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ON INTEGRATION

IN COMPLETE VECTOR LATTICES

Ján Haluška

Abstract. For the Archimedean vector lattice X, the complete vector
lattice Y and the positive cone L of the vector lattice of all linear regular
operators L : X → Y, a Riemann-type construction of integral for L-valued
measures is discussed. Moreover, if Y is almost regular, a convergence
theorem is proved.

Introduction

Riemann-type concepts, cf. [14], of the integral have their new Renais-
sance in the vector integration theory. E.g., let X be a linear metric space
but not locally convex, and m(·)x = xλ(·),x ∈ X, where λ is a Lebesgue
measure on the real line. It is clear that (because of the convergence of
simple functions) a Lebesgue integral cannot be principally defined for the
measure m, although Riemann integrals can be defined very well, cf. [6].

Denote by R,N the real line and the set of all naturals, respectively. Let
∆ : [a, b] → (0,∞), a, b ∈ R, a ≤ b, be a real function. Let A(∆) be the
family of all partitions D = {(E1, t1), . . . , (EJ , tJ )}, such that Ej ⊂ (tj −
∆(tj), tj + ∆(tj)), where the sets Ej , j = 1, 2, . . . , J , are non-overlapping
compact subintervals of the interval [a, b] covering [a, b], and tj ∈ Ej , j =
1, 2, . . . , J , are chosen points. Let λ be the Lebesgue measure. A function
f : [a, b] → R is Kurzweil integrable if there exists a constant c ∈ R and
for every ε > 0 a real function ∆ : [a, b] → (0,∞), such that for every D ∈
A(∆) the inequality |c −∑J

j=1 f(tj)λ(Ej)| < ε holds, cf. [7], Definitions
3.22, 3.24. It is known that a function is Kurzweil integrable on [a, b] if
and only if it is Perron integrable on [a, b] and a non-negative function
is Kurzweil integrable on [a, b] if and only if it is Lebesgue integrable on
[a, b], a, b ∈ R, a ≤ b, cf. [5].
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S. I. Ahmed and W. F. Pfeffer, [1], and B. Riečan, [8], defined a Kurzweil
integral for real functions and for a non-negative Borel measure in locally
compact topological spaces. Further B. Riečan, [9], [10]; B. Riečan and
M. Vrábelová, [11], [12], developed a generalized Kurzweil integration to
ordered spaces with some properties.

There are few constructions of integral with respect to operator valued
measures without order structures, cf. [3]. These constructions are based
on the notion of semivariation (or variation) of a measure. However, this
quantity cannot be practically computed without any additional property,
e.g. again considering some order structure. Our idea is to choose suitable
ideals of spaces in which the semivariation coincides with an operator norm.
The choice of these ideals may depend on the function which we integrate.
An integral is viewed in the present paper as a linear map from a lattice
of functions into another lattice. For the Archimedean vector lattice X
and the complete vector lattice Y, we construct a Riemann integral with
respect to an L-valued measure, where L is the positive cone of the vector
lattice of all linear regular operators L : X → Y. Moreover, if Y is almost
regular, a convergence theorem is proved.

1. Preliminaries

For notation and terminology concerning Riesz spaces we refer to mono-
graphs [2], [4], and [13].

Let X be an Archimedean vector lattice and X+ = {x ∈ X;x = x∨ 0}.
A sequence (xi)i∈N is said to be (r)-convergent to x ∈ X (we write x =
(r)- limi∈N xi), if there exists ρ ∈ X+ (called the regularizator), such that
∀ε > 0,∃i0 ∈ N, ∀i ≥ i0 : |x− xi| ≤ ερ.

Each linear solid subspace of a vector lattice is called an ideal. If ρ ∈
X+, then the smallest ideal containing ρ is called an (ρ)-ideal in X (denoted
by X(ρ)). A norm ‖ · ‖ defined on a vector lattice X is monotone if |x1| ≤
|x2| =⇒ ‖x1‖ ≤ ‖x2‖. It is easy to see, that X(ρ) = {x ∈ X; ∃λ, 0 ≤
λ < ∞, |x| ≤ λρ} and the Minkowski functional ‖ · ‖ρ of [−ρ, ρ], ρ > 0,
is a monotone norm in X(ρ). In normed lattices the convergence with a
regularizator implies the norm convergence, cf. [2], p. 377. Evidently, if
ρ ∈ X, ρ > 0,x ∈ X(ρ), then |x| ≤ ‖x‖ρ · ρ.

