be 0 complete if every bounded sequence in
Y has supremum. To define ( fx t)dufor f: X — [0,00),u: A—Y, we

need first reinvited the Riemann—Stieltjes integral fa g dh for vector valued
function g. It will be realized in Section 2. In Section 3, we define the Choquet
integral f f dup and Sections 4 — 6 contain some applications.

2 Riemann— Stieltjes integral

For a Riesz space Y, assume that a real function h : [a,b] — R and a vector
function g : [a,b] = Y aregiven. f D:a=2z0 <21 < ... < Zp_1 < Tp =b
is a partition and ¢; € [zi—1,2:] (i = 1,2,...,n), then we define the integral
sums

Sg(h, D) = Eiih(ti)(9(x:) — g(wi-1))
and

Sn(g, D) = Bilag(ti)(h(@:) — h(wi-1)).
As usually, ||D|| = max;(x; — zi—1).
Definition. A scalar function h is strongly integrable with respect to a vector
function g if there exist ¢,u € Y,u > 0 such that for every € > 0 there exists
6 > 0 such that

e — S4(h,D)| < eu,

whenever ||D]| < 4.

Lemma 1 IfY is o-complete, then the element c is defined uniquely.

Proof. If ¢1, ce satisfy the assumptions of the preceding Definition, then
ler — c2| < |e1 = Sg(h, D)| + |Sg(h, D)| < 2eu.
Put € = 5. Then
ler —e2] < %u,

hence |c1 — c2| = 0. O



As usually, we denote the uniquely determined element ¢ € Y as follows:

/abhdg_/abh(t) dg(t).
/bgdh

can be defined (for other definitions of Riemann—Stieltjes integral, see [3], [8],
[15]).

Theorem 1 (/6], [8], [15]) Let h : [a,b] — R,g : [a,b] — Y, where Y is
a o-complete Riesz space. Then f: h dg exists if and only if fabg dh exists.
Moreover,

Similarly, the integral

/ h dg = h(b)g(b) — h(a)g(a) - / g dh.

Proof. If we put to = a,tn+1 = b, then

Eitih(ti)(g(@i) —g(wi-1)) = h(b)g(b) — h(a)g(a) — Ej_1g(x;) (h(t;) — h(t;-1)).
By this equality, the formula of integration by parts follows. O

Theorem 2 Let Y be a complete Riesz space, g : [a,b] — Y be an in-

creasing mapping. Then the integral fab h dg exists if and only if the following
Cauchy — Bolzano condition holds: There exists u € Y,u > 0 such that for
every € > 0 there exists 6 > 0 such that

|Sg(h, D1) = Sy(h, D2)| < eu,
whenever ||D1|| < § and ||D2]| < 6.

Proof. The necessity is clear, we prove the sufficiency.
Let the Cauchy — Bolzano condition holds. For the 6 > 0, put

as= N\ Sy(h,D)bs= \/ Sy(h,D).
IDlI<s IDlI<é
Evidently, 0 < as < bs. Moreover, if §(g) corresponds to the given ¢, then
bs(e) < as(e) + eu. (1)
If 61 < 02, then as, < as, < bs, < bs,. It follows that
\/ as < bs,.
5>0
Since the least inequality holds for every d2 > 0, we obtain
\/ as < /\ bs.
5>0 6>0

Let ¢ be any element of Y satisfying the relation
\/aaSCS/\b& (2)

Let 6 = §(g) > 0 correspond to the given € > 0. Let ||D|| < . Then by (1)
and (2),
Sq(h,D) —c<bs —c<bs—as < eu,

c—Sg(h,D)<c—as <bs —as < eu,
hence |c¢ — Sy(h,D)| < eu. |



Theorem 3 Let Y be a complete Riesz space, h : [a,b] — R be a contin-
uous function, g : [a,b] — Y be an increasing (or decreasing) function. Then

f: h dg ezists.

Proof. We use Theorem 1. Assume that g is increasing. Then we can put
u = g(b) — g(a) > 0 (the case g(a) = g(b) is trivial). Let € be an arbitrary
positive number. Since A is uniformly continuous, there exists § > 0 such that
|h(t) — h(s)| < € whenever |t — s| < §. Let D, D’ be partitions of [a,b] with
D] < 4,||D'|| < 6. Assume first that D’ is a refinement of D and denote

i =a) <z < x;" = x; new dividing points, hence
g(xi) = g(wi—1) = £, (g(a]) — gz ")) 3)
Choose t; € [x;—1,2:],t] €[]~} ,x]] such that
Sg(h, D) = Siih(t:)(g(2:) — g(wi-1)), (4)
Sq(h, D) = TSI Z5L A(H) (9(2]) — g(a]_,)- ()

Then by (3), (4), and (5), we obtain

1S9 (h, D) = S(h, D) < BS54 |h(t:) — h(t][(g(]) — g(=))-
Since t! € [2)7},x)] C [xi—1, 2], we have [t; —t]| < &, hence |h(t;) —h(t])]| < e.
Therefore

|Sg(h, D) = Sg(h, D) < S 252, (g(a]) — g(l ™))

If Dy, D are arbitrary partitions with ||D1]| < 6, ||Dz]| < d, then we can
construct the common refinement D’ od Dy and D» by preceding

‘Sg(haDl)* Sg(haD2)‘
< |Sg(h, D1) — Sg(h, D')| +|Sg(h, D) = S4(h, D2)|
< eu + eu = 2¢eu.

