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ON INTEGRATION

IN COMPLETE BORNOLOGICAL LOCALLY CONVEX SPACES

Ján HALUŠKA, Košice

Abstract. A generalization of I. Dobrakov’s integral to complete bornological lo-
cally convex spaces is given.

Introduction

We can observe that theories containing a certain compatible collection of basic
theorems, a calculus, lie in the focus of the present measure and integration inves-
tigations. This calculus makes possible and determines further applications of the
integral in a particular branch of mathematics.

Integral of I. Dobrakov. Let X and Y be Banach spaces, ∆ a δ-ring of subsets
of a set T 6= ∅, L(X,Y) the space of all continuous operators L : X→ Y, m : ∆→
L(X,Y) a measure σ-additive in the strong operator topology. We say that a
measurable function f : T → X is integrable in Dobrakov’s sense if there exists a
sequence fn : T → X, n ∈ N, of simple functions converging m-a.e. to f , such that
for every E ∈ σ(∆) (the σ-algebra generated by ∆), the sequence

∫
E

fn dm, n ∈ N,
is convergent in Y, cf. [7]. The integral of the function f on E ∈ σ(∆) is defined
by the equality

∫
E

f dm = limn→∞
∫
E

fn dm, cf. [7], Definition 2.
In [7] – [14] I. Dobrakov developed a Lebesgue-type integration theory in the

Banach spaces for an operator valued measure. This theory involves convergence
theorems (the Lebesgue dominated theorem), integration per substitution, Fubini
theorems, Lp-spaces, mean-value theorem, etc. In [25] a Radon - Nikodým theorem
for Dobrakov’s integral is given. Papers [29], [30] present Dobrakov’s integral as a
weak-type integral. Dobrakov’s integral yields a greater class of integrable functions
than the also well-known (Lebesgue-type) integral of R. G. Bartle, [1], considering
the same measure and set systems, cf. [7].

Dobrakov’s construction of the integral is based on the Egoroff theorem. Note
that the Egoroff theorem does not hold for arbitrary nets of measurable functions
without some restrictions on the measure, net convergence, or the class of measur-
able functions. A necessary and sufficient condition in locally convex setting for
the assertion that everywhere (net) convergence of measurable functions implies
convergence in semivariation has been given in [19], Th. 3.3.

Various generalizations of Dobrakov’s integral. In [31], W. Smith and D.
H. Tucker used the idea of the decomposition of locally convex (topological vector)
spaces (L. C. S.) into the projective limit of normed spaces for a generalization
of Dobrakov’s integral. The class of integrable functions is built via a transfinite
induction starting with the class of simple functions. A representation theorem for
this integral is proved.
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The second generalization of Dobrakov’s integral to L. C. S. is represented by
papers in which authors consider measures satisfying the so called *-condition (e.g.
[27] by R. Rao Chivukula and A. S. Sastry).

The third direction of the enlargement of Dobrakov’s integral to L. C. S. is based
on the fact that Dobrakov’s integral is also a weak-type integral (e.g. papers of C.
Debieve, [15], and S. K. Roy and N. D. Charkaborty, [28]). Integrals deal with
functions ranging in a Banach space and with measures in locally convex spaces of
continuous operators acting from a class of Banach subspaces of one locally convex
space into another.

The fourth way how to extend the theory of I. Dobrakov is to avoid problems
with uniform convergence of functions, i.e. to deal with L. C. S. of functions for
which a Egoroff theorem holds, cf. the papers of M. E. Balvé, R. Bravo, and P. J.
Jiménez Guerra, [2], [3], [4], [5]).

Aim of the paper. The bornological character of the bilinear integration theory
developed in [27] shows the fitness of developing a bilinear integration theory in the
context of bornological convex vector spaces.

The Dobrakov integral is defined in Banach spaces. If both X,Y are considered
to be inductive limits of Banach spaces, i.e. complete bornological locally convex
spaces (C. B. L. C. S.), a natural question arises whether an integral in C. B. L. C.
S. can be defined as a finite sum of Dobrakov’s integrals in various Banach spaces,
the choice of which may depend on the function which we integrate.

In this paper we (1) introduce a notion of σ-additive bornological operator valued
measure in C. B. L. C. S., and (2) present a construction of the integral with respect
to such measure.