A vector lattice Y is said to be complete if every set bounded from above
has a supremum. An ideal in a complete vector lattice is a complete vector
lattice, too. A complete vector lattice Y is said to be almost regular if the
(r)-convergence on Y is equivalent to the (o)-convergence on Y (defined
as usually). Note, that B. Z. Vulikh use the adjective ”almost regular”
only for complete vector lattices of countable type, cf. [13], VI, §4.

Example 1.1. If Y is a complete finite dimensional vector lattice with unit,
then Y is almost regular, cf. [13], Th. VI.4.2.



JÁN HALUŠKA 3

Example 1.2. Let Y be the complete vector lattice of all sequences of
reals, such that (rn)n∈N ∈ Y iff ∃i1, . . . , ik ∈ N : ri1 , . . . , rik

6= 0 and
ri = 0, i ∈ N \ {i1, . . . , ik}, k ∈ N, (the positive cone of Y is defined as
usually). Then Y is almost regular and is not regular, cf. [13], VI.§5.

Let T be a non-trivial Hausdorff topological space which is to serve as
a basis space. We denote by cl(E) the closure of a set E ⊂ T . For E ⊂
T, ρ ∈ X, ρ > 0, define the following seminorm ‖.‖E,ρ : X(ρ)T → [0,∞],
where ‖f‖E,ρ = supt∈E ‖f(t)‖ρ, f : T → X(ρ).

Let X,Y be two real Archimedean vector lattices. Let L(X,Y) be
a space of all linear regular operators L : X → Y, cf. [13], Definition
VIII.1.2. Let L be the positive cone of L(X,Y), i.e. L ∈ L if and only if for
every x ∈ X+ there is Lx ∈ Y+ = {y ∈ Y;y = y∨0}. Every additive and
positively homogeneous operator L0 : X+→Y+, has a unique extension
to a linear operator L : X → Y. This extension is defined by the formula
L(x) = L0(x+)− L0(x−), where x = x+ − x−, x+,x− ∈ X+.

Let B be the Borel σ-algebra of subsets of the set T . Let m : B → L be
an additive regular operator valued measure, i.e.

(i) E, F ∈ B, E ∩ F = ∅ =⇒ m(E ∪ F ) = m(E) + m(F ),
(ii) ∀E ∈ B, ∀x ∈ X+, ∃π ∈ Y+, ∀ε > 0, ∃C ∈ B (a compact set),

∃O ∈ B (an open set), such that C ⊂ E ⊂ O and m(O \C)x < επ.
For ρ ∈ X+, π > 0, π ∈ Y, we denote by ‖m(E)‖ρ,π = ‖m(E)ρ‖π,

where E ∈ B and ‖ · ‖π is the Minkowski functional of [−π, π] in Y(π).

Example 1.3. Let (S,ΣS , ν), (V,ΣV , µ), (Z, ΣZ , ϕ) be measure spaces with
σ-finite nonegative measures, (R, ΣR, λ) be the measure product of those
spaces, i.e. λ = ϕ⊗ν⊗µ is a product measure on the generated σ-algebra
ΣR = ΣZ ⊗ ΣS ⊗ ΣV on R = Z × S × V. Let X,Y be two spaces of
measurable functions on (S, ΣS , ν), (V, ΣV , µ), respectively, X+ = {x ∈
X; ∀s ∈ S : x(s) ≥ 0},Y+ = {y ∈ Y; ∀v ∈ V : y(v) ≥ 0}. Let κ :
Z × S × V → R be a λ-measurable function. Then for every x ∈ X,

(m(E)x)(v) =
∫

E

∫

S
κ(z, s, v)x(s) dν(s) dϕ(z), E ∈ ΣZ

defines an integral operator and (m(E)x)(v) ≥ 0 for every x ∈ X+ if and
only if κ(z, s, v) ≥ 0 λ-a.e., (z, s, v) ∈ Z × S × V (we consider Lebesgue
integrals). (For the proof see [2], XI., p. 393.)

2. Definition of integral

A function U : T → 2T is said to be a neighborhood function if for
every t ∈ T , U(t) is a neighborhood of t. By U we will denote a family of
neighborhood functions (it will be specified in Definition 2.2) and by UE

the set of all restrictions U |cl(E) of functions U ∈ U .
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Definition 2.1. By a partition of E ∈ B we mean a finite set w of couples
{(Ej , tj); tj ∈ cl(Ej),

⋃J
j=1 Ej = E, Ei ∩ Ej = ∅, Ei, Ej ∈ B, i 6= j, i, j =

1, 2, . . . , J}. For U ∈ UE , we will denote by WE(U) the family of all
partitions w of E such that Ej ⊂ U(tj), j = 1, 2, . . . , J .