The theorem is proved. O

Corollary 1 IfY is a complete Riesz space, h : [a,b] — R a continuous
function and g : [a,b] — Y a monotone function, then fabg dh ezxists.

Proof. It follows by Theorem 1 and Theorem 3. O

3 Choquet integral

Assume again that Y is a complete Riesz space, p: A — Y an Y-valued
fuzzy measure defined on an algebra A of subsets of X and f: X — R a
non-negative real function measurable with respect to A in the sense that
{z € X; f(z) >t} € Afor every ¢t € R.

Let A € A. Define g4 : [0,00) — Y by the formula

ga(t) = p({z € A; f(x) > t}).

The mapping g is non-increasing. If we define h : [0,00) — R by the formula
h(t) = t, then h is continuous on any interval [0, ¢], hence by Corollary 1 there
exists

/OCgA dh = /OCQA(t) dt = /Ocﬂ(Am{x;f(:v) > t}) dt.



Put ¢(c) = foc ga(t) dt € Y. Clearly ¢ > 0 and ¢ is increasing. Now there
are two possibilities. If the function ¢ is bounded, then there exists

/OoogA(t) dt = \//O gal(t

c>0 c>0
In the opposite case we define

/OOC ga(t) dt = co.

Definition. If Y is a complete Riesz space, f is a non-negative measurable
function f: (X, A) — R, A is an algebra, u: A — Y is a fuzzy measure and
A € A, then we define the Choquet integral

C) / fdp
A
by the formula

(C’)/fdu:/oogA(t) dt:\/c>0/c,u(Aﬂ{x;f(m)>t}) dt
A 0 0

Theorem 4 If u: A—Y is a o-additive measure defined on a o-algebra,

then
(C)/fdMZ/fdu,
X X

where fX f du is the Lebesgue integral ([1], [10], [15], [18], [19]).

Proof. First, let f be simple, f = 37 jaix4,, 0 < a1 < a2 < ... < ay, and
the sets A; be disjoint. Then

(A1 U U A, t<a,
g(t): ,U,(AprlU...UAn), a; <t<aig1,t=1,...,n—1
0, t> an

Therefore,

fooo g(t) dt = Oélﬂ(Al U. U A, ) + ZZ _1 (Oti+1 — ai)u(Ai+1 U...uU An)
- E] 1C!]'LL fo d/"L

If f is an arbitrary non-negative measurable function, then there exists a
sequence (fn)n of simple measurable functions such that f, / f. Then ([15])

fxf dp = \/Z:l fx fn dp

= fX fn dp
= Zo: fo {z € X; fu(z) > t}) dt
= [V (e € X fula) > 1)) du.

But

Vo m{z € X ful@) > 1) = p(U,2 {z € X; fu(2) > t})
= p({z € X; f(x) > t}).
Therefore,
/ i du:/ u(fe € X () > 1)) di = (c>/  dn.
The theorem is proved. m|



4 Belief and plausibility measures

A fuzzy measure u: A — Y is called lover continuous if
An /A (A) C A A € A= p(An) / u(A).

A fuzzy measure p : A — Y is called a belief measure if for any n € N and
any Ai,..., A, € A there holds

N(U A;) < 21(—1)‘”“#(0 Ay),

=1 iel

where the summation is taken over all non-empty subsets I of {1,2,...,n}
and |I| denotes the cardinal number of I.

A fuzzy measure p : A — Y is called a plausibility measure if for every
n € N and every Ai,..., A, € A there holds

() A < Zr(=0)" (40

i=1 iel

Theorem 5 ([11]) Let Y be a complete Riesz space, f be a non-negative
real function measurable with respect to a measurable space (X, A), X € A, i :
A =Y be a fuzzy measure. Define v: A —Y by the formula

- C’)/Afdu.

Then v is a fuzzy measure, v is lower continuous, whenever y is lower con-
tinuous. If p is lower continuous and belief (plausibility) measure, then v is
belief (plausibility) measure, too.

Proof. Evidently, v(0) = foc u(@) dt =0. If A C B, then

v(A) —f ,uAﬂ{xEXf()>t})dt
<f w(BNn{z € X; f(z) > t}) dt = v(B).