1. Preliminaries

C. B. L. C. S. The theory of C. B. L. C. S. can be found in [23], [24], and [26].
Let X,Y be two C. B. L. C. S. over the field K of real R or complex C numbers

equipped with bornologies BX,BY. The basis U of the bornology BX has a marked
element U0 ∈ U , if U0 ⊂ U for every U ∈ U . Let bases U ,W be chosen to consist of
all BX-, BY- bounded Banach disks in X,Y, with marked elements U0 ∈ U , U0 6=
{0}, and W0 ∈ W,W0 6= {0}, respectively. Recall that a Banach disk in X is a set
which is closed, absolutely convex and the linear span of which is a Banach space.
The space X is an inductive limit of Banach spaces XU , U ∈ U ,X = inj limU∈U XU ,
cf. [24], where XU is the linear span of U ∈ U and U is directed by inclusion
(analogously for Y and W). If a sequence of elements xn ∈ X, n ∈ N, converges
bornologically to x ∈ X (in the bornology BX with the basis U), then we write
x = U - limn→∞ xn.

On U the lattice operations are defined as follows. For U1, U2 ∈ U we have:
U1∧U2 = U1∩U2, U1∨U2 = acs(U1∪U2), where acs denotes the topological closure of
the absolutely convex span of the set. Analogously forW. For (U1,W1), (U2,W2) ∈
U ×W we write (U1,W1)� (U2,W2) if and only if U1 ⊂ U2 and W1 ⊃W2.

A more detailed consideration of a lattice structure of C. B. L. C. S. has been
given in [20], §1.

Operator structures. Denote by L(X,Y) the space of all continuous linear oper-
ators L : X→ Y. The lattice structure of L(X,Y) is considered in [21]. Note that
in the terminology of [26], Chap. 4, §2, Th.1, the space L(X,Y) (as an inductive
limit of seminormed spaces) is a bornological convex vector space.
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Set structures. Let T 6= ∅ be a set. Denote by ∆ a δ-ring of subsets of T . If
A is a system of subsets of the set T , then σ(A) denotes the σ-algebra generated
by the system A. Denote Σ = σ(∆),N = {1, 2, . . . }. We use χE to denote the
characteristic function of the set E. By pU : X→ [0,∞] we denote the Minkowski
functional of the set U ∈ U . (If U does not absorb x ∈ X, we put pU (x) = ∞.)
Similarly, pW denotes the Minkowski functional of the set W ∈ W.

For (U,W ) ∈ U ×W, denote by m̂U,W the (U,W )-semivariation of a charge (=
finitely additive measure) m : ∆→ L(X,Y), where

m̂U,W (E) = sup pW

(
I∑

i=1

m(E ∩ Ei)xi
)
, E ∈ Σ,

and the supremum is taken over all finite sets {xi ∈ U ; i = 1, 2, . . . , I} and all
disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. It is well-known that m̂U,W is a submeasure,
i.e. a monotone, subadditive set function, and m̂U,W (∅) = 0. Denote by ∆U,W ⊂ ∆
the largest δ-ring of sets E ∈ ∆, such that m̂U,W (E) < ∞. Denote m̂U,W =
{m̂U,W ; (U,W ) ∈ U ×W}.

For W ∈ W, denote by |µ|W the W -semivariation of a charge µ : Σ→ Y, where

|µ|W (E) = sup pW

(
I∑

i=1

λiµ(E ∩ Ei)
)
, E ∈ Σ,

and the supremum is taken over all finite sets of scalars {λi ∈ K; |λi| ≤ 1, i =
1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. The W -semivariation
|µ|W is a submeasure. Denote µW = {µW ; W ∈ W}.

Various lattices of set functions (among them m̂U,W , µW) related to L(X,Y)-
valued measures have been studied in [20], §2, the lattices of set systems (and null
sets) in [20], §3.

Convergences of functions. We assume that the generalizations of the classical
notions (such as almost uniform convergence, almost everywhere convergence, and
convergence in measure of measurable functions and relations among them) to
integration to integration in Banach spaces are commonly well-understood, cf. [7].
All this theory can be generalized to C. B. L. C. S. as follows.

Let βU,W be a lattice of submeasures βU,W : Σ → [0,∞], (U,W ) ∈ U ×W, such
that βU2,W2 ∧ βU3,W3 = βU2∧U3,W2∨W3 , βU2,W2 ∨ βU3,W3 = βU2∨U3,W2∧W3 , (U2,W2),
(U3,W3) ∈ U ×W, e.g. βU,W = m̂U,W .