Let w = {(Ei, ti); i = 1, 2, . . . , I} ∈ WE(U), p = {(Fj , zj); j = 1, 2,
. . . , J} ∈ WE(U), U ∈ UE . We say that p is a refinement of w if each
Ei, i = 1, 2, . . . , I, is a union of some members of {Fj ; j = 1, 2, . . . , J} and
{ti; i = 1, 2, . . . , I} ⊂ {zj ; j = 1, 2, . . . , J}.
Definition 2.2. A family U 6= ∅ of neighborhood functions is said to be
satisfactory (with respect to the set system B and the topology τ on T ) if
WE(U) 6= ∅ for every E ∈ B and U ∈ U .

Example 2.3. The family of all neighborhood functions U is a satisfactory
family for T the compact topological space and the L-valued regular Borel
measure defined in Section 1 of this paper (can be proved analogously
as Lemma 3.4 in [8]). However in general, U need not be the family
of all neighborhood functions and B the Borel σ-algebra. Particularly,
when considering connections of the notion of integral and various types
of integration bases, cf. [14], we should take the corresponding families U
of neighborhood functions and the set systems B. For instance, in case of
the classical Riemann integral, E = [a, b],U = {U(t) = (t−r; t+r); r > 0}
and B = {F ⊂ T ; F = A \ N}, where a ≤ b, a, b, r, t ∈ R, A is a finite
interval and N the set of the Jordan measure zero on R.

Definition 2.4. Let a family U of neighborhood functions be satisfactory.
Let E ∈ B. A function f : T → X is said to be π-(U , E)-integrable, π ∈ Y+,
if there exists y ∈ Y, such that

∀ε > 0, ∃U ∈ UE , ∀w ∈ WE(U) :
∣∣S(w,U)(f , E)− y

∣∣ < επ, (1)

where S(w,U)(f , E) =
∑J

j=1 m(Ej)f(tj), w ∈ WE(U), (Ej , tj) ∈ w, j =
1, 2, . . . , J. A function f : T → X is said to be (U , E)-integrable, if there
exists π ∈ Y+, such that f is π-(U , E)-integrable. The value y will be
called a (U , E)-integral of the function f and denoted by y =

∫
E

f dm.
The class of all (U , E)-integrable functions will be denoted by I(U , E).

In what follows, we suppose U to be a satisfactory family of neighbor-
hood functions U : T → 2T .

Lemma 2.5. Let E ∈ B, f ∈ I(U , E). Then the integral y =
∫

E
f dm in

Definition 2.4 is defined uniquely.

Proof. Trivial.
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Lemma 2.6. Let E ∈ B. If f ,g are (U , E)-integrable functions, h =
λf + g, λ ∈ R, then h is a (U , E)-integrable function and

∫

E

h dm = λ

∫

E

f dm +
∫

E

g dm. (2)

Proof. S(w,U)(h, E) = λS(w,U)(f , E) + S(w,U)(g, E).

Lemma 2.7. Let E ∈ B. The (U , E)-integral is a positive operator, i.e.
if g ≤E f , g, f ∈ I(U , E), then

∫
E

g dm ≤ ∫
E

f dm, where g ≤E f if
and only if g(t) ≤ f(t) for every t ∈ cl(E).

Proof. It is enough to show the implication 0 ≤E f ⇒ 0 ≤ ∫
E

f dm. This
follows from the implication 0 ≤E f ⇒ 0 ≤ S(w,U)(f , E).

Lemma 2.8. Let m be an additive regular L-valued measure defined on
the σ-algebra B of Borel subsets of T . Let E ∈ B. If f =

∑J
j=1 χEj

xj

is a simple function and U is a satisfactory family, then f ∈ I(U , E) and∫
E

f dm =
∑J

j=1 m(Ej ∩ E)xj.

Proof. Same as in [9], Th. 8.

Lemma 2.9. Let Y be a complete vector lattice, E ∈ B and the class U
be satisfactory. Then the following two assertions are equivalent:

(i) f ∈ I(U , E),
(ii) ∃π ∈ Y+,∀ε > 0, ∃U ∈ UE , ∀w1, w2 ∈ WE(U) :

∣∣S(w1,U)(f , E)−S(w2,U)(f , E)
∣∣ < επ.