Let now p be lower continuous and let A, / A. Then

v(A) = [Zu(An{z e X; f(x) > t}) dt
:f°° fjlpA N{zreX;f(z )>t})dt

= °°1f uA N{z € X; f(z) >t}) dt

= \/n:1

Now, let © be lower continuous and plausibility measure. Take simple func-
tions f,, such that f, /~ f. Fix n and put f, = ZZI aixa;, 0=a0 < a1 <
. < aum, A; disjoint. Denote

vn(A) ) [y fr g

WA, N{z € X; f(z) > t}) dt
i=1 (ai—az_l) (Aﬂ(A UAH_l...UAm))
m (Ozl —aifl)u(AﬂBi),

=1

=(C
Jo.
=2
=
where B; = A; UA;4+1...U Ap,. Then

(=, Ci) = 20 (s — aimn)p(()—, Cj N Bi)
<>om (@i —aioa) Z (D) =1 (U;e; Ci) N Bi)

>

>

)\I|+1 ZT:I(O” ;- 1)/1(“] 1((Uj61 Cj) N Bi)
_1)‘I|+1VW(U]'€1 Cj)a

hence

()0 < Y0 e o) (6)

j=1 I JeI



Now
v(A) f wAN{z € X; f(z) > t}) dt
f AN {z € X fula) > t}) dt

= fooo Vo w(An{z € X; fu(z) > t}) dt
=V 1fo (An{z € X; fo(z) > t}) dt
=V fA fn dp
\/:;1 l/”l(A)
We have proved that v, (A) / v(A) for every A € A, hence v, (A) o-converges
to v(A). By this fact and by (6) we obtain

v(()C) <Y (=" 6.

=1 I jer

The assertion concerning belief measures can be proved similarly. O

5 An extension principle

In [17] M. J. Wierman considered a fuzzy measure p defined on a family
of all subsets of a set and by the help of the Choquet integral he extended u
to the family of all fuzzy subsets of X. In this section we shall show that the
Wierman principle can be applied also for Riesz space valued fuzzy measures.

Let A be an algebra of subsets of X. Let f : X — R be a non-negative
function. As before, we will say that f is measurable with respect to A if
{r € X; f(z) >t} € Afor every t € R.

Let p: A — Y be a fuzzy measure, Y being a complete Riesz space. Let
M(A) be the set of all A-measurable fuzzy subsets of X. Then we define

B M(A) — Y by the formula
= C)/ 1 dp.
X

Theorem 6 The mapping it is an extension of p. If pis lower continuous,
then 1 is lower continuous, too.

Proof. Evidently,

O) [ fdp —fo ({z € X f(z) > 1}) dt
—fofdu fo ({z € X; f(z) > t}) dt

If f = xa, then

@6&ﬂ@>ﬂ—{ﬁ’§§i

Therefore )
fi(xa) = (C')/ Xa dp :/ w(A) dt = u(A).
X 0
Let p be lower continuous and f, € M(A), fn / f. Then
n —fo ({z € X; f(z) > t}) dt
= Jo mUIZ i € X fulw) > 1)) dt
= Jo ViZ, plle € X fule) > 1)) dt

_\/n 1f0 {$€an()>t})dt
:\/n 1U(fn)

The theorem is proved. O

The Wierman extension principle can be extended to the case of relations
p in the Cartesian product 2V x 2V, i.e. for p C 2V x 2. Namely, if p is a



relation between sets, then p will be a relation between fuzzy subsets of U or
V, respectively. If f: U — [0;1] is a fuzzy subset of U, then denote as usually

ff={zcU;f(x) >t}
Let x, be the characteristic function of p, i.e.

1, ApB
0, otherwise.

XP(A7 B) = {

Then the membership function x5 of the fuzzy relation p is defined by the
formula

1
xz([f>9) :/ xo(f*, g") dt.
0

6 Mobius transform

Assume now that X is a finite set 4 : 2¥ — Y be a fuzzy measure. Then
the M&bius transform M, : 2¥ — Y is defined by the formula

M,(4) = (-)"VPlu(B).
BCA
By the same method as in the real-valued case ([4], [9]) it can be proved that
pu(A) = Mu(B) (7)
BCA

for every A C X.
Now we generalize a theorem by Mesiar ([12]).

Theorem 7 Let X be a finite set, Y be a complete Riesz space, f : X — R
be a mon-negative function, fa = /\meA f(z) for every A C X. Then

(C)/ fdp=Y" faMu(A).

ACX

Proof. Let {a1,az,...,a,} be the range of f, a1 < a2 < ... < ay. Therefore
a; = f(xn,) for some n; € N. Then

(©) / J = (%) + 3 (@i — @)X\ g, D).
X i=2

Therefore, by (7),

(©) [x fdu =a1) {Mu(A);AC X}+
+Z?:2(ai - ai—l) Z{M#(A)vA cX \ {xnn s 'mni—l}}
=a1y {Mu(A);zn, € AC X}+
J’_Z:‘L:Q ai E{MM(A);'TM EACX \ {m"u . "mni—l}}
= ZAcX faMyu(A).

The theorem is proved. O
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