Denote by O(βU,W ) = {N ∈ Σ; βU,W (N) = 0}, (U,W ) ∈ U×W. The set N ∈ Σ
is called βU,W -null if there exists a couple (U,W ) ∈ U ×W such that βU,W (N) = 0.
We say that an assertion holds βU,W -almost everywhere, shortly βU,W -a.e., if it
holds everywhere except in a βU,W -null set. A set E ∈ Σ is said to be of finite
submeasure βU,W if there exists a couple (U,W ) ∈ U ×W such that βU,W (E) <∞.

For E ∈ Σ, R ∈ U , (U,W ) ∈ U×W, we say that a sequence fn : T → X, n ∈ N, of
functions (R,E)-converges βU,W -a.e. to a function f : T → X if limn→∞ pR(fn(t)−
f(t)) = 0 for every t ∈ E \ N , where N ∈ O(βU,W ). We say that a sequence
fn : T → X, n ∈ N, of functions (U , E)-converges βU,W -a.e. to a function f : T → X
if there exist R ∈ U , (U,W ) ∈ U ×W such that the sequence fn, n ∈ N, of functions
(R,E)-converges βU,W -a.e. to f . We write f = U -limn→∞fn βU,W -a.e. If E = T ,
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then we will simply say that the sequence R-converges βU,W -a.e., or U-converges
βU,W -a.e.

For E ∈ Σ, R ∈ U , (U,W ) ∈ U ×W we say that a sequence fn : T → X, n ∈ N,
of functions (R,E)-converges uniformly to a function f : T → X if limn→∞ ‖fn −
f‖E,R = 0, where ‖f‖E,R = supt∈E pR(f(t)). We say that a sequence fn : T →
X, n ∈ N, of functions (R,E)-converges βU,W -almost uniformly to a function
f : T → X if for every ε > 0 there exists a set N ∈ Σ such that βU,W (N) < ε
and the sequence fn, n ∈ N, of functions (R,E \N)-converges uniformly to f . We
say that a sequence fn : T → X, n ∈ N, of functions (U , E)-converges βU,W -almost
uniformly to a function f : T → X if there exist R ∈ U , (U,W ) ∈ U × W such
that the sequence fn, n ∈ N, of functions (R,E)-converges βU,W -almost uniformly
to f . If E = T , then we will simply say that the sequence of functions R-converg-
es uniformly, or R-converges βU,W -almost uniformly, or U -converges βU,W -almost
uniformly.

Convergences in measure, almost everywhere, almost uniform and relations be-
tween them have been studied in the context of L(X,Y)-valued measures in C. B.
L. C. S. in [21], where a Egoroff theorem has been proved, too.

2. Measures in C. B. L. C. S.

Charges of σ-finite (U ,W)-semivariation. We use Φ to denote the class of all
functions U → W with an order < defined as follows: for ϕ,ψ ∈ Φ we write ϕ < ψ
whenever ϕ(U) ⊂ ψ(U) for every U ∈ U .

For (U,W ) ∈ U ×W we say that a charge m is of σ-finite (U,W )-semivariation
if there exist sets Ei ∈ ∆U,W , i ∈ N, such that T =

⋃∞
i=1Ei. For ϕ ∈ Φ we say that

a charge m is of σϕ-finite (U ,W)-semivariation if for every U ∈ U the charge m is
of σ-finite (U,ϕ(U))-semivariation.

Definition 2.1. We say that a charge m is of σ-finite (U ,W)-semivariation if
there exists a function ϕ ∈ Φ such that m is of σϕ-finite (U ,W)-semivariation.

Lemma 2.2. Let ϕ,ψ ∈ Φ and ϕ ≤ ψ. If a charge m is of σϕ-finite (U ,W)-semi-
variation, then m is also of σψ-finite (U ,W)-semivariation.

Proof. By the assumption, for each U ∈ U there exists a sequence Ei(U,W ) ∈
∆U,W , i ∈ N,W = ϕ(U), of sets such that

⋃∞
i=1Ei(U,W ) = T . From the impli-

cation m̂U,W (Ei(U,W )) < ∞, i ∈ N,W ⊂ W1,W1 ∈ W ⇒ m̂U,W1(Ei(U,W )) ≤
m̂U,W (Ei(U,W )) we see that we can put Ei(U,ψ(U)) = Ei(U,ϕ(U)), i ∈ N. Hence
m is of σψ-finite (U ,W)-semivariation.