Proof. Same as in [9], Lemma 6.

Lemma 2.10. Let Y be a complete vector lattice. If E, F,G ∈ B, E =
F ∪G, F ∩G = ∅, then

(i) I(U , E) ⊂ I(U , F ) ∩ I(U , G),
(ii) for every f ∈ I(U , E),

∫

E

f dm =
∫

F

f dm +
∫

G

f dm. (3)

Proof. (i) Take f ∈ I(U , E). By Definition 2.4, there exists π ∈ Y+ such
that

∀ε > 0,∃UE ∈ UE , ∀w ∈ WE(UE) :
∣∣∣∣S(w,UE)(f , E)−

∫

E

f dm
∣∣∣∣ < επ.
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Then
|S(w1,UE)(f , E)−S(w2,UE)(f , E)| < 2ε · π

for every w1, w2 ∈ WE(UE). Take w′, w′′ ∈ WF (UF ) and w0 ∈ WG(UG),
where UF = UE |cl(F ), UG = UE |cl(G). Put w1 = w′ ∪ w0, w2 = w′′ ∪ w0.
Then w1, w2 ∈ WE(UE) and |S(w1,UE)(f , E)−S(w2,UE)(f , E)| < ε ·π. But

|S(w′,UF )(f , F )−S(w′′,UF )(f , F )| =
= |S(w′,UF )(f , F ) + S(w0,UG)(f , G)−
−S(w0,UG)(f , G)−S(w′′,UF )(f , F )|

= |S(w1,UE)(f , E)−S(w2,UE)(f , E)| < 2ε · π

for every w′, w′′ ∈ WF (UF ). By Lemma 2.9, f is (U , F )-integrable. Simi-
larly, f ∈ I(U , G). Hence, I(U , E) ⊂ I(U , F ) ∩ I(U , G).

(ii) Let w ∈ WE(UE) be an arbitrary partition. Denote by wF∪G

a refinement partition of w, such that wF ∪ wG = wF∪G, where wF ∈
WF (UF ), wG ∈ WG(UG). Then wF∪G ∈ WE(UE) and

∣∣∣∣S(wF∪G,UE)(f , E)−
∫

E

f dm
∣∣∣∣ < επ.

Now the equality (3) follows from (i) and the equality

S(wF∪G,UE)(f , E) = S(wF ,UF )(f , E) + S(wG,UG)(f , E).

3. Convergence theorem

To prove a convergence theorem for our integral, Theorem 3.3, we need
two usefull preparatory lemmas.

Lemma 3.1 (R. Henstock, J. Kurzweil). Let Y be a complete vector lat-
tice. Let E ∈ B, f ∈ I(U , E), ε > 0, U ∈ UE , π ∈ Y+. If w ∈ WE(U), w =
{(Ej , tj); j = 1, 2, . . . , J},

∣∣∣∣
∫

E

f dm−S(w,U)(f , E)
∣∣∣∣ < επ

and A ⊂ {1, 2, . . . , J}, then

∣∣∣∣∣∣
∑

j∈A

∫

Ej

f dm−
∑

j∈A

m(Ej)f(tj)

∣∣∣∣∣∣
≤ επ.
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Proof. By lemma 2.10, f ∈ I(UEj
, Ej). Choose wj ∈ WEj

(UEj
) such that

∣∣∣∣
∫

Ei

f dm−S(wj ,UEj
)(f , Ej)

∣∣∣∣ <
η

2j
π,

where η is an arbirtary positive number, j ∈ {1, 2, . . . , J} \A = B. (From
the proof of Lemma 2.10 we see that we can take the same regularizator
π.) Put

w∗ = {(Ej , tj) : j ∈ A} ∪
⋃

j∈B

wj .

Since w∗ ∈ WE(U),
∣∣∣∣
∫

E

f dm−S(w∗,U)(f , E)
∣∣∣∣ < επ.

We have: S(w∗,U)(f , E) =
∑

j∈A m(Ej)f(tj) +
∑

j∈B m(Ej)f(tj). There-
fore∣∣∣∣∣∣

∑

j∈A

∫

Ej

f dm−
∑

j∈A

m(Ej)f(tj)

∣∣∣∣∣∣
≤

≤
∣∣∣∣
∫

E

f dm−S(w∗,U)(f , E)
∣∣∣∣ +

∣∣∣∣∣∣
∑

j∈B

∫

Ej

f dm−
∑

j∈B

m(Ej)f(tj)

∣∣∣∣∣∣
< (ε + η)π.