If U ∈ U,ϕ ∈ Φ, and σF (∆U,ϕ(U)) is the smallest local σ-ring of all sets of σ-finite
(U,ϕ(U))-semivariation (i.e. the following implication is true: if A ∈ ∆U,ϕ(U), B ∈
σF (∆U,ϕ(U)), then A ∩B ∈ ∆U,ϕ(U)), then OF (m̂U,ϕ(U)) = O(m̂U,ϕ(U)), where
OF (m̂U,ϕ(U)) = {N ∈ σF (∆U,ϕ(U)); m̂U,ϕ(U)(N) = 0}.

Lemma 2.3. Let ϕ ∈ Φ. If a charge m is of σϕ-finite (U ,W)-semivariation, then
Σ = σF (∆U,ϕ(U)) for every U ∈ U .

Proof. Let U ∈ U . The inclusion σF (∆U,ϕ(U)) ⊂ Σ is trivial.
Let us show that σF (∆U,ϕ(U)) ⊃ Σ. Let G ∈ Σ. By the construction of Σ,

there exist sets Gj ∈ ∆, j ∈ N, such that
⋃∞
j=1Gj = G. By the definition of the

σ-finiteness of the (U,ϕ(U))-semivariation, there exist Ti ∈ ∆U,ϕ(U), i ∈ N, such
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that T =
⋃∞
i=1 Ti. Clearly Ti ∩ Gj ∈ ∆U,ϕ(U). We have G = T ∩ G = (

⋃∞
i=1 Ti) ∩(⋃∞

j=1Gj

)
=
⋃∞
j=1 (Gj ∩

⋃∞
i=1 Ti) =

⋃∞
j=1

⋃∞
j=1(Ti ∩ Gj), i.e. G ∈ σF (∆U,ϕ(U))

and, therefore, σF (∆U,ϕ(U)) ⊃ Σ.

σ-additivity of measures in C. B. L. C. S. Let W ∈ W. We say that a
charge µ : Σ→ Y is a (W,σ)-additive vector measure, if µ is YW -valued (countable
additive)vector measure. Note that if µ : Σ→ Y is a (W,σ)-additive vector measure
and W ⊂W1,W,W1 ∈ W, then µ is a (W1, σ)-additive vector measure.

Definition 2.4. We say that a charge µ : Σ→ Y is a (W, σ)-additive vector mea-
sure, if there exists W ∈ W such that µ is a (W,σ)-additive vector measure.

Let W ∈ W. Let νn : Σ → Y, n ∈ N, be a sequence of (W,σ)-additive vector
measures. Recall the following notion. If for every ε > 0, E ∈ Σ, pW (νn(E)) < ∞
and Ei ∈ Σ, Ei ∩ Ej = ∅, i 6= j, i, j ∈ N, there exists J0 ∈ N, such that for every
J ≥ J0, pW

(
νn
(⋃∞

i=J+1Ei ∩ E
))
< ε uniformly for every n ∈ N, then we say that

the sequence of measures νn, n ∈ N, is uniformly (W,σ)-additive on Σ, cf. [6], I.1,
Definition 14. Note that if a sequence νn, n ∈ N, of measures is uniformly (W,σ)--
additive on Σ,W ∈ W, then the sequence νn, n ∈ N, of measures is uniformly
(W1, σ)-additive on Σ whenever W1 ⊃W,W1 ∈ W.

Definition 2.5. We say that the family of measures νn : Σ → Y, n ∈ N, is
uniformly (W, σ)-additive on Σ if there exists W ∈ W such that the family νn, n ∈
N, of measures is uniformly (W,σ)-additive on Σ.

Let ϕ ∈ Φ. We say that a charge m : ∆ → L(X,Y) is a σϕ-additive measure
if m is of σϕ-finite (U ,W)-semivariation, and for every A ∈ ∆U,ϕ(U), the charge
m(A ∩ ·)x : Σ→ Y is a (ϕ(U), σ)-additive measure for every x ∈ XU , U ∈ U .

If ϕ ≤ ψ,ϕ, ψ ∈ Φ, and a charge m : ∆ → L(X,Y) is a σϕ-additive measure,
then m is a σψ-additive measure. Indeed, the fact that m is of σψ-finite (U ,W)--
semivariation follows from Lemma 2.2. The assertion that for every A ∈ ∆U,W ,
the charge m(A ∩ ·)x : Σ → Y is a (ψ(U), σ)-additive measure for every x ∈ XU ,
follows from the inequality pψ(U)(y) ≤ pϕ(U)(y),y ∈ Y.

Definition 2.6. We say that a charge m : ∆→ L(X,Y) is a σ-additive bornolog-
ical (operator valued) measure if there exists ϕ ∈ Φ such that m is a σϕ-additive
measure.

In what follows the charge m is supposed to be a σ-additive bornological measure.

3. An integral in C.B.L.C.S.

Basic spaces of functions. We use MU to denote the space of all U-measurable
functions, the largest vector space of functions f : T → X with the property: there
exists R ∈ U such that for every U ⊃ R,U ∈ U and δ > 0 the set {t ∈ T ; pU (f(t)) ≥
δ} ∈ Σ. In what follows we deal only with functions which are U-measurable, cf.
[22], Definition 2.5.

A function f : T → X is called ∆-simple if f(T ) is a finite set and f−1(x) ∈ ∆
for every x ∈ X \ {0}. The space of all ∆-simple functions is denoted by S. For
(U,W ) ∈ U×W, a function f : T → X is said to be ∆U,W -simple if f =

∑I
i=1 xiχEi ,

where xi ∈ XU , Ei ∈ ∆U,W , Ei ∩ Ej = ∅ for i 6= j, i, j = 1, 2, . . . , I. The space
of all ∆U,W -simple functions is denoted by SU,W . A function f ∈ S is said to be
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∆U,W -simple if there exists a couple (U,W ) ∈ U × W such that f ∈ SU,W . The
space of all ∆U,W -simple functions is denoted by SU,W .

Two classical theorems.

Theorem 3.1. (R. G. Bartle - N. Dunford - J. T. Schwartz) Let Γ be a σ-additive
vector measure with values in a Banach space and defined on a σ-algebra Σ. Then
there exists a nonnegative real-valued σ-additive measure γ : Σ → [0,∞) such
that γ(E) → 0 if and only if |Γ|(E) → 0; the measure γ can be chosen so that
0 ≤ γ(E) ≤ |Γ|(E) for all E ∈ Σ.

Proof. [6], Chap. I.2, Corollary 6, p. 14.

Note that the measure γ in Th.3.1 can be chosen to be finite. Such a measure is
constructed in [6], Chap.I.2, the proof of Th.4., p.11.

The following theorem is only a rewriting of the classical Egoroff theorem.

Theorem 3.2. (D. T. Egoroff) Let γ : Σ → [0,∞) be a σ-additive measure and
E ∈ Σ be a set of (σ-) finite measure. If a sequence fn ∈ MU , n ∈ N, of functions
(U , E)-converges to a function f ∈ MU , then the sequence fn, n ∈ N, of functions
(U , E)-converges γ-almost uniformly to f .

Proof. Same as in [18], §21, Th. A, p. 88. For the case of E being of σ-finite
measure, cf. [18], §21, Exercise (3), p. 90.

Construction of the integral.
For every E ∈ Σ and f ∈ SU,W , (U,W ) ∈ U × W, we define the integral by

the formula
∫
E

f dm =
∑I
i=1 m(E ∩ Ei)xi, where f =

∑I
i=1 xiχEi ,xi ∈ XU , Ei ∈

∆U,W , Ei∩Ej = ∅, i 6= j, i, j = 1, 2, . . . , I. Note that for the function f , the integral∫
.
f dm is a (W,σ)-additive measure on Σ.

Theorem 3.3. If a sequence fn ∈ SU,W , n ∈ N, of functions U-converges to f ∈
MU , then there exists a real-valued σ-additive measure γ : Σ→ [0, 1] such that

(a) the sequence fn, n ∈ N, of functions U-converges γ-almost uniformly to f ,
(b) for each γ-null set N ∈ Σ,

∫
N

fn dm = 0 for every n ∈ N.

Proof. There exists R ∈ U such that the sequence fn, n ∈ N, of functions R-con-
verges to the function f .

Consider fn ∈ SU,W , n ∈ N, i.e. there exist (Un,Wn) ∈ U × W such that
fn ∈ SUn,Wn , n ∈ N. For each n ∈ N, the integral

∫
· fn dm is a (Wn, σ)-additive

measure on Σ. By Theorem 3.1, for every n ∈ N there exist nonnegative real-valued
σ-additive finite measures αUn,Wn,n on Σ such that αUn,Wn,n(E) → 0 if and only
if
∣∣∫
· fn dm

∣∣
Un,Wn

(E) → 0, E ∈ Σ. Choose the measures αUn,Wn,n, n ∈ N, so that
0 ≤ αUn,Wn,n(E) ≤

∣∣∫
.
fn dm

∣∣
Un,Wn

(E) for every E ∈ Σ.
Construct the following set function γ on Σ:

γ(E) =
∞∑
n=1

1
2n

αUn,Wn,n(E)
1 + αUn,Wn,n(T )

, E ∈ Σ. (1)

It is easy to see that γ : Σ→ [0, 1] is a σ-additive measure on Σ.
(a) By Theorem 3.2, the sequence fn, n ∈ N, of functions R-converges γ-almost

uniformly to f . Hence, it U-converges γ-almost uniformly to f .