Since the last inequality holds for every η > 0, we obtain the desired
property.

Lemma 3.2. Let E ∈ B. Let f ∈ I(U , E). Let there exist ρ ∈ X, ρ >
0; π ∈ Y, π > 0, such that ‖f‖E,ρ < ∞, ‖m(E)‖ρ,π < ∞. Then

∣∣∣∣
∫

E

f dm
∣∣∣∣ ≤ ‖f‖E,ρ · ‖m(E)‖ρ,π · π. (4)

Proof. The cases ‖f‖E,ρ = 0 and ‖m(E)‖ρ,π = 0 are trivial. Let 0 <
‖f‖E,ρ, 0 < ‖m(E)‖ρ,π. Let ε > 0, U ∈ UE , w ∈ WE(U).

Observe that if |xj | ≤ ρ, and Ej ∈ B are pairwise disjoint, j =
1, 2, . . . , J,

⋃J
j=1 Ej = E, then

∣∣∣∣∣∣

J∑

j=1

m(Ej)xj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

J∑

j=1

m(Ej)ρ

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣




J∑

j=1

m(Ej)


 ρ

∣∣∣∣∣∣
= |m(E)ρ| ≤ ‖m(E)ρ‖π · π = ‖m(E)‖ρ,π · π.
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Then the inequality
∣∣∫

E
f dm−S(w,U)(f , E)

∣∣ < ε · π in (1) implies

∣∣∣∣
∫

E

f dm
∣∣∣∣ ≤

∣∣∣∣
∫

E

f dm−S(w,U)(f , E)
∣∣∣∣ + |S(w,U)(f , E)| <

< επ + |S(w,U)(f , E)| = επ +

∣∣∣∣∣∣

J∑

j=1

m(Ej)
f(tj)
‖f‖E,ρ

∣∣∣∣∣∣
· ‖f‖E,ρ ≤

≤ επ + ‖f‖E,ρ · ‖m(E)‖ρ,π · π = (ε + ‖f‖E,ρ · ‖m(E)‖ρ,π) · π.

Since the last inequality holds for every ε > 0, we obtain the desired
assertion.

Theorem 3.3. Let X be an Archimedean vector lattice and Y be an al-
most regular complete vector lattice. Let m be an additive regular L-valued
measure defined on the σ-algebra B of Borel subsets of T . Let the family
U of neighborhood functions be satisfactory. Let E ∈ B. If there exists a
sequence (fi)i∈N of (U , E)-integrable functions, such that

(i) fi ≤E fi+1, i ∈ N,
(ii) there exists a function f : T → X, such that

(r)- lim
i→∞

fi(t) = f(t) (5)

with the same regularizator ρ ∈ X+ for every t ∈ cl(E),
(iii) there exists π ∈ Y+, such that for every i ∈ N, the functions fi are

π-(U , E)-integrable and
∫

E

fi dm ≤ π, (6)

(iv) m(E)ρ ∈ Y(π),
then f ∈ I(U , E) and

∫
E

f dm = (r)- limi→∞
∫

E
fi dm.

Proof. The cases ρ = 0, π = 0 are trivial. Suppose ρ > 0, π > 0.
The plan of the proof is the following. First we show that the limit
(r)- limi→∞

∫
E

fi dm = y exists. To given ε > 0 we construct U ∈ UE .
Then we take an arbitrary partition w = {(Ej , tj); j = 1, 2, . . . , J} ∈
WE(U) and show that |S(w,U)(f , E) − y| < (2 + ‖m(E)‖ρ,π) · επ, i.e.∫

E
f dm = y.

Step 1. (Existence of the limit.)
Consider the (ρ)-ideal in X and the (π)-ideal in Y. Let ε > 0 be given.
The inequality (6) implies that the sequence

(∫
E

fi dm
)
i∈N , is bound-

ed. Since the vector lattice Y is complete, there exists y ∈ Y, such that
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y =
∨∞

i=1 yi, where yi =
∫

E
fi dm. The assumption (iii) implies y ≤ π.