ON INTEGRATION IN C. B. L. C. S. 7

(b) The equality (1) implies that for each γ-null set N ∈ Σ,
∫
N

fn dm = 0 for
every n ∈ N.

Definition 3.4. Let f ∈ MU . For every m̂U,W -null set M , the function f · χM
is said to be m̂U,W -null. The family of all m̂U,W -null functions will be denoted
by HU,W . For f ∈ MU and each m̂U,W -null set M ∈ Σ, define

∫
E

fχM dm =∫
M∩E fn dm = 0, E ∈ Σ.

It is easy to see that the family HU,W is a vector space.

Lemma 3.5. Let (U,W ) ∈ U ×W. If a sequence νn : σ(∆U,W ) → Y, n ∈ N, is a
family of uniformly (W,σ)-additive measures, then the W -semivariations |νn|U,W , n ∈
N, of these measures are uniformly continuous on σ(∆U,W ),
i.e. limE→∅ |νn|U,W (E) = 0, E ∈ Σ, uniformly in n ∈ N.

Proof. Same as in [7], cf. the note after Th.1 in this paper.

Lemma 3.6. Let Un ⊂ U,Wn ⊂ W, U,Un ∈ U , W,Wn ∈ W, n ∈ N. If A ∈
∆U,W , fn ∈ SUn,Wn

, then fnχA ∈ SU,W for every n ∈ N.

Proof. Clearly, fnχA : ∆Un,Wn ∩∆U,W → YWn ⊂ YW . Since Un ⊂ U ⊂ Un ∨ U =
U,Wn ∩W = Wn ∧W, we have ∆Un,Wn

∩∆U,W ⊂ ∆Un∪U,Wn∩W ⊂ ∆Un∨U,Wn∧W ⊂
∆U,W , i.e., fnχA : ∆U,W → YW .

The proof of the following lemma is trivial.

Lemma 3.7. Let (U,W ) ∈ U ×W. If g ∈ SU,W and G ∈ σ(∆U,W ), then

pW

(∫

G

g dm
)
≤ ‖g‖G,U .m̂U,W (G). (2)

Theorem 3.8. Let m be a σ-additive bornological measure and f ∈ MU . If there
exists a sequence fn ∈ SU,W , n ∈ N, of functions such that

(a) U- limn→∞ fn = f m̂U,W -a.e.,
(b)

∫
· fn dm, n ∈ N, are uniformly (W, σ)-additive measures on Σ,

then the limit ν(E, f) =W- limn→∞
∫
E

fn dm exists uniformly in E ∈ Σ.

Proof. Let E ∈ Σ, ε > 0.
By assumption, there exist U ∈ U , (R,S) ∈ U × W , and M ∈ Σ such that

m̂R,S(M) = 0 and limn→∞ pU (fn(t)− f(t)) = 0 for every t ∈ T \M . By Definition
3.4 ,

∫
E

fχM dm = 0. Without loss of generality, suppose that the sequence fn, n ∈
N, of functions U -converges to f .

Since m is a σϕ1 -additive measure for some ϕ1 ∈ Φ, for U there exists W1 ∈ W
such that ϕ1(U) = W1. By assumption, there exists W2 ∈ W such that the
integrals

∫
· fn dm, n ∈ N, are uniformly (W2, σ)-additive measures on Σ. Put

ϕ(U) = W = W1 ∨W2. Then the integrals
∫
· fn dm, n ∈ N, are uniformly (W,σ)--

additive measures on Σ and the measure m is also of ϕ-finite (U ,W)-semivariation
by Lemma 2.2. By virtue of σϕ-finiteness of the (U,W )-semivariation of m, there
exist disjoint sets Aj ∈ ∆U,W , such that

⋃∞
j=1Aj = T, j ∈ N.