By Lemma 2.9 and (ii), (yi)i∈N is a nondecreasing sequence of elements in
Y and hence, it (o)-converges to y, cf. [13], Th. II.6.1. Since the complete
vector lattice Y is almost regular, the sequence (yi)i∈N of integrals (r)-
converges to y with a regularizator π1 ∈ Y+. Without loss of generality
suppose π1 = π (if not, deal with π1 ∨ π, which is a regularizator which
satisfies (iv), too). So, there exists i1 ∈ N, such that for every i ≥ i1, i ∈ N,

∣∣∣∣
∫

E

fi dm− y
∣∣∣∣ < επ. (7)

So, y = (r)- limi→∞
∫

E
fi dm (with the regularizator π).

Step 2. (Construction of the neighborhood function.)
Definition 2.4 implies that for every ε > 0 and fi ∈ I(U , E), i ∈ N,

there exists its U (i) ∈ UE , such that WE(U (i)) 6= ∅ and for every partition
w(i) ∈ WE(U (i)),

∣∣∣∣
∫

E

fi dm−S(w(i),U(i))(fi, E)
∣∣∣∣ <

ε

2i
π. (8)

From (5) we see that the following function ϕ : cl(E) → N is defined
correctly:

ϕ(t) = min {i ∈ N; |fi(t)− f(t)| ≤ ερ and i ≥ i1} , t ∈ cl(E). (9)

Construct a function U ∈ UE by the formula U(t) = U (ϕ(t))(t), t ∈ cl(E).

Step 3. (Splitting the inequality into three parts.)
Take an arbitrary partition w ∈ WE(U). We have:

|S(w,U)(f , E)− y| ≤
∣∣∣∣∣∣

J∑

j=1

m(Ej)(f(tj)− fϕ(tj)(tj))

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

J∑

j=1

[
m(Ej)fϕ(tj)(tj)−

∫

Ej

fϕ(tj) dm

]∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

J∑

j=1

∫

Ej

fϕ(tj) dm− y

∣∣∣∣∣∣
. (10)
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Step 4. (Using Lemma 3.2.)
Denote by f(tj) − fϕ(tj)(tj) = xj and g =

∑J
j=1 χEj

xj , j = 1, 2, . . . , J.

By Lemma 2.8, g ∈ I(U , E). By (9), |g(t)| ≤ ερ, t ∈ cl(E). Since ‖ · ‖ρ is
a monotone norm in X(ρ), ‖g(t)‖ρ ≤ ε, t ∈ cl(E). Thus, ‖g‖E,ρ ≤ ε. By
Lemma 3.2 and (iv),

∣∣∣∣∣∣

J∑

j=1

m(Ej)(f(tj)− fϕ(tj)(tj))

∣∣∣∣∣∣
=

=
∣∣∣∣
∫

E

g dm
∣∣∣∣ ≤ ‖g‖E,ρ · ‖m(E)‖ρ,π · π ≤

≤ ‖m(E)‖ρ,π · πε.

Step 5. (Using Lemma 3.1.)
Put s = max{ϕ(tj); j = 1, 2, . . . , J}. Then by (8) and Lemma 3.1,
∣∣∣∣∣∣

J∑

j=1

[
m(Ej)f(tj)−

∫

Ej

fϕ(tj) dm

]∣∣∣∣∣∣
≤

≤
s∑

i=1

∣∣∣∣∣∣
∑

j:ϕ(tj)=i

[
m(Ej)fi(tj)−

∫

Ej

fi dm

]∣∣∣∣∣∣
≤

≤
s∑

i=1

ε

2i
· π < επ.

Step 6. (Using Lemmas 2.7 and 2.10.)
Put r = min{ϕ(tj); j = 1, 2, . . . , J}, so that s ≥ r. By (i) and Lemma

2.7, and Lemma 2.10,
∫

E

fr dm =
J∑

j=1

∫

Ej

fr dm ≤

≤
J∑

j=1

∫

Ej

fϕ(tj) dm ≤

≤
J∑

j=1

∫

Ej

fs dm =
∫

E

fs dm ≤ y.

Consequently, by (7),
∣∣∣∣∣∣

J∑

j=1

∫

Ej

fϕ(tj) dm− y

∣∣∣∣∣∣
≤

∣∣∣∣y −
∫

E

fr dm
∣∣∣∣ ≤ επ.
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The proof is complete.

Remark 3.4. Theorem 3.3 is a generalization (with slight modifications) of
Theorems 5.1 in [7], 2 in [5], and 2.2 in [8].
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