Applying Definition 2.5, the uniform (W,σ)-additivity of integrals
∫
.
fn dm, n ∈

N, on Σ implies that there exists i0 ∈ N such that for every i ≥ i0, i ∈ N,

qW

(∫

E\Bi
fn dm

)
≤ ε (3)
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uniformly for every n ∈ N, where Bi =
⋃i
j=1Aj . Put A = Bi0 . Further, by Lemma

3.6, fnχA ∈ SU,W .
Let p ∈ N. By Theorem 3.3 there exists a real-valued σ-additive finite measure

γ : Σ→ [0, 1], a nondecreasing sequence of sets Fk ∈ Σ, Fk ⊂ A, k ∈ N, and a γ-null
set N ∈ Σ such that

⋃∞
k=1 Fk = A \ N, ∫

N
fn dm = 0, n ∈ N, and the sequence

fn, n ∈ N, of functions (U,Fk)-converges uniformly to f for every k ∈ N. For a given
ε, there exists n0 ∈ N such that for every n ≥ n0, n ∈ N, we have

‖fn − fn+p‖Fk,U ≤
ε

m̂U,W (A)
. (4)

By Lemma 3.5, for a given ε there exists k0 ∈ N such that for every k ≥ k0, k ∈ N,
∣∣∣∣
∫

.

fn dm
∣∣∣∣
U,W

(A \ Fk \N) ≤ ε (5)

holds uniformly in n ∈ N.
Let n ≥ n0, k ≥ k0. We have

pW

(∫

E

fn dm−
∫

E

fn+p dm
)
≤

≤ pW
(∫

E\A
fn dm

)
+ pW

(∫

E\A
fn+p dm

)
+

+ pW

(∫

E∩A∩N
(fn − fn+p) dm

)
+ pW

(∫

E∩A\N
(fn − fn+p) dm

)
;

by (3) and Theorem 3.3(b),

≤ 2ε+ 0 + pW

(∫

E∩Fk
(fn − fn+p) dm

)
+ pW

(∫

E∩A\Fk\N
(fn − fn+p) dm

)
;

by Lemma 3.7,

≤ 2 · ε+ ‖fn − fn+p‖E∩Fk,U · m̂U,W (E ∩ Fk)+

+ pW

(∫

E∩A\Fk\N
fn dm

)
+ pW

(∫

E∩A\Fk\N
fn+p dm

)
;

by (4) and (5),

≤ 2 · ε+ ‖fn − fn+p‖Fk,U · m̂U,W (A)+

+
∣∣∣∣
∫

.

fn dm
∣∣∣∣
U,W

(A \ Fk \N) +
∣∣∣∣
∫

.

fn+p dm
∣∣∣∣
U,W

(A \ Fk \N) ≤ 5ε.

Since ε is an arbitrary positive number, E an arbitrary element in Σ, and YW a
complete space, the existence and the uniformity in E ∈ Σ of the limit is proved.
By Lemma 2.3, Σ = σF (∆U,W ), U ∈ U ,W = ϕ(U). The theorem is proved.

Remark 3.9. From the proof of Theorem 3.8 we see that ν(E, f) = ν(T, fχE), E ∈ Σ.
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Definition 3.10. A function f ∈ MU is said to be ∆U,W -integrable, we write
f ∈ IU,W , if there exists a sequence fn ∈ SU,W , n ∈ N, of functions such that

(a) U- limn→∞ fn = f m̂U,W -a.e.,
(b)

∫
E

fn dm, n ∈ N, are uniformly (W, σ)-additive measures on Σ.

The integral of the function f ∈ IU,W on a set E ∈ Σ is defined by the equality

∫

E

f dm =W- lim
n→∞

∫

E

fn dm.

4. Some properties of the integral

Theorem 4.1. Let h,g ∈ IU,W and E ∈ Σ .
If h + g = 0, then

∫
E

h dm +
∫
E

g dm = 0.

Proof. Let h(T ) ⊂ XU1 ,g(T ) ⊂ XU2 ,
∫
· h dm ⊂ YW1 ,

∫
· g dm ⊂ YW2 for some

U1, U2 ∈ U ,W1,W2 ∈ W. (1) If U1 = U2,W1 = W2, cf. [7]. (2) The case U1 6= U2

or W1 6= W2 is reduced to (1) as follows: take U = U1 ∨ U2 and W = ϕ(U), where
ϕ(U) = ϕ1(U) ∨ W1 ∨ W2, ϕ ∈ Φ, where ϕ1 ∈ Φ is such that T is of σϕ1-finite
(U,ϕ1(U))-semivariation.

Theorem 4.2. Let ν(E, f) =
∫
E

f dm, E ∈ Σ, f ∈ IU,W . Then ν(., f) : Σ → Y is
a (W, σ)-additive measure.

Proof. Let E =
⋃∞
i=1Ei, Ei ∩ Ej = ∅, Ei, Ej ∈ Σ, i 6= j, i, j ∈ N. By Definition

3.10, there exists W ∈ W such that for every I ∈ N and ε > 0 there exists n0 ∈ N
such that for every n ≥ n0, n ∈ N, we have

pW

(∫

E

f dm−
∫

E

fn dm
)
< ε,

pW

(∫
SI
i=1 Ei

f dm−
∫
SI
i=1 Ei

fn dm

)
< ε. (10)

By the uniform (W,σ)-additivity of the integrals
∫
.
fn dm, n ∈ N, for every ε > 0

there exists I ∈ N such that

pW

(∫

E

fn dm−
∫
SI
i=1 Ei

fn dm

)
< ε (11)

uniformly for every n ∈ N. Thus (10) and (11) imply

pW

(∫

E

f dm−
∫
SI
i=1 Ei

f dm

)
≤ pW

(∫

E

fn dm−
∫
SI
i=1 Ei

fn dm

)
+

+ pW

(∫

E

f dm−
∫

E

fn dm
)

+ pW

(∫
SI
i=1 Ei

fn dm−
∫
SI
i=1 Ei

f dm

)
< 3ε.
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Theorem 4.3. Let f ∈ MU . The function f ∈ IU,W if and only if there exists a
sequence fn ∈ SU,W , n ∈ N, of functions such that

(a) it (U , E)-converges m̂U,W -a.e. to f ,
(b) the limit W- limn→∞

∫
E

fn dm = ν(E) exists

for every E ∈ Σ. In this case
∫
E

f dm = ν(E) for every set E ∈ Σ and this limit
is uniform on Σ.

Proof. According to Theorem 3.8, we have to prove that the existence of the limit
W- limn→∞

∫
E

fn dm for every E ∈ Σ implies the uniform (W, σ)-additivity of the
integrals

∫
E

fn dm = νn(E), n ∈ N. Let E =
⋃∞
i=1Ei, Ei ∩Ek = ∅, Ei, Ek ∈ Σ, i 6=

k, i, k ∈ N, then by the definition of the W -semivariation,

pW

(
νn

( ∞⋃

i=I+1

Ei

))
≤ |νn|W

( ∞⋃

i=I+1

Ei

)
. (12)

If νn, n ∈ N, is a given sequence of σ-additive YW -valued vector measures on
Σ,W ∈ W, and limn→∞ νn(E) = ν(E) ∈ YW exists for every set E ∈ Σ, then
the semivariations |νn|W (.), n ∈ N, are uniformly continuous on Σ. From this
fact and (12) we obtain the asserted uniform (W,σ)-additivity of integrals νn(·) =∫
· f dm, n ∈ N, as a corollary.

The proof of the following theorem is easy.

Theorem 4.4.

(a) The family IU,W is a vector space.
(b) For every E ∈ Σ, the map

∫
E

(·) dm : IU,W → Y is a linear operator.

We can observe (analogously to [7]) that Theorems 3.3 and 3.8 hold when we
replace sequences fn ∈ SU,W , n ∈ N, of functions by fn ∈ IU,W , n ∈ N. So, we
obtain the following theorems as corollaries.

Theorem 4.5 (Theorem 3.8a). If a sequence of functions fn ∈ IU,W , n ∈ N,
(a) U-converges to a function f ∈MU,W m̂U,W -a.e., and
(b)

∫
· fn dm, n ∈ N, are uniformly (W, σ)-additive measures on Σ,

then f ∈ IU,W ,
∫
E

f dm = W- limn→∞
∫
E

fn dm, E ∈ Σ, and this limit is uniform
in E ∈ Σ.

Theorem 4.6 (Theorem 4.3a). If a sequence of functions fn ∈ IU,W , n ∈ N,
(a) U-converges m̂U,W -a.e. to a function f ∈MU , and
(b) the limit W- limn→∞

∫
E

fn dm = ν(E) exists for every E ∈ Σ,

then f ∈ IU,W ,
∫
E

f dm = ν(E), E ∈ Σ, and this limit is uniform in E ∈ Σ.

Theorem 4.7. The set IU,W is the smallest class of functions which contains SU,W
and Theorem 4.6 holds.
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